The present invention relates to a push pin, which is an apparatus for securing an item to supporting material.
Push pins, as the expression is used here, are pins which are pushed through a material or materials requiring support, then into a supporting material. Push pins were first patented in the late 19th Century. This type of push pin is comprised, commonly, of two components: a handle and a pin, which are intended to remain together as a unit. The push pins are typically used to support materials in temporary or changeable circumstances and they are pushed in (driven) by human force and pulled out (removed) by human force. The devices that are known by, and described by, the expression “push pin,” typically are operated in the push and pull modes. They might be more properly identified as push-pull pins, but the expression push-pin is commonly used in descriptions of prior art and in common practice by people who use such devices. A typical use of push pins would be to support drawings on a vertical or sloped bulletin board or tack board, for example.
As can be seen in the prior art referenced in this application, the handles on available push pins offer small areas of purchase to grasp between thumb and finger, or between two fingers, in order to drive the push pin into supporting material. With prior art, when driving a push pin into supporting material, the procedure often is difficult because the thumb and finger contact surfaces of the pin handles lack sufficient surface area, the shape of the handle is difficult to grasp securely, or the shape of the handle does not naturally direct efficient force toward the supporting material. A person intending to drive in a push pin, with stability, often has to pinch, or squeeze, the handle so firmly, parallel to the surface of the supporting material rather than perpendicular (the drive in direction), that limited energy is available to push the pin into the supporting material. Due to limited contact area in many prior art devices, thumb and finger, or fingers, often slide off the push pin handle before the pin is properly embedded in the supporting material. Due to prior art shape—geometry—there is often limited pushing surface for driving the push pin efficiently into supporting material. Due to prior art geometry, in order to grasp and drive in the push pin, many people must use more than two digits.
In prior art, even less attention has been paid to the process of pulling the pin out of the supporting material, axially opposite the pushing direction. The contact area is so small and the handle shape is so difficult to grasp that, again, an inefficient pinching energy is required and often the thumb and finger slide off the pin handle before the pin has been removed from the supporting material.
The inventor in this patent application has used common, prior art push pins for several years and it is because of his annoyance and frustration in using this prior art that he created the present invention.
The present invention, the Butterfly Push-Pull Pin, is a very practical fastener used to support penetrable (pierceable) materials on a bulletin board, notice board, tack board, wall or other element penetrable by a push (driven) pin. In the butterfly push-pull pin, two broad, sloped, opposing sides of the polygonal handle are grasped by a user's thumb and opposing finger, or two fingers, to push the pin in, and the user's thumb and opposing finger, or two fingers, are used to pull the pin out, using the other two broad, sloped, opposing sides of the polygon. The broad sides give advantageous purchase to the acts of pushing and pulling and the sloped geometry of the sides assists in alignings energy in the proper axial direction to either push or pull the push-pull pin. Therefore, the push-pull pin is force advantageous because it provides, in its geometry, an advantageous means of forcing the pin into supporting material and an advantageous means of pulling the pin out of the supporting material. The opposing push and pull faces of the polygonal handle enable a user to push or pull the pin more easily than prior art, using one finger and a thumb, or two fingers.
Several objects and advantages of the present invention are:
A preferred embodiment of the present invention is illustrated in
The purpose of the present invention, the Butterfly Push-Pull Pin, is to support penetrable (pierceable) materials on supporting material such as a bulletin board, notice board, tack board, wall or other element penetrable by a push (driven) pin.
Referring to the drawings, in particular
Referring to
The present invention exhibits novelty in that, although push pins with the same intended purpose were first patented more than 100 years ago and several types of push pins have been patented since, none of the prior art provides the geometry and consequential force advantage of the present invention and none of the prior art indicates a deformed pin embedment intended to prevent unintentional extraction. Therefore, the present invention was not obvious to anyone of ordinary skill in the art of making push pins.
The polygonal handle has a long and narrow bottom face and a face of the same size at the top, turned 90 degrees to the like face at the bottom, as indicated in
The polygonal handle may be made of various materials, such as metals, plastics and wood. The handle material may be formed and pressed around the deformed pin or it may be cast around the deformed pin, in a manner which mechanically engages the deformed pin, in order to prevent separation of the handle and the pin.
(c) The raised ribs, as indicated in
Referring to
Pin end 2c opposite the embedded end is tapered and terminates in a point, so that it may be driven into supporting material.
On its own and compared with prior art, the present invention, the Butterfly Push-Pull Pin, offers the following advantages based on the description above:
The above description of the present invention should not be construed to limit physical manifestations of the Butterfly Push-Pull Pin to the exact characterization shown in the drawings. Alterations within the claims may include, but not be limited to:
In view of the description above, the present invention, the force advantageous Butterfly Push-Pull Pin, represents a major departure from the work exhibited in prior art. It offers improved ease, efficiency and stability of means, in driving the push pin into supporting material and in pulling it out of supporting material. In addition, the end of the pin embedded in the polygonal handle is deformed and when the polygonal handle is cast, formed or glued around the deformed embedment, the handle and pin are made into one unit. When the Butterfly Push-Pull Pin is extracted from supporting material, the embedded end of the driven pin will remain in the polygonal handle and it will not remain in the supporting material, as sometimes happen with prior art.
Number | Name | Date | Kind |
---|---|---|---|
654319 | Moore | Jul 1900 | A |
816095 | House | Mar 1906 | A |
1207960 | McNeill | Dec 1916 | A |
1991561 | Krantz | Feb 1935 | A |
2266432 | Morin et al. | Dec 1941 | A |
D149099 | Sweet | Mar 1948 | S |
3205757 | Kuennen | Sep 1965 | A |
D409663 | Wagner et al. | May 1999 | S |
D410032 | Wagner et al. | May 1999 | S |
D414207 | Wagner et al. | Sep 1999 | S |
6132060 | Gallo | Oct 2000 | A |
6196782 | Wagner et al. | Mar 2001 | B1 |
6406241 | Lorincz | Jun 2002 | B1 |
6409445 | Beale et al. | Jun 2002 | B1 |
D503432 | Huang | Mar 2005 | S |
D572122 | Cave | Jul 2008 | S |
Number | Date | Country | |
---|---|---|---|
20110268535 A1 | Nov 2011 | US |