The present invention relates to a bushing for the connection of two tubular elements.
The application of the present invention is particularly advantageous when connecting a flexible tubular element to a rigid tubular element, to which the following disclosure will explicitly refer without however loosing in generality.
In order to connect a flexible tubular element and a rigid tubular element together, it is known to produce a bushing comprising an outer coupling, which is cup-shaped, and is delimited by an annular bottom wall hooked to the rigid tubular element.
The bushing extends around an end portion of the rigid tubular element, and further comprises an inner sleeve, which is axially locked inside the outer coupling, and has a plurality of annular teeth radially projecting towards the inside from an inner surface of the inner sleeve, and are arranged in sequence along a longitudinal axis of the bushing.
The inner sleeve generally comprises at least two cylindrical sectors connected together or it is produced from a flat blank bent into a substantially cylindrical configuration.
Therefore, the inner sleeve has at least one wall interruption obtained at the end faces of the above-mentioned cylindrical sectors, in one case, and at the end faces of the above-mentioned flat blank bent in its cylindrical configuration, in the other case.
Once an end portion of the flexible tubular element has been inserted between the bushing and the rigid tubular element, the bushing is radially deformed so as to allow the annular teeth of the inner sleeve to penetrate the flexible tubular element and lock the flexible tubular element on the rigid tubular element.
Known bushings for the connection of two tubular elements of the type described above have certain drawbacks mainly resulting from the fact that when the radial tightening force exerted by the bushing on the flexible tubular element exceeds a predetermined threshold value, the flexible tubular element is damaged by the bushing itself.
Known bushings for the connection of two tubular elements of the type described above also have the further drawback consisting in that, due to the mentioned wall interruption in the inner sleeve, the radial pressure exerted by the flexible tubular element on the bushing is entirely absorbed by the outer coupling, which thus needs to have relatively high thicknesses and therefore is relatively costly.
It is the object of the present invention to provide a bushing for the connection of two tubular elements, which is exempt from the above-described drawbacks and is simple and cost-effective to be implemented.
According to the present invention, there is provided a bushing for the connection of two tubular elements, as claimed in claims 1 to 8.
The present invention further relates to a method for the production of a bushing for the connection of two tubular elements.
According to the present invention, there is provided a method for the production of a bushing for the connection of two tubular elements as claimed in claims 9 to 15.
The present invention will now be described with reference to the accompanying drawings, which show a non-limiting embodiment thereof, in which:
With reference to
Bushing 1 has a longitudinal axis 4, is cup-shaped, and comprises an outer coupling 5 and an inner sleeve 6 mounted in coupling 5.
Coupling 5 extends around axis 4 and comprises an enlarged portion 7 and a narrow portion 8 which are connected to each other by an annular abutment 9 which is substantially perpendicular to axis 4.
Portion 8 is delimited by an annular bottom wall 10 which is substantially perpendicular to axis 4, and portion 7 is delimited by a lateral wall 11 which is substantially coaxial to axis 4.
Sleeve 6 extends around axis 4, and is axially locked inside coupling 5 between abutment 9 and an annular end flange 12 radially projecting towards the inside from the lateral wall 11 of coupling 5.
Sleeve 6 is obtained in a single piece, and is delimited by a lateral wall 13, which is coaxial to axis 4, is continuous, and has no wall interruptions and openings obtained through wall 13, in particular parallel to axis 4.
In other words, the wall 13 of sleeve 6 is complete and has no wall interruptions and openings which are typical of a sleeve produced either in several parts or from a flat blank bent in cylindrical shape.
Sleeve 6 has a plurality of annular teeth 14, which project towards the inside of bushing 1 relative to wall 13, and are aligned to one another along axis 4.
Each tooth 14 is, tangentially, a continuous annular tooth without interruptions, and is defined by two annular lateral sides 15 obtained, each, from a respective bending of wall 13.
The two sides 15 of each tooth 14 are arranged substantially in contact with each other and are connected together at a minimum diameter of tooth 14.
Sleeve 6 also has a plurality of annular recesses 16, which are obtained at an outer surface 17 of wall 13 and their number equals the number of teeth 14.
Each recess 16 is radially aligned to a corresponding tooth 14 and is obtained at the joining areas between the lateral sides 15 of the corresponding tooth 14 and wall 13.
As shown in
With reference to
Sleeve 6 is obtained in a single piece and has, in an initial configuration thereof, a lateral wall 19, which is continuous and has no wall interruptions and openings obtained through wall 13 parallel to axis 4.
In other words, the wall 19 of sleeve 6 is complete and has no wall interruptions and openings which are typical of a sleeve produced either in several parts or from a flat blank bent in cylindrical shape.
Wall 19 is delimited by a smooth inner surface 20 and by a shaped outer surface 21 provided with a plurality of annular recesses 22.
The recesses 22 extend around axis 4, are aligned to one another along axis 4, and are delimited, each, by two respective lateral sides 23 which substantially have the shape of a truncated cone with opposite concavities.
Bushing 1 is produced by inserting sleeve 6 inside the enlarged portion 7 of coupling 5 so that sleeve 6 is arranged in contact with abutment 9 and projects towards the outside of coupling 5 (
Sleeve 6 is then subjected to an axial force F applied parallel to axis 4 at a free end of sleeve 6 projecting towards the outside of coupling 5 (
Sleeve 6 is deformed, by means of force F, from the initial configuration thereof into a final configuration, in which sleeve 6 is entirely accommodated inside the coupling 5 itself (
The deformation of sleeve 6 results in the formation of lateral wall 13, teeth 14, and recesses 16.
Finally, flange 18 is radially deformed to form flange 12 and to lock sleeve 6 axially inside coupling 5 (
With regard to the above explanation, it is worth noting that coupling 5 and sleeve 6 are preferably, but not necessarily, produced by means of moulding.
As shown in
Bushing 1 is fitted and axially locked onto element 2, while element 3 is fitted onto element 2 and is inserted between element 2 and bushing 1.
Once element 3 has been inserted between bushing 1 and element 2, bushing 1 is radially deformed to allow the teeth 14 to engage element 3 and to lock the two elements 2 and 3 to each other.
Bushing 1 has certain advantages mainly resulting from the fact that when the radial tightening force exerted by bushing 1 on element 3 exceeds a predetermined threshold value, the presence of the recesses 16 allows bushing 1 to absorb the overload which would otherwise act on element 3, thus preventing it from breaking.
Since sleeve 6 is complete and has no wall interruptions and/or openings, the radial pressure exerted by element 3 on bushing 1 is absorbed partly by sleeve 6 and partly by coupling 5, which thus has relatively small thicknesses, therefore being relatively cost-effective.
Number | Date | Country | Kind |
---|---|---|---|
BO2014A000186 | Apr 2014 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/052341 | 3/30/2015 | WO | 00 |