1. Field of the Invention
The subject invention relates to a vehicle steering column of the kind having jackets of the column engaged one within the other in a telescoping fashion to adjust a height position of a steering wheel connected to the vehicle steering column to accommodate the position of a driver.
2. Description of the Prior Art
Generally, a variety of tilting and telescoping steering column arrangements have been developed and are used today in the field of automotive industry. A telescoping steering column assembly typically uses two jackets, wherein one jacket is fixed to a frame of a vehicle body, and the other jacket is adapted to be translated with respect to the jacket fixed to the frame, thereby providing relative longitudinal movement between the two jackets with respect to one another. These jackets, engaged one within another in a telescoping fashion, allow the driver to push or pull the steering wheel to a desired position and then to lock the telescoping column. Three fundamental conditions are required by the telescoping adjustment: the telescoping steering column must have a low adjustment force, the jackets must lock securely, and the stiffness of the telescoping steering column must not be degraded.
Various configurations and designs are available in the prior art for adjusting telescoping steering column assemblies and have been disclosed in U.S. Pat. Nos. 4,796,481 to Nolte, 5,287,763 to Nagashima, 5,520,416 to Singer, III et al., 5,921,577 to Weiss et al., 6,036,228 to Olgren et al., 6,216,552 to Friedewald et al., 6,364,357 to Jurik et al., 6,450,532 to Ryne et al., 6,540,618 to Mac Donald et al., and 6,543,807 to Fujiu et al. To provide the low adjustment force and high stiffness, the prior art designs include a sleeve bushing disposed between the jackets disposed one within the other in the telescoping fashion with a low coefficient of friction and a very close fit to the ID, i.e inner diameter, and OD, i.e. outer diameter, of the jackets. These two requirements are sometimes at odds, because the close fit may increase the adjustment force.
Although the prior art configurations of the telescoping steering column assembly are used in the automotive industry today, there remains an opportunity for a new design for adjusting the relative longitudinal position between two jackets of a steering column and for a telescoping sleeve that optimizes the performance in both areas.
A telescoping steering column assembly of the present invention includes a lower mounting mechanism for connecting to a body, a lower jacket having inner and outer surfaces connected to the lower mounting mechanism, an upper jacket having inner and outer surfaces and disposed in telescoping relationship with the lower jacket, and an upper mounting mechanism for connecting to the body for slidably supporting the upper jacket for telescoping movement relative to the lower jacket between various positions. The telescoping steering column assembly includes a linear bushing having leading and trailing ends and sidewall disposed between the inner surface of the upper jacket and the outer surface of the lower jacket. The linear bushing includes a plurality of convolutions disposed axially in side-by-side relationship as viewed in cross-section and extending between the ends of the bushing to provide outer load bearing surfaces to engage the inner surface of the upper jacket and to provide inner load bearing surfaces to engage the outer surface of the lower jacket and to provide radial walls for flexing to maintain the bearing surfaces in engagement with the jackets to allow the bushing to radially expand and contract.
An advantage of the present invention is to provide for inner and outer load bearings formed by convolutions to define reservoirs for a lubricant to help reduce friction between the upper and lower jackets, wherein the convolutions are elastically deformed to adapt to the annual clearance between the upper and lower jackets.
Another advantage of the present invention is to provide for an economical and positive improving of the telescoping effect. Still another advantage of the present invention is to provide for the linear bushing to function as spring elements to radially expand and contract in different modes of operation of the telescoping steering column assembly.
Accordingly, the telescoping steering column assembly having the linear bushing of the present invention is new, efficient, and provides for the linear bushing formed with a number of end-wise convolutions that each function as spring elements as well as load bearing surfaces to support the telescoping tubes and lubricate the upper and lower jackets engaged within one another in the telescoping fashion.
Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures wherein like numerals indicate like or corresponding parts throughout the several views, a telescoping steering column assembly of the present invention, generally shown at 10 in
The telescoping steering column assembly 10 includes a linear bushing, generally shown at 28 in
Referring back to
The upper mounting mechanism 26 of the telescoping steering column assembly 10 is designed to slidably support the upper jacket 20 for telescoping movement relative to the lower jacket 14 between various positions. The upper mounting mechanism 26 includes an upper bracket 58 having first 60 and second 62 ends, a bottom 64, and sides 66, 68 extending upwardly from the bottom 64 to define a gap therebetween. The upper bracket 58 includes a slot 70 defined within each of the sides 66, 68 at the first end 60.
Referring to
Referring back to
The linear bushing 28, 128 may be manufactured in a form of a wrapped spring steel part or as a rolled convoluted tube. As appreciated by those skilled in the art, the linear bushing 28, 128 may be formed by an aluminum extrusion, or any other material or forming process to generate the convoluted shape with the proper springing effect. In addition, the lower 14 and upper 20 jackets, formed from metal, are coated with anti-friction material such as Teflon to promote lubricity. Furthermore, the linear bushing 28, 128 may be formed with a textured surface of a fine dimpled condition to retain other lubricants L such as grease, and the like.
Referring back to
The telescoping steering column assembly 10 includes an adjustment cam 108 of a generally circular configuration having upper 110 and lower 112 surfaces and a hole 114 defined in a center of the adjustment cam 108. The upper surface 110 of the adjustment cam 108 has a rake configuration 116 and a protrusion 118 extending outwardly from the lower surface 112. The rod 102 extends through the hole 114 of the adjustment cam 108 and further through the slots 70 of the upper bracket 58 and the inlets 92 of the compression bracket 80 and secured by a flange nut 120. The telescoping steering column assembly 10 includes a shaft 122 extending linearly and transversely through the upper 20 and lower 14 jackets.
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. The invention may be practiced otherwise than as specifically described within the scope of the appended claims. These antecedent recitations should be interpreted to cover any combination in which the incentive novelty exercises its utility.