1. Technical Field
The present disclosure generally relates to butt flare reducing apparatuses for removing the protruding root flares from the butt end of logs and related methods.
2. Description of the Related Art
Butt flare reducing apparatuses are used to reshape the butt end of logs to remove the natural protruding root flares to provide a more consistent cross-sectional profile for further processing of the logs into lumber and other wood products. An example of a butt flare reducing apparatus is shown and described in US Patent Application Publication No. 2003/0226617 to Choquette, which is incorporated herein by reference in its entirety.
Embodiments of the butt flare reducing apparatuses and related methods described herein are particularly well suited to provide efficient, robust and reliable adjustment of log processing diameters before and/or during butt flare reducing operations.
According to some embodiments, a butt flare reducing apparatus for logs may be summarized as including a machine frame; a stator ring assembly fixedly coupled to the machine frame; a flare reducing tool adjustment assembly movably coupled to the stator ring assembly to move longitudinally between opposing end positions; an actuator coupled to the flare reducing tool adjustment assembly to move the flare reducing tool adjustment assembly longitudinally between the opposing end positions; and a rotor assembly rotatably coupled to the stator ring assembly to rotate about a longitudinal axis of rotation. The rotor assembly includes a rotor frame and a at least one flare reducing tool movably coupled to the rotor frame to translate linearly toward and away from the longitudinal axis of rotation in direct correlation to movement of the actuator and flare reducing tool adjustment assembly to adjust a log processing diameter.
The flare reducing tool may be one of a plurality of flare reducing tools arranged in a circular array and the plurality of flare reducing tools may define a maximum log diameter when the flare reducing tool adjustment assembly is in one of the opposing end positions and may define a minimum log diameter when the flare reducing tool adjustment assembly is in the other one of the opposing end positions.
The rotor assembly may include, for each flare reducing tool, a respective series of mechanical power transmission components coupled to the flare reducing tool to translate longitudinal motion of the flare reducing tool adjustment assembly to radially orientated translational motion of the flare reducing tool. Each of the series of mechanical power transmission components may include, for example, racks and gears. In some instances, each of the series of mechanical power transmission components may include an input rack that is coupled to an output rack by at least one intermediate gear. The input rack may be arranged longitudinally and the output rack may be arranged perpendicularly thereto. At least two intermediate gears may be positioned between the input rack and the output rack with one of the intermediate gears in meshing engagement with the input rack and another one of the intermediate gears in meshing engagement with the output rack. In such instances, a ratio of travel of the output rack relative to travel of the input rack may be dependent on characteristics of the intermediate gears, such as gear diameter.
The rotor assembly may further include at least force resisting member (e.g., a coil or helical spring, pneumatic bladder, damper, dashpot, hydraulic cylinder with accumulator) coupled between the flare reducing tool and the rotor frame to counterbalance centrifugal force applied to the flare reducing tool as the rotor assembly rotates during operation.
The apparatus may further comprise a control system. In some instances, the control system may be configured to successively measure each of a series of logs upstream of the rotor assembly, determine, for each successive log, a desired radial position of the flare reducing tools based on a usable diameter of the log derived from said measurements, and adjust, for each successive log, a respective position of each of the flare reducing tools simultaneously to correspond to the desired radial position.
According to some embodiments, a method of reducing the butt flare on each of a series of logs may be summarized as including: successively measuring each of the series of logs upstream of an array of flare reducing tools that are each mounted to a rotatable rotor frame to translate linearly along a respective tool path toward and away from a longitudinal axis of rotation about which the rotor frame rotates; determining, for each successive log, a desired radial position of the flare reducing tools based on a usable diameter of the log derived from said measurements; and adjusting, for each successive log, a position of each flare reducing tool along the respective tool path thereof to correspond to the desired radial position for reducing a butt flare of the log.
In some instances, adjusting the position of each flare reducing tool along the respective tool path may include actuating an array of cylinders to displace all of the flare reducing tools toward or away from the longitudinal axis of rotation simultaneously. Actuating the array of cylinders to displace the flare reducing tools may include converting longitudinal motion of the cylinders to linear motion of the flare reducing tools perpendicular to the longitudinal axis of rotation. Converting longitudinal motion of the cylinders to linear motion of the flare reducing tools may include converting longitudinal motion of the cylinders to linear motion of the flare reducing tools via a series of mechanical power transmission components (e.g., racks and gears). For example, in some instances, converting longitudinal motion of the cylinders to linear motion of the flare reducing tools may include, for each flare reducing tool, moving a respective input rack longitudinally to rotate at least one respective gear to displace a respective output rack in a direction perpendicular to the input rack. Translating longitudinal motion of the cylinders to linear motion of the flare reducing tools may include longitudinally displacing a flare reducing tool adjustment assembly that is slidably coupled to a stator ring assembly about which the rotor frame rotates. The method may further include obtaining positional data from at least one cylinder of the array of cylinders and using said positional data to precisely control the position of the flare reducing tools.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details. In other instances, well-known structures and techniques associated with butt flare reducing apparatuses may not be shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The butt flare reducing apparatus 100 may be combined with or positioned near, or incorporated into, other log processing equipment, such as, for example, the debarker systems shown and described in U.S. Patent Application Publication No. US2012/0305137 to Cholewczynski, which is incorporated herein by reference in its entirety. In some instances, for example, the butt flare reducing apparatus 100 may be positioned downstream of a debarker system to receive logs in a debarked condition. In other instances, the butt flare reducing apparatus 100 may be positioned upstream of a debarker system to discharge flareless logs for subsequent debarking operations. In still other instances, the butt flare reducing apparatus 100 may be combined with features and components of a debarker system to provide an integrated machine that can remove bark and remove root flares from the butt end of the logs.
With continued reference to
The butt flare reducing apparatus 100 may further include a stator ring assembly 120 that is fixedly coupled (e.g., via bolts, welds or other joining techniques) to the machine frame 110 to remain static therewith during operation while other adjoining components rotate, translate and/or otherwise move relative thereto. The stator ring assembly 120 may include a generally annular structure with a circumferential array of linear guide rails 134, as shown best in
The butt flare reducing apparatus 100 may further include a flare reducing tool adjustment assembly 130 that is movably coupled to the stator ring assembly 120 to move longitudinally between opposing end positions P1, P2, as indicated by the double headed arrow 132 shown in
The butt flare reducing apparatus 100 may further include one or more actuators 140 that are coupled on one end 141 (e.g., base end) to the stationary machine frame 110 and on the other end 142 (e.g., rod end) to the flare reducing tool adjustment assembly 130 to move the flare reducing tool adjustment assembly 130 longitudinally between the opposing end positions P1, P2. The one or more actuators 140 may be, for example, linear actuators in the form of hydraulic or pneumatic cylinders. In some instances, each of the one or more actuators 140 may be fixedly coupled on the one end 141 (e.g., base end) to the stationary machine frame 110 via welds, fasteners or other joining techniques, and may be coupled on the other end 142 (e.g., rod end) to the flare reducing tool adjustment assembly 130 via a pinned connection using lugs 131 of the flare reducing tool adjustment assembly 130, as shown, for example, in
The butt flare reducing apparatus 100 may further include a rotor assembly 150 that is rotatably coupled to the stator ring assembly 120 via a first rotational bearing 151 (e.g., a roller bearing with opposing races and roller elements therebetween) and rotatably coupled to the flare reducing tool adjustment assembly 130 via a second rotational bearing 153 (e.g., a roller bearing with opposing races and roller elements therebetween) to rotate about the longitudinal axis of rotation A during butt flare processing operations. The rotor assembly 150 may include a rotor frame 152 and the aforementioned plurality of flare reducing tools 154 that rotate in unison with the rotor frame 152. As described above, each flare reducing tool 154 may be movably coupled to the rotor frame 152 (e.g., via a sliding carriage arrangement) to translate linearly along a respective tool path P toward and away from the longitudinal axis of rotation A, as indicated by the double headed arrow labeled 156 in
With reference to
With reference to
According to some embodiments, a ratio of travel of the output rack 160b relative to travel of the input rack 160a may be dependent on characteristics of the intermediate gears 160c, 160d. For example, the intermediate gears may have a gear ratio, such as, for example, 2:1, that results in the output rack 160b having twice the travel as the input rack 160a. In this manner, relatively small displacements of the input rack 160a (as driven by the one or more actuators 140) may result in significantly greater travel of the output rack 160b and hence the associated flare reducing tool 154.
The rotor assembly 150 may further include at least one force resisting member 158 (e.g., a coil or helical spring, pneumatic bladder, damper, dashpot, hydraulic cylinder with accumulator) coupled between each flare reducing tool 154 and the rotor frame 152 to counterbalance centrifugal forces that may be applied to the flare reducing tools 154 as the rotor assembly 130 rotates during operation. The force resisting member 158 may be selected and sized to effectively eliminate unwanted displacement of the flare reducing tools arising from such centrifugal forces.
With reference back to
The controller 180 may also be communicatively coupled to the one or more actuators 140 to adjust the longitudinal position of the flare reducing tool adjustment assembly 130, which is slidably coupled to the stator ring assembly 120. Displacement of the flare reducing tool adjustment assembly 130 in turn drives the power transmission components 160 and ultimately the flare reducing tools 154. To assist in accurately positioning the flare reducing tools 154, one or more sensors (not shown) may be provided to sense a position of one or more of the actuators 140 (or other movable components coupled thereto) and provide positional feedback to the controller 180 to provide further positional refinement of the one or more actuators 140, if needed. Again, the one or more actuators 140 may be linear actuators, such as hydraulic or pneumatic cylinders. The one or more sensors (not shown) may be high precision non-contact position sensors, such as those sold under the Tempsonics® brand, or other sensors having similar functionality.
With continued reference to
In some embodiments, the flare reducing tools 154 may be moved to a fully retracted position (or maximum log diameter) at times between successive logs for safety purposes or to avoid potentially hazardous conditions that may occur upon power loss, for example. Depending on the size of the cut to be made and chipping power requirements related thereto, the controller 180 may communicate with a log feed system 186 to adjust the rate of incoming logs and/or may communicate with the drive system 184 to adjust the rotational speed of the rotor assembly 150.
In accordance with the embodiments of the butt flare reducing apparatuses 100 described herein, related methods of reducing butt flare on each of a series of logs are also provided. For instance, in some embodiments, a method of reducing butt flare on each of a series of logs may be provided which includes successively measuring each of the series of logs upstream of an array of flare reducing tools 154, which are each mounted to a rotatable rotor frame 152 to translate linearly along a respective tool path P toward and away from a longitudinal axis of rotation A about which the rotor frame 154 rotates. The method may further include determining, for each successive log, a desired radial position of the flare reducing tools 154 based on a usable diameter of the log derived from the measurements. Thereafter, the method may include adjusting, for each successive log, a radial position of each flare reducing tool 154 along the respective tool path P thereof to correspond to the desired radial position for reducing a butt flare of the log. In this manner, a log processing diameter can be adjusted dynamically for each log before and/or during operation without system shutdown and each log can be processed to remove butt flare with minimal to no wasting of usable log diameter.
In some instances, adjusting the position of each flare reducing tool 154 along the respective tool path P may include actuating an array of actuators 140 (e.g., hydraulic or pneumatic cylinders) to displace all of the flare reducing tools 154 toward or away from the longitudinal axis of rotation A simultaneously. Actuating the array of actuators 140 may include converting longitudinal motion of the actuators 140 to linear motion of the flare reducing tools 154 in a radial direction perpendicular to the longitudinal axis of rotation A. Converting longitudinal motion of the actuators 140 to linear motion of the flare reducing tools 154 may also include using a series of mechanical power transmission components 160. More particularly, the method may include moving a respective input rack 160a longitudinally to rotate at least one respective gear 160c, 160d to displace a respective output rack 160b in a direction perpendicular to the input rack 160a. In some instances, converting longitudinal motion of the actuators 140 to linear motion of the flare reducing tools 154 may include longitudinally displacing a flare reducing tool adjustment assembly 130 that is slidably coupled to a stator ring assembly 120 about which the rotor frame 152 rotates.
According to some embodiments, the method may further include obtaining positional data from at least one actuator 140 of the array of actuators 140 and using the positional data to precisely control the position of the flare reducing tools 154. For this purpose one or more sensors (not shown) may be provided to sense a position of the actuator 140 (or other movable components coupled thereto) and provide positional feedback to the controller 180 to provide further positional refinements of the one or more actuators 140, if needed. Again, the one or more sensors may be, for example, high precision non-contact position sensors, such as those sold under the Tempsonics® brand. In other instances, positional data for feedback control may be obtained directly from the flare reducing tool adjustment assembly 130 itself rather than from the one or more actuators 140. Positional data may be obtained from the flare reducing tool adjustment assembly 130, for example, using laser measuring devices or other position sensing devices.
With continued reference to
The butt flare reducing apparatus 200 may further include a stator ring assembly 220 that is fixedly coupled (e.g., via bolts, welds or other joining techniques) to the machine frame 210 to remain static therewith during operation while other adjoining components rotate, translate and/or otherwise move relative thereto. The stator ring assembly 220 may include a generally annular structure with a circumferential array of linear guide rails 234.
The butt flare reducing apparatus 200 may further include a flare reducing tool adjustment assembly 230 that is movably coupled to the stator ring assembly 220 to move longitudinally between opposing end positions, as indicated by the double headed arrow 232. More particularly, the flare reducing tool adjustment assembly 230 may be movably coupled to the stator ring assembly 220 to move longitudinally along the circumferential array of linear guide rails 234 between opposing end positions.
The butt flare reducing apparatus 200 may further include one or more actuators 240 that are coupled at one end (e.g., base end) to the stationary machine frame 210 and at the other end 242 (e.g., rod end) to the flare reducing tool adjustment assembly 230 to move the flare reducing tool adjustment assembly 230 longitudinally between opposing end positions. The one or more actuators 240 may be, for example, linear actuators in the form of hydraulic or pneumatic cylinders. In some instances, each of the one or more actuators 240 may be fixedly coupled at one end 241 (e.g., base end) to the stationary machine frame 210 via welds, fasteners or other joining techniques, and may be coupled at the other end 242 (e.g., rod end) to the flare reducing tool adjustment assembly 230, for example, via a pinned or bolted connection.
The butt flare reducing apparatus 200 may further include a rotor assembly 250 that is rotatably coupled to the stator ring assembly 220 via a first rotational bearing 251 (e.g., a roller bearing with opposing races and roller elements therebetween) and rotatably coupled to the flare reducing tool adjustment assembly 230 via a second rotational bearing 253 (e.g., a roller bearing with opposing races and roller elements therebetween) to rotate about the longitudinal axis of rotation A2 during butt flare processing operations. The rotor assembly 250 may include a rotor frame 252 and the aforementioned plurality of flare reducing tools 254 that rotate in unison with the rotor frame 252. As described above, each flare reducing tool 254 may be movably coupled to the rotor frame 252 (e.g., via a sliding carriage arrangement) to translate linearly along a respective tool path P3 toward and away from the longitudinal axis of rotation A2, as indicated by the double headed arrow labeled 256. In some instances, the flare reducing tools 254 move linearly toward and away from the longitudinal axis of rotation A2 in direct correlation to movement of the one or more actuators 240 and the flare reducing tool adjustment assembly 230 coupled thereto. In this manner, a log processing diameter defined by the radial position of the flare reducing tools 254 may be dynamically adjusted with precision before and/or during flare reducing operations by precisely controlling the one or more actuators 240.
With continued reference to
The rotor assembly 250 may further include at least one force resisting member 258 (e.g., a coil or helical spring, pneumatic bladder, damper, dashpot, hydraulic cylinder with accumulator) coupled between each flare reducing tool 254 and the rotor frame 252 to counterbalance centrifugal forces that may be applied to the flare reducing tools 254 as the rotor assembly 230 rotates during operation. According to the example embodiment of
With continued reference to
The controller 280 may also be communicatively coupled to the one or more actuators 240 to adjust the longitudinal position of the flare reducing tool adjustment assembly 230, which is slidably coupled to the stator ring assembly 220. Displacement of the flare reducing tool adjustment assembly 230 in turn drives the power transmission components 260 and ultimately the flare reducing tools 254. To assist in accurately positioning the flare reducing tools 254, one or more sensors (not shown) may be provided to sense a position of one or more of the actuators 240 (or other movable components coupled thereto) and provide positional feedback to the controller 280 to provide further positional refinement of the one or more actuators 240, if needed. Again, the one or more actuators 240 may be linear actuators, such as hydraulic or pneumatic cylinders. The one or more sensors (not shown) may be high precision non-contact position sensors, such as those sold under the Tempsonics® brand, or other sensors having similar functionality.
The butt flare reducing apparatus 200 may further include a measurement system 282 (e.g., a light curtain) that is communicatively coupled to the controller 280. The measurement system 282 may be configured to successively measure each of a series of logs upstream of the rotor assembly 250 and determine, for each successive log, a desired radial position of the flare reducing tools 254 based on a usable diameter of the log derived from the measurements. The controller 280 may then control the one or more actuators 240 to adjust, for each successive log, an actual radial position of the flare reducing tools 254 simultaneously to correspond to the desired radial position for that log. In this manner, a log processing diameter can be adjusted dynamically for each log before and/or during operation without system shutdown and each log can be processed to remove butt flare with minimal to no wasting of usable log diameter.
In some embodiments, the flare reducing tools 254 may be moved to a fully retracted position (or maximum log diameter) at times between successive logs for safety purposes or to avoid potentially hazardous conditions that may occur upon power loss, for example. Depending on the size of the cut to be made and chipping power requirements related thereto, the controller 280 may communicate with a log feed system 286 to adjust the rate of incoming logs and/or may communicate with the drive system 284 to adjust the rotational speed of the rotor assembly 250.
Although certain specific details are shown and described with reference to the example embodiments shown in
In addition, although each of the example butt flare reducing apparatuses 100, 200 are shown in a configuration in which extension of the actuators 140, 240 pushes the flare reducing tool adjustment assembly 130, 230 to move a series of power transmission components in one direction to retract the flare reducing tools 154, 254 radially away from the longitudinal axis A, A2, and in which retraction of the actuators 140, 240 pulls the flare reducing tool adjustment assembly 130, 230 to move the series of power transmission components in the opposite direction to extend the flare reducing tools 154, 254 radially toward from the longitudinal axis A, A2, it is appreciated that in other embodiments a butt flare reducing apparatus may be configured such that the extension of the actuators 140, 240 extends the flare reducing tools 154, 254 radially toward the longitudinal axis A, A2 while retraction of the actuators 140, 240 retracts the flare reducing tools 154, 254 radially away from the longitudinal axis A, A2.
Moreover, aspects and features of the various embodiments described herein can be combined to provide further embodiments. In addition, U.S. Provisional Patent Application No. 62/030,449, filed Jul. 29, 2014, is incorporated herein by reference for all purposes and aspects of the present invention can be modified, if necessary, to employ features, systems, and concepts disclosed in this application to provide yet further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled.
Number | Date | Country | |
---|---|---|---|
62030449 | Jul 2014 | US |