Bushings, sealing devices, tubing, and methods of installing tubing

Information

  • Patent Grant
  • 9541225
  • Patent Number
    9,541,225
  • Date Filed
    Friday, June 27, 2014
    10 years ago
  • Date Issued
    Tuesday, January 10, 2017
    7 years ago
Abstract
A bushing including a first annular internal rib adapted and configured to engage a corrugation valley of corrugated tubing and a second annular internal rib adapted and configured to press against a conductive layer surrounding the corrugated tubing is provided. The second annular internal protrusion has a rounded, substantially non-piercing profile. Also provided is a sealing device for connecting a length of tubing. The sealing device includes a body member defining a sleeve portion and the bushing as described herein adapted and configured to be received in the sleeve portion. Also provided is a length of tubing including: an inner tubing layer and the fitting as described herein engaged with the inner tubing layer.
Description
FIELD OF INVENTION

The present invention relates to gas, liquid, and slurry piping systems as well as protective conduit systems for cable carrying purposes, and more particularly to bushings, sealing devices, tubing, methods of installing tubing incorporating fittings capable of transferring and dissipating energy.


BACKGROUND OF THE INVENTION

Gas and liquid piping systems utilizing corrugated stainless steel tubing (“CSST”) and fittings are known. Such piping systems can be designed for use in combination with elevated pressures of up to about 25 psi or more and provide advantages over traditional rigid black iron piping systems in terms of ease and speed of installation, elimination of onsite measuring, and reduction in the need for certain fittings such as elbows, tees, and couplings


Often, electrical currents will occur inside a structure. These electrical currents, which can vary in duration and magnitude, can be the result of power fault currents or induced currents resulting from lightning interactions with a house or structure. The term “fault current” is typically used to describe an overload in an electrical system, but is used broadly herein to include any electrical current that is not normal in a specific system. These currents can be the result of any number of situations or events such as a lightning event. Electrical currents from lightning can reach a structure directly or indirectly. Direct currents result from lightning that attaches to the actual structure or a system contained within the structure. When current from a nearby lightning stroke moves through the ground or other conductors into a structure, it is referred to as indirect current. While both direct and indirect currents may enter a structure through a particular system, voltage can be induced in other systems in the structure, especially those in close proximity to piping systems. This can often result in an electrical flashover or arc between the adjacent systems. A flashover occurs when a large voltage differential exists between two electrical conductors, causing the air to ionize, the material between the conductive bodies to be punctured by the high voltage, and formation of a spark.


SUMMARY OF THE INVENTION

One aspect of the invention provides a bushing including a first annular internal rib adapted and configured to engage a corrugation valley of corrugated tubing and a second annular internal rib adapted and configured to press against a conductive layer surrounding the corrugated tubing. The second annular internal protrusion has a rounded, substantially non-piercing profile.


This aspect of the invention can have a variety of embodiments. In one embodiment, the second annular internal rib can be spaced along the bushing such that the second annular internal rib aligns with other corrugation grooves of the corrugated tubing.


The bushing can include a third annular internal rib adapted and configured to press against an external jacket surrounding the conductive layer. The third annular internal rib can be spaced along the bushing such that the third annular internal rib aligns with other corrugation grooves of the corrugated tubing.


The bushing can be a split bushing. The bushing can be a two-piece bushing. The bushing can include two halves coupled by a living hinge.


The bushing can be fabricated from a conductive material. The conductive material can be a metal. The metal can be selected from the group consisting of: aluminum, copper, gold, iron, silver, zinc, and an alloy thereof. The alloy can be selected from the group consisting of brass, bronze, steel, and stainless steel.


Another aspect of the invention provides a sealing device for connecting a length of tubing. The sealing device includes a body member defining a sleeve portion and the bushing as described herein adapted and configured to be received in the sleeve portion.


This aspect of the invention can have a variety of embodiments. The sealing device can include a nut adapted and configured for threaded coupling with the body member. The bushing and the nut can be dimensioned such that as the nut is tightened, the second annular internal protrusion is compressed against the conductive layer by the nut.


Another aspect of the invention provides a length of tubing including: an inner tubing layer and the fitting as described herein engaged with the inner tubing layer.


This aspect of the invention can have a variety of embodiments. The inner tubing layer can be corrugated. The inner tubing layer can be corrugated stainless steel tubing.


Another aspect of the invention provides a method of installing energy dissipative tubing. The method includes: providing a length of tubing including an inner tubing layer; providing a sealing device as described herein; placing the bushing over at least the inner tubing layer such that the first annular rib engages a corrugation groove; and inserting the bushing and at least the inner tubing layer into the sleeve portion.


Another aspect of the invention provides a bushing including: a first annular internal rib adapted and configured to engage a corrugation valley of corrugated tubing; a second annular internal rib adapted and configured to press against a conductive layer surrounding the corrugated tubing, wherein the second annular internal protrusion has a rounded, non-piercing profile; and a third annular internal rib adapted and configured to press against an outer jacket layer surrounding the conductive layer. The second annular internal rib and the third internal rib are spaced along the bushing such that the second annular internal rib and the third internal rib each align with other corrugation grooves of the corrugated tubing.





BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and desired objects of the present invention, reference is made to the following detailed description taken in conjunction with the accompanying drawing figures wherein like reference characters denote corresponding parts throughout the several views and wherein:



FIGS. 1A and 1B depict a multi-layer jacketed tube in accordance with the prior art;



FIGS. 2A-2D depict an energy dissipative tube in accordance with the prior art;



FIGS. 3A-3E depict embodiments of a sealing device and tubing assembly in accordance with preferred embodiments of the invention;



FIG. 4 depicts a method for installing energy dissipative tubing in accordance with preferred embodiments of the invention;



FIGS. 5A and 5B depict embodiments of a bushing with a scallop removed from one or more of the annular ribs;



FIGS. 6A and 6B depict embodiments of internal ribs including a substantially flat surface adapted and configured to press against jacket layers positioned over a corrugation peak of corrugated tubing; and



FIGS. 7A and 7B depict embodiments of internal ribs including a trough or valley adapted and configured to straddle a corrugation peak of corrugated tubing.





DEFINITIONS

The instant invention is most clearly understood with reference to the following definitions:


As used herein, the singular form “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. “About” can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.


As used herein, the term “alloy” refers to a homogenous mixture or metallic solid solution composed of two or more elements. Examples of alloys include austentitic nickel-chromium-based superalloys, brass, bronze, steel, low carbon steel, phosphor bronze, stainless steel, and the like.


As used in the specification and claims, the terms “comprises,” “comprising,” “containing,” “having,” and the like can have the meaning ascribed to them in U.S. patent law and can mean “includes,” “including,” and the like.


As used herein, the terms “corrugated stainless steel tubing” and “CSST” refer to any type of semi-flexible tubing or piping that can accommodate corrosive or aggressive gases or liquids. In some embodiments, CSST is designed and/or approved for conveyance of fuel gases such as natural gas, methane, propane, and the like. For example, CSST can comply with a standard such as the ANSI LC 1-2005/CSA 6.26-2005 Standard for Fuel Gas Piping Systems Using Corrugated Stainless Steel Tubing. The inventions described herein can be utilized in conjunction with all commercially available CSST products including, but not limited to CSST sold under the GASTITE® and FLASHSHIELD® brands by Titeflex Corporation of Portland, Tenn.; TRACPIPE® and COUNTERSTRIKE® brands by OmegaFlex, Inc. of Exton, Pa.; WARDFLEX® brand by Ward Manufacturing of Blossburg, Pa.; PRO-FLEX® by Tru-Flex Metal Hose Corp. of Hillsboro, Ind.; and DIAMONDBACK™ brand by Metal Fab, Inc. of Wichita, Kans.


Unless specifically stated or obvious from context, the term “or,” as used herein, is understood to be inclusive.


As used herein, the term “metal” refers to any chemical element that is a good conductor of electricity and/or heat. Examples of metals include, but are not limited to, aluminum, cadmium, niobium (also known as “columbium”), copper, gold, iron, nickel, platinum, silver, tantalum, titanium, zinc, zirconium, and the like.


As used herein, the term “resin” refers to any synthetic or naturally occurring polymer. Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 (as well as fractions thereof unless the context clearly dictates otherwise).


DETAILED DESCRIPTION OF THE INVENTION

Corrugated Tubing


Referring to FIGS. 1A and 1B, a length of corrugated tubing 102 according to the prior art is provided. The corrugated tubing 102 may be composed of stainless steel or any other suitable material. The tubing 102 contains a number of corrugation peaks 104 and corrugation valleys 106. A jacket 108 (e.g., a multi-layer jacket) covers the outside of the tubing 102.


The jacket 108 can include a plurality of layers 110, 112. The layers 110, 112 generally form an annulus around the tubing 102, but may have a circular or non-circular cross-section.


Energy Dissipative Tubing


Referring now to FIGS. 2A-2D, in order to better absorb energy from fault currents and lightning strikes, energy dissipative jackets are provided that dissipate electrical and thermal energy throughout the respective jackets, thereby protecting the tubing 202. The term “dissipate” encompasses distributing electrical energy to an appropriate grounding device such as a fitting.


Preferred embodiments of energy dissipative jackets preferably include one or more conductive layers for distributing electricity and heat. The conductive layers can include, for example, conductive resins and/or metals as discussed herein.


One embodiment of energy dissipative tubing 200 is depicted in FIGS. 2A-2D. The energy dissipative tubing 200 includes a length of tubing 202. The tubing 202 can be metal tubing, thin-walled metal tubing, corrugated tubing, corrugated stainless steel tubing, or the like.


Tubing 202 is surrounded by a first resin layer 204, a metal layer 206, and a second resin layer 208. Resin layers 204, 208 can be formed from insulative and/or conductive resins.


Insulating resin layers can be formed from a variety of materials. In some embodiments, an insulating elastic layer includes polytetrafluoroethylene (PTFE). Other suitable insulators include polyolefin compounds, thermoplastic polymers, thermoset polymers, polymer compounds, polyethylene, crosslinked polyethylene, UV-resistant polyethylene, ethylene-propylene rubber, silicone rubber, polyvinyl chloride (PVC), ethylene tetrafluoroethylene (ETFE), and ethylene propylene diene monomer (EPDM) rubber.


Conductive resin layers can be formed by impregnating a resin with conductive material such as metal particles (e.g., copper, aluminum, gold, silver, nickel, and the like), carbon black, carbon fibers, or other conductive additives. In some embodiments, the metal layer 206 and/or one or more of the resin layers 204, 208 has a higher electrical conductivity than the tubing 202. In some embodiments, the volume resistivity of the conductive resin can be less than about 106 ohm-cm (e.g., 9×106 ohm-cm) as tested in accordance with ASTM standard D4496.


In some embodiments, each resin layer 204, 208 has a thickness of about 0.015 to about 0.035.


Metal layer 206 can include one or more metals (e.g., ductile metals) and alloys thereof. The metal(s) can be formed into foils, perforated foils, tapes, perforated tapes, cables, wires, strands, meshes, braids, and the like.


In some embodiments, the metal layer 206 is an expanded metal foil as further described in U.S. Patent Application Publication No. 2011-0041944. A variety of expanded metal foils are available from the Dexmet Corporation of Wallingford, Conn. An exemplary embodiment of energy dissipative tubing 200 with expanded metal foil is depicted in FIG. 2.


In some embodiments, the metal layer 206 completely surrounds the first resin layer 204. In such embodiments, the metal may overlap and/or be welded or soldered in some regions. In other embodiments, the metal layer 206 substantially surrounds the first resin layer 204. In such embodiments, a small portion of the first resin layer 204 (e.g., less than about 1°, less than about 2°, less than about 3°, less than about 4°, less than about 5°, less than about 10°, less than about 15°, less than about 20°, and the like) is not surrounded by the metal layer 26. In still other embodiments, the metal layer 206 can be wrapped spirally or helically around the first resin layer 204. In such an embodiment, the metal layer 206 can overlap or substantially surround the first resin layer 204


In some embodiments, the metal layer 206 is a conventional, non-expanded metal foil, such as aluminum or copper foil that can, in some embodiments, completely envelop the inner resin layer 206.


Various thicknesses of the resin layers 204, 208 and the metal layer 206 can be selected to achieve desired resistance to lightning strikes and physical damage while maintaining desired levels of flexibility. In embodiments including an expanded metal foil, the mass per area can be adjusted to provide an appropriate amount of energy dissipation. The resin layers 204, 208 can be the same or different thickness and can include the same or different materials. Various colors or markings can be added to resin layers, for example, to clearly distinguish the resin layers 204, 208 from each other and from the metal layer 206 and/or to make the tubing 200 more conspicuous.


Sealing Devices


Referring now to FIG. 3A, an exploded view of a sealing device 300 is provided. The sealing device 300 allows for the sealing and coupling of an end of tubing (not depicted) to a pipe, a manifold, an appliance, and the like (not depicted). For example, after body member 302 is threaded onto a manifold (not depicted), tubing 200 and bushing 304 can be placed inside the a sleeve portion of the body member 302 and sealed by advancing a nut 306 as further discussed below.


Nut 306 can have internal or external threads to mate with body member 302. In some embodiments, nut 306 can include a torque-limiting feature as described in U.S. Patent Application Publication No. 2013-0087381.


Although the assembly 300 can be used with a variety of types of CSST, the bushing 304 is particularly advantageous when used with energy dissipative tubing having one or more conductive layers.


Referring now to FIGS. 3B-3E, partial cross-sections of the assembly 300 are provided to show the internal structure of bushing 304. Bushing 304 includes a first annular rib 308 adapted and configured to engage with corrugation valley 106 of the corrugated tubing 202.


In one embodiment, the first annular rib 308 engages the first corrugation valley 106 of the tubing to facilitate the sealing of the tubing 202 against the body member 302. As the nut 306 is advanced, the first annular rib 308 of the bushing 304 presses the tubing 202 against the sealing face of the body member 302, causing the first corrugation peak 104 to collapse and form a gastight seal.


Body member 302 can include a sealing face having one or more sealing circular ridges adapted and configured to facilitate a metal-to-metal gastight seal. Such a sealing architecture is described in U.S. Pat. Nos. 7,607,700 and 7,621,567 and embodied in the XR2 fitting available from Gastite of Portland, Tenn.


Bushing 304 also includes a second annular rib 310. Second annular rib 310 is adapted and configured to press against and form electrical continuity with conductive layer 206 so that any electricity received in the conductive layer 206 will flow through the second annular rib 310 and bushing 304. In order to facilitate as large of a contact area as possible between the conductive layer 206 and the second annular rib 310, second annular rib 310 has a rounded, substantially non-piercing profile.


Preferably, second annular rib 310 is positioned along bushing 304 with respect to the first annular rib 308 such that when the first annular rib 308 engages with a corrugation valley 106, the second annular rib 310 will also be positioned over another corrugation valley 106 so that the second annular rib 310 can press the conductive layer 206 (and any layers 204 below) into the corrugation valley 106 and create further contact between the second annular rib 310 and the conductive layer 206.


Preferably, second annular rib 310 can be located over the third corrugation valley 106 of the tubing (as seen in FIG. 3D), but may also be located at the second or fourth corrugation valley 106. Locating second annular rib 310 over a corrugation valley 106 is favorable so as to prevent any direct contact with layers 204 or 206 and the corrugated tubing 202 beneath when the bushing 304 is assembled onto the tubing. Direct contact between these layers 204, 206 and the tubing 202 due to the compression from bushing 304 may result in undesired mechanical interference that leads to difficult assembly or decreased performance or longevity.


In order to maximize the contact area and steadfastness of the connection between the second annular rib 310 and the conductive layer 206, the second annular rib 310 can be designed to have certain dimensions relative to dimensions of tubing 200.


Generally, the internal diameter of the second annular rib 310 will often be less than the outer diameter of the conductive layer 206 so that the second annular rib 310 presses into and deforms conductive layer 206 and any layers 204 below. Although the difference between diameters may vary across various tubing sizes, the difference between the outer diameter of the conductive layer 206 and the inner diameter of the second annular rib 310 can be between about 0% and about 1%, between about 1% and about 2%, between about 2% and about 3%, between about 3% and about 4%, between about 4% and about 5%, between about 5% and about 6%, between about 6% and about 7%, between about 7% and about 8%, between about 8% and about 9%, between about 9% and about 10%, and the like


In one embodiment, the cross-sectional radius of second annular rib 310 can be about 0.030″. Such a sizing can advantageously apply both to fittings 300 for ½″ CSST as well as to larger diameter CSST such as ¾″, 1″, 1¼″, 1½″, 2″ and the like. In some embodiments, the radius may be larger to more closely approximate the larger corrugation valleys 106 on larger diameter tubing. However, it is believed that a radius of about 0.030″ is sufficient for proper electrical grounding of tubing having diameters at least up to 2″.


Second annular rib 310 can have a minimum radius in order to prevent cutting or tearing of the conductive layer 206. It is believed that any cross-sectional radius greater than 0.005″ is sufficient to prevent or substantially minimize cutting or tearing of the conductive layer 206.


Bushing 304 can include one or more through-holes 313a, 313b passing through bushing 304 at the location of (e.g., centered on) the second annular rib 310. Through-holes 313 prevent or relieve bunching of the conductive layer 206 and the first resin layer 204 when the bushing 304 is applied to the tubing 200.


Although some tearing of the conductive layer 206 may occur at the location of through-holes 313 when the bushing 304 is applied, it is not believed that this tearing impairs electrical continuity between the conductive layer 206 and the bushing 304.


Bushing 304 can also include a third annular rib 312 adapted and configured to press against an outer jacket 208 to prevent outer jacket 208 from withdrawing from the fitting 300 and to prevent foreign objects or substances from entering fitting 300. Like second annular rib 310, third annular rib 312 can be positioned with respect to the first annular rib 308 such that the third annular rib 312 presses the jacket 208 and any jacket layers below into a corrugation groove 106.


Third annular rib 312 can preferably be located approximately one corrugation width from second annular rib 310, but may also be located between about 0 and about 1 corrugation width or between about 1 and about 2 corrugation widths from rib 310.


Referring again to FIG. 3A, bushing 304 can, in some embodiments, be a split bushing. For example, bushing 306 can include two halves connected by a living hinge. A living hinge allows the bushing to open to allow ribs 314a, 314b to slide over one or more corrugation peaks 104 before resting in a corrugation groove 106 and allowing the bushing 304 to return to a substantially circular profile for engagement with body member 302. In other embodiments, the bushing 304 is a two-piece split bushing such that each half of the split bushing is individually positioned on the tubing prior to insertion into the sleeve portion 316 of the body member 302.


Referring now to FIG. 3D, the fitting 300 described herein can be used in conjunction with unjacketed tubing 200b. In such a use, second annular rib 310 and third annular rib 312 are passive and do not substantially engage with tubing 200b.


Referring now to FIGS. 5A and 5B, another embodiment of the invention provides a bushing 504 that replaces through-holes 313a, 313b in fitting 300 with a scallop(s) 518 removed from one or more of the annular ribs 508, 510, 512 (e.g., second annular rib 510 as depicted in FIGS. 5A and 5B). Scallops can eliminate bunching of jacket layers 204, 206, and/or 208, thereby reducing installation effort.


Referring now to FIGS. 6A and 6B, the internal ribs 308, 310, 312, 508, 510, 512 described herein can include a substantially flat surface 620 adapted and configured to press against any jacket layers 204, 206, 208 positioned over a corrugation peak of corrugated tubing 102. Such a configuration can provide additional surface area for conductive bonding between metal layer 206 and internal ribs 310, 510 and can also retain one or more jacket layers 204, 206, 208.


Referring now to FIGS. 7A and 7B, the internal ribs 308, 310, 312, 508, 510, 512 described herein can include a trough or valley 722 adapted and configured to straddle a corrugation peak 104 of corrugated tubing 102. Such a configuration can provide additional surface area for conductive bonding between metal layer 206 and internal ribs 310, 510 and can also retain one or more jacket layers 204, 206, 208.


Methods of Installing Tubing


Tubing can be installed in accordance with existing techniques for the manufacture of CSST. An exemplary method 400 for installing energy dissipative tubing is depicted in FIG. 4.


In step S402, a length of tubing is provided. Tubing can, in some embodiments, be CSST such as unjacketed CSST, jacketed CSST, and energy-dissipative tubing. Tubing may be provided in lengths (e.g., 8 sticks) or on reels.


In step S404, one or more jacket layers are optionally removed in accordance with the instructions for a fitting. The one or more layers can be removed with existing tools such as a utility knife, a razor blade, a tubing cutter, a jacket-stripping tool, and the like. Preferably, all jacket layers are removed from a leading end of the tubing. For example, all jacket layers can be removed to expose at least the first two corrugation peaks. Additionally, one or more outer jacket layers can be further removed to expose the conductive layer in a region corresponding to the second annular rib.


In step S406, a sealing device is provided including a body member defining a sleeve portion and a bushing as described herein.


In step S408, the sealing device is optionally coupled to another device. For example, the sealing device can be coupled to a source of a fuel gas such as a pipe, a manifold, a meter, a gas main, a tank, and the like. In another example, the sealing device can be coupled to an appliance that consumes a fuel gas such as a stove, an oven, a grill, a furnace, a clothes dryer, a fire place, a generator, and the like. The sealing device can be coupled to the other device by threaded or other attachments. In some circumstances, pipe seal tape (e.g., polytetrafluoroethylene tape) or pipe seal compound (commonly referred to as “pipe dope”) is utilized to facilitate a gastight seal between the sealing device and the other device.


In step S410, the bushing is placed over the inner tubing layer. The bushing can be positioned such that the first annular rib engages with a first complete corrugation groove, the second annular rib engages with a conductive layer, and a third annular rib engages with an outer jacket layer.


In step S412, a nut is advanced to form a seal. The nut can be advanced by rotating the nut to engage threads in the sleeve portion of the body member.


In step S414, the nut is optionally tightened until a torque-limiting portion of the nut is activated. For example, a portion of the nut may shear off when a predetermined amount of torque is applied to the nut.


EQUIVALENTS

Although preferred embodiments of the invention have been described using specific terms, such description is for illustrative purposes only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the following claims.


INCORPORATION BY REFERENCE

The entire contents of all patents, published patent applications, and other references cited herein are hereby expressly incorporated herein in their entireties by reference.

Claims
  • 1. A bushing comprising: a tapered outer profile having a proximal end having a smaller outer diameter than a distal end;a first annular internal rib: positioned proximal to the proximal end; andadapted and configured to engage a corrugation valley of corrugated tubing;a second annular internal rib: positioned distally relative to the first annular internal rib with respect to the proximal end;having a larger internal diameter than the first annular internal rib;adapted and configured to press against a conductive layer surrounding the corrugated tubing; andhaving a rounded, substantially non-piercing profile; anda third annular internal rib: positioned distally relative to the first annular internal rib and the second annular internal rib with respect to the proximal end;having a larger internal diameter than the second annular internal rib; andadapted and configured to press against an external jacket surrounding the conductive layer.
  • 2. The bushing of claim 1, wherein the second annular internal rib is spaced along the bushing such that the second annular internal rib aligns with a second corrugation valley of the corrugated tubing.
  • 3. The bushing of claim 1, wherein the third annular internal rib is spaced along the bushing such that the third annular internal rib aligns with a third corrugation valley of the corrugated tubing.
  • 4. The bushing of claim 1, wherein the bushing is a split bushing.
  • 5. The bushing of claim 1, wherein the bushing is a two-piece bushing.
  • 6. The bushing of claim 1, wherein the bushing includes two halves coupled by a living hinge.
  • 7. The bushing of claim 1, wherein the bushing is fabricated from a conductive material.
  • 8. The bushing of claim 7, wherein the conductive material is a metal.
  • 9. The bushing of claim 8, wherein the metal is selected from the group consisting of: aluminum, copper, gold, iron, silver, zinc, and an alloy thereof.
  • 10. The bushing of claim 9, wherein the alloy is selected from the group consisting of: brass, bronze, steel, and stainless steel.
  • 11. A sealing device for connecting a length of tubing, the sealing device comprising: a body member defining a sleeve portion terminating in a sealing face having a smaller internal diameter than the sleeve portion; anda bushing adapted and configured to be received in the sleeve portion, the bushing comprising: a first annular internal rib: positioned proximal to the sealing face of the body member; andadapted and configured to engage a corrugation valley of the corrugated tubing;a second annular internal rib: positioned distally relative to the first annular internal rib with respect to the sealing face;having a larger internal diameter than the first annular internal rib; andadapted and configured to press against a conductive layer surrounding the corrugated tubing; andhaving a rounded, substantially non-piercing profile; anda third annular internal rib: positioned distally relative to the first annular internal rib and the second annular internal rib with respect to the sealing face;having a larger internal diameter than the second annular internal rib; andadapted and configured to press against an external jacket surrounding the conductive layer.
  • 12. The sealing device of claim 11, further comprising: a nut adapted and configured for threaded coupling with the body member.
  • 13. The sealing device of claim 12, wherein the bushing and the nut are dimensioned such that as the nut is tightened, the second annular internal rib is adapted and configured to be compressed against the conductive layer surrounding the corrugated tubing by the nut.
  • 14. A length of tubing comprising: an inner corrugated tubing layer; andthe sealing device of claim 11 engaged with the inner corrugated tubing layer.
  • 15. The length of tubing of claim 14, wherein the inner corrugated tubing layer is corrugated stainless steel tubing.
  • 16. A method of installing energy dissipative tubing, the method comprising: providing a length of tubing including an inner corrugated tubing layer;providing a sealing device of claim 11;placing the bushing over at least the inner corrugated tubing layer such that the first annular rib engages a corrugation groove; andinserting the bushing and at least the inner corrugated tubing layer into the sleeve portion.
  • 17. A bushing comprising: a tapered outer profile having a proximal end having a smaller outer diameter than a distal end;a first annular internal rib: positioned proximal to the proximal end; andadapted and configured to engage a corrugation valley of corrugated tubing;a second annular internal rib: positioned distally relative to the first annular internal rib with respect to the proximal end;having a larger internal diameter than the first annular internal rib;adapted and configured to press against a conductive layer surrounding the corrugated tubing; andhaving a rounded, non-piercing profile; anda third annular internal rib: positioned distally relative to the first annular internal rib and the second annular internal rib with respect to the sealing face;having a larger internal diameter than the second annular internal rib; andadapted and configured to press against an outer jacket layer surrounding the conductive layer;wherein the second annular internal rib and the third internal rib are spaced along the bushing such that the second annular internal rib and the third internal rib each align with other corrugation grooves of the corrugated tubing.
  • 18. A length of tubing comprising: an inner corrugated tubing layer;an internal jacket surrounding the outside of the inner corrugated tubing layer;a conductive layer adjacent to the outside of the internal jacket;an external jacket surrounding the conductive layer and the internal jacket; anda sealing device comprising: a body member defining a sleeve portion; anda bushing received in the sleeve portion, the bushing comprising: a first annular internal rib engaged with a corrugation valley of the inner corrugated tubing layer;a second annular internal rib pressed against the conductive layer, wherein the second annular internal protrusion has a rounded, substantially non-piercing profile; anda third annular internal rib pressed against the external jacket.
CROSS-REFERENCE TO RELATED APPLICATION

This patent application is a continuation under 35 U.S.C. §120 of International Application No. PCT/US2014/035452 filed Apr. 25, 2014 which claims priority to U.S. Provisional Patent Application Ser. No. 61/821,644, filed May 9, 2013. The entire content of each application is hereby incorporated by reference herein.

US Referenced Citations (189)
Number Name Date Kind
956077 Greenfield Apr 1910 A
959187 Witzenmann May 1910 A
1223864 French Apr 1917 A
1852921 Dreyer Apr 1932 A
2401949 Mariner Jun 1946 A
2449369 Lewis et al. Sep 1948 A
2511896 Bingley Jun 1950 A
2756496 Holland Jul 1956 A
2848254 Millar Aug 1958 A
3176064 Browne Mar 1965 A
3189370 Marshail Jun 1965 A
3240234 Bond et al. Mar 1966 A
3457359 Soucy Jul 1969 A
3488073 Wold Jan 1970 A
3507978 Jachimowicz Apr 1970 A
3528159 Miles Sep 1970 A
3634606 Iyengar Jan 1972 A
3749814 Pratt Jul 1973 A
3828112 Johansen et al. Aug 1974 A
3831636 Bittner Aug 1974 A
3844587 Fuhrmann Oct 1974 A
3934902 McNamee Jan 1976 A
4049904 Hori et al. Sep 1977 A
4063757 Fuhrmann Dec 1977 A
4103320 de Putter Jul 1978 A
4292463 Bow et al. Sep 1981 A
4322574 Bow et al. Mar 1982 A
4394705 Blachman Jul 1983 A
4440425 Pate Apr 1984 A
4630850 Saka Dec 1986 A
4674775 Tajima Jun 1987 A
4675780 Barnes et al. Jun 1987 A
4716075 Christ et al. Dec 1987 A
4791236 Klein Dec 1988 A
4801158 Gomi Jan 1989 A
4907830 Sasa Mar 1990 A
4983449 Nee Jan 1991 A
5043538 Hughey, Jr. et al. Aug 1991 A
5046531 Kanao Sep 1991 A
5061823 Carroll Oct 1991 A
5087084 Gehring Feb 1992 A
5120381 Nee Jun 1992 A
5127601 Schroeder Jul 1992 A
5131064 Arroyo et al. Jul 1992 A
5182147 Davis Jan 1993 A
5194838 Cobo Mar 1993 A
5222770 Helevirta Jun 1993 A
5225265 Prandy et al. Jul 1993 A
5237129 Obara Aug 1993 A
5250342 Lang et al. Oct 1993 A
5267877 Scannelli Dec 1993 A
5316047 Kanao May 1994 A
5357049 Plummer, III Oct 1994 A
5367123 Plummer, III et al. Nov 1994 A
5370921 Cedarleaf Dec 1994 A
5391838 Plummer, III Feb 1995 A
5397618 Cedarleaf Mar 1995 A
5401334 O'Melia et al. Mar 1995 A
5407236 Schwarz Apr 1995 A
5413147 Moreiras et al. May 1995 A
5417385 Arnold et al. May 1995 A
5434354 Baker et al. Jul 1995 A
5441312 Fujiyoshi et al. Aug 1995 A
5470413 Cedarleaf Nov 1995 A
5483412 Albino et al. Jan 1996 A
5485870 Kraik Jan 1996 A
5531841 O'Melia et al. Jul 1996 A
5553896 Woodward Sep 1996 A
5571992 Maleski et al. Nov 1996 A
5619015 Kirma Apr 1997 A
5634827 Francois et al. Jun 1997 A
5655572 Marena Aug 1997 A
5671780 Kertesz Sep 1997 A
5702994 Klosel Dec 1997 A
5716193 Mondet et al. Feb 1998 A
5738385 Homann Apr 1998 A
5974649 Marena Nov 1999 A
6003561 Brindza et al. Dec 1999 A
6006788 Jung et al. Dec 1999 A
6036237 Sweeney Mar 2000 A
6039084 Martucci et al. Mar 2000 A
6170533 He Jan 2001 B1
6173995 Mau Jan 2001 B1
6201183 Eribom et al. Mar 2001 B1
6235385 Lee May 2001 B1
6279615 Iio et al. Aug 2001 B1
6293311 Bushi et al. Sep 2001 B1
6310284 Ikeda Oct 2001 B1
6315004 Wellman et al. Nov 2001 B1
6349774 Alhamad Feb 2002 B2
6409225 Ito Jun 2002 B1
6435567 Kikumori Aug 2002 B2
6441308 Gagnon Aug 2002 B1
6561229 Wellman et al. May 2003 B2
6563045 Goett et al. May 2003 B2
6631741 Katayama et al. Oct 2003 B2
6657126 Ide et al. Dec 2003 B2
6671162 Crouse Dec 2003 B1
6689281 Ikeda Feb 2004 B2
6689440 Hsich et al. Feb 2004 B2
6732765 Schippl et al. May 2004 B2
6840803 Wlos et al. Jan 2005 B2
6959735 Seyler et al. Nov 2005 B2
6966344 Coutarel et al. Nov 2005 B2
7021673 Furuta et al. Apr 2006 B2
7040351 Buck et al. May 2006 B2
7044167 Rivest May 2006 B2
7052751 Smith et al. May 2006 B2
7069956 Mosier Jul 2006 B1
7104285 Furuta Sep 2006 B2
7114526 Takagi et al. Oct 2006 B2
7223312 Vargo et al. May 2007 B2
7276664 Gagnon Oct 2007 B2
7308911 Wilkinson Dec 2007 B2
7316548 Jager Jan 2008 B2
7328725 Henry et al. Feb 2008 B2
7367364 Rivest et al. May 2008 B2
7390027 Kiely Jun 2008 B2
7410550 Sherwin Aug 2008 B2
7493918 Thomson Feb 2009 B2
7516762 Colbachini Apr 2009 B2
7562448 Goodson Jul 2009 B2
7607700 Duquette Oct 2009 B2
7621567 Duquette et al. Nov 2009 B2
7677609 Treichel Mar 2010 B2
8399767 Duquette Mar 2013 B2
8485562 Zerrer Jul 2013 B2
8766110 Daughtry Jul 2014 B2
20010001986 Alhamad May 2001 A1
20010030054 Goett et al. Oct 2001 A1
20020007860 Katayama et al. Jan 2002 A1
20020017333 Wellman et al. Feb 2002 A1
20020053448 Ikeda May 2002 A1
20020081921 Vargo et al. Jun 2002 A1
20020163415 Ide et al. Nov 2002 A1
20020174906 Katayama et al. Nov 2002 A1
20030012907 Hsich et al. Jan 2003 A1
20030019655 Gagnon Jan 2003 A1
20030085049 Nugent May 2003 A1
20030127147 Van Dam et al. Jul 2003 A1
20040020546 Furuta Feb 2004 A1
20040028861 Smith et al. Feb 2004 A1
20040060610 Espinasse Apr 2004 A1
20040090065 Furuta et al. May 2004 A1
20040112454 Takagi Jun 2004 A1
20040129330 Seyler et al. Jul 2004 A1
20040155463 Moner Aug 2004 A1
20040182463 Bessette et al. Sep 2004 A1
20040200537 Rivest Oct 2004 A1
20040200538 Dalmolen Oct 2004 A1
20040227343 Takagi et al. Nov 2004 A1
20040261877 Buck et al. Dec 2004 A1
20050023832 Edler Feb 2005 A1
20050067034 Thomson Mar 2005 A1
20050115623 Coutarel et al. Jun 2005 A1
20050126651 Sherwin Jun 2005 A1
20050150596 Vargo et al. Jul 2005 A1
20050181203 Rawlings et al. Aug 2005 A1
20050211325 Takagi et al. Sep 2005 A1
20050211326 Hibino et al. Sep 2005 A1
20050229991 Hardy et al. Oct 2005 A1
20060006651 Watanabe Jan 2006 A1
20060042711 Hibino et al. Mar 2006 A1
20060051592 Rawlings et al. Mar 2006 A1
20060143920 Morrison et al. Jul 2006 A1
20060144456 Donnisori et al. Jul 2006 A1
20060254662 Rivest et al. Nov 2006 A1
20070012472 Goodson Jan 2007 A1
20070018450 Golafshani Jan 2007 A1
20070034275 Henry et al. Feb 2007 A1
20070063510 Gronquist Mar 2007 A1
20070193642 Werner et al. Aug 2007 A1
20070273148 Duquette et al. Nov 2007 A1
20070273149 Duquette et al. Nov 2007 A1
20070281122 Blanchard et al. Dec 2007 A1
20080017265 Colbachini Jan 2008 A1
20080131609 Vargo et al. Jun 2008 A1
20080169643 Marban et al. Jul 2008 A1
20080210329 Quigley et al. Sep 2008 A1
20080236695 Takagi Oct 2008 A1
20080245434 Hibino et al. Oct 2008 A1
20090084459 Williams Apr 2009 A1
20090114304 Mohri May 2009 A1
20100090459 Duquette et al. Apr 2010 A1
20100181760 Duquette et al. Jul 2010 A1
20100201124 Duquette et al. Aug 2010 A1
20110041944 Duquette et al. Feb 2011 A1
20110042139 Duquette et al. Feb 2011 A1
20130087381 Daughtry et al. Apr 2013 A1
Foreign Referenced Citations (42)
Number Date Country
2025252 Mar 1991 CA
2002644 May 1991 CA
2061365 Aug 1992 CA
2100241 Oct 1992 CA
2084626 Jun 1993 CA
2162985 Jun 1996 CA
2206609 Dec 1997 CA
2263462 Mar 1998 CA
2245738 Jun 1998 CA
2422643 Mar 2002 CA
2520276 Oct 2004 CA
2538808 Apr 2005 CA
2618866 Feb 2007 CA
2651829 Nov 2007 CA
2590121 Jan 2008 CA
2621046 Aug 2008 CA
9116565 Jan 1993 DE
1180631 Feb 2002 EP
1313190 May 2003 EP
650082 Feb 1951 GB
650082 Feb 1951 GB
1181765 Feb 1970 GB
1201722 Aug 1970 GB
1353452 May 1974 GB
2197409 May 1988 GB
2424935 Oct 2006 GB
2002174374 Jun 2002 JP
2002286175 Oct 2002 JP
2002310381 Oct 2002 JP
2002315170 Oct 2002 JP
2003056760 Feb 2003 JP
2003083482 Mar 2003 JP
2003083483 Mar 2003 JP
9816770 Apr 1998 WO
02087869 Nov 2002 WO
2005059424 Jun 2005 WO
2007042832 Apr 2007 WO
2008116041 Sep 2008 WO
2008118944 Oct 2008 WO
2008150449 Dec 2008 WO
2008150469 Dec 2008 WO
2011022124 Feb 2011 WO
Non-Patent Literature Citations (9)
Entry
Notification of Transmittal of the International Search Report and the Written Opinion of the International Search Authority, or the Declaration for corresponding PCT/US201/035452 application (Aug. 25, 2014).
Dexmet Corporation, “Applications,” <http://www.dexmet.com/Expanded-Metal/applications.html> (May 18, 2009).
Dexmet Corporation, “EMI/RFI shielding & ESD Shielding with expanded metal,” <http://www.dexmet.com/Expanded- Metal/shielding.html> (May 18, 2009).
Dexmet Corporation, “Product Range,” <http://www.dexmet.com/Expanded-Metal/metal-foil-product-range.html> (Jul. 13, 2009).
OmegaFlex, “Lightning Safety Recommendations for Gas Piping Systems” (2008).
Parmley, “Machine Devices and Componants,” Illustrated Sourcebook, p. 20-5 (2005).
Guard-Nut Inc., “Shear-Type System” http://www.guardnut.com/torque—limiting.html, (Sep. 29, 2011).
First Office Action, Chinese Patent Application No. 2014800261211 (Jul. 13, 2016).
Communication, European Patent Application No. 14794182.7, Nov. 24, 2016.
Related Publications (1)
Number Date Country
20140333066 A1 Nov 2014 US
Provisional Applications (1)
Number Date Country
61821644 May 2013 US
Continuations (1)
Number Date Country
Parent PCT/US2014/035452 Apr 2014 US
Child 14318523 US