The subject matter disclosed herein relates to the art of steam turbomachines and, more particularly, to a butterfly plate for a steam turbomachine hood.
Many power generation facilities employ steam turbomachine systems having a low pressure (LP) steam turbine portion coupled to an intermediate pressure (IP) steam turbine portion and a high pressure (HP) steam turbine portion to drive a generator. In general, steam is expanded in the LP steam turbine portion and channeled into an exhaust hood. The exhaust hood separates steam under vacuum from atmospheric conditions, while providing support to rotating and stationary turbomachinery. Generally, stationary components direct steam toward rotating components to facilitate rotor rotation that is employed in power generation. Also, exhaust hoods provide static pressure recovery that allows for additional expansion of gases passing to last stage turbine buckets.
An exemplary exhaust hood is formed from various complex sheet metal plates that are combined to form a shell assembly. The shell assembly is machined to provide connections for internal and external components. The shell assembly includes upper and lower halves that guide steam downward toward a condenser. The exhaust hood includes a butterfly plate that turns an upper steam flow 180° downward toward the condenser. Existing butterfly plates include both linear and elliptical cross-sectional profiles that are formed to turn the upper steam flow vertically downward.
According to one aspect of the exemplary embodiment, a butterfly plate for a steam turbine exhaust hood includes a complex curvilinear cross-sectional profile having a first section that extends between a first end portion and a middle portion, and a second section that extends between the middle portion and a second end portion. One of the first and second sections is formed from at least two curvilinear segments including at least one curvilinear segment having a positive curvature and at least one curvilinear segment having a negative curvature.
According to another aspect of the exemplary embodiment, a steam turbine exhaust hood includes an exhaust hood section, and a butterfly plate arranged in the exhaust hood section. The butterfly plate includes a complex curvilinear cross-sectional profile having a first section that extends between a first end portion and a middle portion, and a second section that extends between the middle portion and a second end portion. One of the first and second sections is formed from at least two curvilinear segments including at least one curvilinear segment having a positive curvature and at least one curvilinear segment having a negative curvature.
According to yet another aspect of the exemplary embodiment, a steam turbomachine system includes a turbine portion including an inlet section and an exhaust section, and an exhaust hood mounted about the exhaust section. The exhaust hood includes an exhaust hood section, and a butterfly plate arranged in the exhaust hood section. The butterfly plate includes a complex curvilinear cross-sectional profile having a first section that extends between a first end portion and a middle portion, and a second section that extends between the middle portion and a second end portion. One of the first and second sections is formed from at least two curvilinear segments including at least one curvilinear segment having a positive curvature and at least one curvilinear segment having a negative curvature.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Referencing
As best shown in
In the exemplary embodiment shown, LP steam turbine portion 8 includes an inner casing 30 that houses a first steam turbine section 33 and a second steam turbine section 35. First steam turbine section 33 includes a first bearing cone 38 that is supported within interior housing 24 by a first Herzog plate 40. First bearing cone 38 defines a first steam guide 41 having an outlet section 42 that allows steam to pass from first steam turbine section 33 into interior housing 24. First outlet section 42 includes a first guide member 44 that directs steam from first steam guide 41 into inner casing 30. Similarly, second steam turbine section 35 includes a second bearing cone 47 that is supported within interior housing 24 by a second Herzog plate 49. Second bearing cone 47 defines a second steam guide 50 having a second outlet section 51 that allows steam to pass from second steam turbine section 35 into interior housing 24. Second outlet section 51 includes a second guide member 53 that directs steam from second steam guide 50 into inner casing 30. As further shown, exhaust hood 11 includes an inlet 58 that guides steam from IP turbine portion 6 into first and second steam turbine sections 33 and 35 of LP steam turbine portion 8, and an outlet 61 that passes steam from interior housing 24 to a condenser (not shown).
In accordance with the exemplary embodiment, exhaust hood 11 includes a butterfly plate 70 that guides steam from upper shell portion 15 toward outlet 61. More specifically, steam exiting first and second outlet sections 42 and 51 above horizontal joint 18 must first flow upward within interior housing 24. The steam turns 90°, and flows toward butterfly plate 70. Butterfly plate 70 bends the steam another 90° toward outlet 61. In order to reduce pressure losses associated with vortices created by the multiple bends in the steam flow, butterfly plate 70 includes a particular cross-sectional profile.
In accordance with an exemplary embodiment, butterfly plate 70 includes a first end portion 73 that extends to a second end portion 75 through a middle portion 76. A first section 80 is defined between first end portion 73 and middle portion 76, and a second section 82 extends between middle portion 76 and second end portion 75. As first and second sections 80 and 82 are substantially similar, reference will now be made to
First section 80 includes a complex curvilinear cross-sectional profile 82 having a first substantially linear segment 84 that leads to a first curvilinear segment 85 that in turn lead to a second substantially linear segment 88. Second substantially linear segment 88 leads to a second curvilinear segment 90 that extends through middle portion 76. First curvilinear segment 85 includes a negative curvature while second curvilinear segment 90 includes a positive curvature. The terms “negative” and “positive” are simply used to describe that first curvilinear segment 85 includes a curvature that is the opposite of the curvature of second curvilinear segment 90. The particular geometry of first section 80 can be described by the formula: Y=0.94 Θ6−1.86 Θ5−0.86 Θ4+2.9 Θ3−0.75 Θ2+0.5 Θ+0.6 where Θ is the angle from top dead center (TDC) of exhaust hood 11 as shown in
Spacing between middle portion 76 and the outer end (not separately labeled) of first steam guide 41 as well as the overall shape of butterfly plate 70 contribute to reducing vortices in the steam flow exiting from LP steam turbine portion 8 above horizontal joint 18 towards outlet 61. Reducing vortices in the steam flow leads to fewer pressure losses and enhanced exhaust hood recovery. At this point it should be understood that the exemplary embodiments provide a mechanism for guiding steam flow from an upper portion in an exhaust hood toward a condenser. The butterfly plate is sized and shaped so as to reduce the creation of vortices in the steam flow to avoid efficiency loses in the turbomachine system.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1938800 | Bourne | Dec 1933 | A |
2991927 | Quick | Jul 1961 | A |
3149470 | Herzog | Sep 1964 | A |
3735782 | Strscheletzky | May 1973 | A |
4013378 | Herzog | Mar 1977 | A |
4214452 | Riollet et al. | Jul 1980 | A |
4326832 | Ikeda et al. | Apr 1982 | A |
4390319 | Garkusha et al. | Jun 1983 | A |
5203674 | Vinciguerra | Apr 1993 | A |
5257906 | Gray et al. | Nov 1993 | A |
5340276 | Norris et al. | Aug 1994 | A |
5518366 | Gray | May 1996 | A |
6419448 | Owczarek | Jul 2002 | B1 |
6629819 | Brown et al. | Oct 2003 | B1 |
6953104 | Monson et al. | Oct 2005 | B2 |
6971842 | Luniewski et al. | Dec 2005 | B2 |
7600962 | Mizumi et al. | Oct 2009 | B2 |
7780403 | Fridsma | Aug 2010 | B2 |
8317467 | Dalsania et al. | Nov 2012 | B2 |
20070081892 | Sharrow | Apr 2007 | A1 |
20090123277 | Dalsania et al. | May 2009 | A1 |
20090263241 | Demiraydin et al. | Oct 2009 | A1 |
20100162705 | Sharrow et al. | Jul 2010 | A1 |
20100247304 | Merchant et al. | Sep 2010 | A1 |
20100251716 | Boss et al. | Oct 2010 | A1 |
20130047612 | Sadhu et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
1707762 | Oct 2006 | EP |
Number | Date | Country | |
---|---|---|---|
20130047612 A1 | Feb 2013 | US |