This disclosure relates to button cells having a housing consisting of two metal housing halves, which contains a wound electrode separator assembly, and to a method for its production.
Button cells conventionally comprise a housing consisting of two housing halves: a cell cup and a cell top. These may, for example, be produced as stamped parts from nickel-plated deep-drawn sheet metal. Usually, the cell cup is positively poled and the housing top negatively poled. The housing may contain a very wide variety of electrochemical systems, for example, zinc/MnO2, primary and secondary lithium systems, or secondary systems such as nickel/cadmium or nickel/metal hydride.
The liquid-tight closure of button cells is conventionally carried out by crimping the edge of the cell cup over the edge of the cell top, in combination with a plastic ring which is arranged between the cell cup and the cell top and is used simultaneously as a sealing element and for electrical insulation of the cell cup and the cell top. Such button cells are described, for example, in DE 31 13 309.
As an alternative, however, it is also possible to manufacture button cells in which the cell cup and the cell top are held together in the axial direction exclusively by a force-fit connection, and which correspondingly do not have a crimped cup edge. Such button cells and a method for their production are described in DE 10 2009 017 514.8. Regardless of the various advantages which such button cells without crimping may present, they nevertheless cannot withstand such high stresses in the axial direction as comparable button cells with a crimped cup edge, especially as regards axial mechanical loads which originate from inside the button cell. For example, the electrodes of rechargeable lithium ion systems are constantly subjected to volume changes during charging and discharging processes. In button cells without crimping, the axial forces occurring in this case can naturally cause leaks more easily compared with button cells with crimping.
A solution to this problem may be found in DE 10 2009 030 359.6 and DE 10 2009 008 859.8. Inter alia, references may be found therein to button cells comprising a housing having a plane bottom region and a plane top region parallel thereto, an assembly consisting of flat electrode layers and separator layers in the form of a preferably spiral-shaped electrode winding being arranged in the housing in such a way that the end sides of the winding face in the direction of the plane bottom region and the plane top region. The electrode layers of the winding are thus oriented essentially orthogonally to the plane bottom and top regions of the housing. As a result, radial forces such as occur during the aforementioned charging and discharging processes of lithium ion systems can in principle be absorbed better than in of conventional lithium ion button cells, in which electrode layers are arranged stacked in parallel alignment with the plane bottom and top regions.
Windings consisting of flat electrode layers and separator layers can be produced quite straightforwardly using known methods (see, for example, DE 36 38 793) by the electrodes being applied, in particular laminated, particularly in the form of strips, flat onto a separator provided as an endless band. The assembly consisting of the electrodes and separators is generally wound on a so-called “winding mandrel.” After the winding has been removed from the winding mandrel, an axial cavity is left at the center of the winding, the effect of which is that the winding may possibly expand into this cavity. This, however, can sometimes lead to problems in the electrical contact of the electrodes with the metal housing halves.
It could therefore be helpful to provide a button cell in which the aforementioned problems do not occur, or only occur to a greatly reduced extent.
The present invention provides a button cell comprising a housing, the housing including a metal cell cup, the metal cell cup having a cell cup plane region connected to a cell cup lateral surface region, and a metal cell top, the metal cell top having a cell top plane region connected to a cell top lateral surface region, the cell top plane region extending substantially parallel to the cell cup plane region, and the cell top lateral surface region extending substantially parallel to the cell cup lateral surface region; an electrode winding disposed within the housing, the electrode winding having a first end side, a second end side, and an outer side, the first end side and the second end side extending substantially parallel to cell cup plane region and the cell top plane region, the outer side extending substantially parallel to the cell cup lateral surface region and the cell top lateral surface region, the electrode winding being formed from a multi-layer assembly that is wound in a spiral shape about an axis, the multi-layer assembly including: a positive electrode formed from a first current collector coated with a first electrode material, a negative electrode formed from a second current collector coated with a second electrode material, and a separator disposed between the positive electrode and the negative electrode; and an insulator, wherein the first current collector includes a first end section bent so as to extend out of the electrode winding, at least a first portion of the first end section forming an uncoated first flat layer adjacent the first end side of the electrode winding, wherein the second current collector includes a second end section bent so as to extend out of the electrode winding, at least a first portion of the second end section forming an uncoated second flat layer adjacent the second end side of the electrode winding, wherein the first flat layer is welded to a first of the cell cup plane region or the cell top plane region, wherein the second flat layer is welded to a second of the cell cup plane region or the cell top plane region, and wherein the insulator is positioned (i) between the first flat layer and the first end side of the electrode winding or (ii) between the second flat layer and the second end side of the electrode winding.
My button cell always comprises two metal housing halves separated from one another by an electrically insulating seal and forming a housing having a plane bottom region and a plane top region parallel thereto. As mentioned above, the two housing halves are generally a so-called “housing cup” and a “housing top.” In particular, nickel-plated steel or sheet metal are preferred as the material for the housing halves. Trimetals, in particular, are furthermore suitable as the metallic material, for example, ones comprising the sequence nickel, steel (or stainless steel) and copper (in which case the nickel layer preferably forms the outer side of the button cell housing and the copper layer preferably forms the inner side).
As the seal, it is, for example, possible to use an injection-molded seal or a film seal. The latter are described, for example, in DE 196 47 593.
At least one positive electrode and at least one negative electrode are arranged inside the housing, specifically each in the form of flat electrode layers. The electrodes are preferably connected to one another by at least one flat separator. The electrodes are preferably laminated or adhesively bonded onto this separator. The electrodes and the separator generally each have a thickness only in the μm range. A porous plastic film is generally used as the separator.
This assembly is provided in the form of a winding, particularly in the form of a spiral-shaped winding, in the housing of a button cell, the winding being arranged such that its end sides face in the direction of the plane bottom region and the plane top region of the housing. Full reference is hereby made to the description of such windings, and button cells comprising such windings, in DE 10 2009 030 359.6 and DE 10 2009 008 859.8 already mentioned above. All the preferred forms described in those applications are also intended to apply for the button cell described here and the electrode winding described here.
Besides the housing halves and the electrode separator assembly, my button cell always also comprises metal conductors which electrically connect the at least one positive electrode and/or the at least one negative electrode respectively to one of the housing halves. The conductor or conductors connected to the at least one positive electrode preferably consist of aluminum. The conductors connected to the at least one negative electrode preferably consist of nickel or copper.
On the electrode side, the conductors are preferably connected to current collectors. The latter are generally metal foils or meshes conventionally coated on both sides with active electrode material. These current collectors preferably consist of aluminum on the side of the positive electrode, and preferably nickel or copper on the side of the negative electrode. The foils or meshes have, in particular, thicknesses of between 1 μm and 100 μm. The connecting of the conductors to the current collectors is preferably carried out by welding.
Particularly in respect of preferred forms of the electrode separator assembly arranged in my button cell, reference is made to DE 10 2009 030 359.6 and DE 10 2009 008 859.8. These disclose in particular preferred layer sequences and layer thicknesses for electrodes and separators, for example, an assembly comprising the layer sequence:
or
Assemblies comprising the layer sequences:
or
Particularly preferably, at least one of the electrodes of a button cell is a lithium intercalation electrode. The button cell is preferably a lithium ion battery, in particular a secondary lithium ion battery.
My button cell is distinguished particularly in that at least one of the conductors is welded to the respective housing half, preferably both the conductor connected to the at least one positive electrode and the conductor connected to the at least one negative electrode.
As has already been mentioned above, particularly in lithium ion button cells, the electrodes are subject to volume changes during a charging-discharging cycle, as a result of which contact problems may arise between the conductors and the housing halves. Such contact problems no longer apply when the conductors are welded to the respective housing halves.
Particularly preferably, the conductor or conductors are welded onto the inner side of the housing in the plane bottom region or the plane top region, respectively, of the housing. For this purpose, according to conventional methods the welding process must be carried out before the housing is assembled, which is very difficult to achieve in terms of production technology. Welded connections have therefore been regarded as highly disadvantageous for bonding the conductors to the inner side of the housing halves. By virtue of my method as described in more detail below, however, a solution can be provided which also has great advantages in terms of production technology.
By the welding, the at least one positive electrode and/or the at least one negative electrode are thus connected by one or more conductors directly to the plane bottom region or to the plane top region of the housing of a button cell, the housing top generally being poled negatively and the housing cup positively.
The button cell is preferably a conventional button cell having a circular plane bottom region and a circular plane top region. In some cases, the button cell may nevertheless have an oval configuration. It is, however, important that the ratio of height to diameter is preferably always less than 1. Particularly preferably, it is 0.1 to 0.9, in particular 0.15 to 0.7. The height is intended to mean the shortest distance between the plane bottom region and the plane top region parallel thereto. The diameter means the maximum distance between two points on the lateral region of the button cell.
Preferably, the conductors of a button cell are flat conductors, in particular metal foils, particularly preferably rectangular, strip- or band-shaped metal foils. The foils preferably have thicknesses of 5 μm to 100 μm.
The conductors are preferably separate components bonded, in particular welded, to the electrodes, in particular to the current collectors in the electrodes. As an alternative, however, the conductors may also be uncoated sections of a current collector (sections which are free of active electrode material), in particular the uncoated ends of such a current collector. By bending these uncoated sections, in particular these uncoated ends, for example, through 90°, these ends can be connected to the bottom or top region of a button cell. There, the connecting is preferably carried out by welding.
Preferably, at least one subsection of the conductor or conductors bears flat on the inner side of the housing half or halves in the bottom and/or top region of the housing, in particular when the conductors are flat conductors such as foils. Such conductors may form a flat layer between the inner side of the housing halves and an end side of the electrode winding, and therefore a large-area electrical contact with the housing.
Since in principle both positive and negative electrodes may be exposed on the end sides of the electrode winding, however, it is necessary to avoid a short circuit between the electrodes. Particularly preferably, my button cell therefore comprises at least one separate insulating means which prevents direct electrical contact between the end sides of the winding and the conductors, in particular a subsection of the conductor or conductors which bears flat on the inner side of the housing halves. Such an insulating means may, for example, be a film, for example, a plastic adhesive film, by which the side of the conductor or conductors remote from the inner side of the button cell housing is covered.
The electrode winding of a button cell may be produced by known methods, for example, the method described in DE 36 38 793, according to which electrodes and separators are wound on a winding mandrel. After the winding has been removed from the winding mandrel, there may be an axial cavity at the center of the winding, preferably an essentially cylindrical axial cavity. In the housing of my button cell, such a cavity is delimited laterally by the winding and on the end sides by the bottom or top region of the housing, respectively, or at least by a subregion thereof. Particularly preferably, the at least one conductor is welded to one housing half or the housing halves in one of these subregions.
The axial cavity may optionally contain a winding core, which can prevent the winding from expanding uncontrolledly into the cavity.
The button cell is in particular a button cell without crimping, as is described in DE 10 2009 017 514.8. Accordingly, there is preferably an exclusively force-fit connection between the housing halves. The but-ton cell thus does not have a crimped cup edge, as is always the case with button cells known from the prior art. The button cell is closed without crimping. The content of DE 10 2009 017 514.8 is also fully incorporated herein by reference. All the preferred forms described in that application is also intended to apply for the button cell described here and its housing.
As already mentioned above, welding of conductors to the inner side of button cell housings is very elaborate in terms of production technology. I overcome this problem with my method of producing button cells, which always comprises at least the following steps:
The components used in the method such as the housing halves, the conductors and the electrode separator assembly, have already been described above. Reference is hereby made to the corresponding remarks.
The method is distinguished in particular in that step (d) is carried out after step (c). This means that the at least one conductor is welded to the inner side of the housing when the housing is closed. The welding must correspondingly be carried out from the outside through the housing wall of one or both housing halves.
Accordingly, I provide button cells which have weld beads and/or weld spots that pass through the housing, in particular starting from its outer side.
Particularly preferably, the conductor or conductors and the button cell housing are connected to one another by one or more spot-like and/or linear welded connections.
Welding the conductors and the housing is preferably carried out by a laser. Its operating parameters must be adapted as accurately as possible to the thickness of the housing. The power may, for example, be modulated by varying the pulse frequency. Lastly, the laser should merely ensure welding of the housing and conductors while other components such as the electrode winding should as far as possible not be damaged.
Suitable lasers are, for example, commercially available fiber lasers, i.e., solid-state lasers, in which the doped core of a glass fiber forms the active medium. The most common dopant for the laser-active fiber core is erbium. For high-power applications as in the present case, however, ytterbium and neodymium are more preferred.
Irrespective of the fact that such lasers can be adapted very finely to the respective housing thickness and conductor dimension, it is nevertheless possible that in certain cases the intensity of the laser will be selected to be too strong and the laser will penetrate through the housing wall and the conductor. For this reason, welding the conductors to the housing is particularly preferably carried out in the subregion of the bottom or top region, which delimits the axial cavity at the center of the winding on the end side. If a laser beam penetrates through the housing in this region, the winding cannot be damaged. Instead, the laser beam will be absorbed by the housing half lying opposite or by a winding core optionally arranged inside the cavity.
If possible, the conductors to be welded should bear as flatly as possible on the inner side of the housing. This may, for example, be ensured by fixing the conductors flat by an adhesive tape onto or at the end sides of an electrode winding, before the latter is inserted into the housing.
The aforementioned advantages, and further advantages thereof, are in particular also revealed by the description which now follows of the drawings. In this context, the individual features may be implemented separately or in combination with one another. The examples described merely serve for explanation and better understanding, and are in no way to be interpreted as restrictive.
Button cell 100 comprises two metal housing halves: a metal cup part 101 and a metal top part 102. With a seal 103 lying between them, the two parts are connected together in a leaktight fashion. Together, they form a housing having a plane bottom region 104 and a plane top region 105 parallel thereto. In the functional state, these two plane regions 104 and 105 form the poles of the button cell 100, from which current can be drawn by a load. The cell top 102 is inserted into the cell cup 101 so that the lateral surface regions of the cell top and the cell cup overlap, the internal radius of the cell cup 101 in the overlap region 106 being essentially constant in the direction of the rim 107. The edge of the cell 101 is thus not crimped. The button cell 100 is therefore an uncrimped button cell.
An assembly 108 of strip-shaped electrodes and strip-shaped separators is arranged inside the electrode. The assembly 108 is provided in the form of a spiral-shaped winding, the end sides of which face in the direction of the plane bottom region 104 and the plane top region 105 parallel thereto. The assembly is wound on the winding core 109 at the center of the button cell 100. The winding core is a hollow plastic cylinder, which partially fills an axial cavity at the center of the winding. The cavity itself is delimited laterally by the winding and upward and downward by corresponding circular sections of the plane cup and top regions of the button cell housing. Metal foils 110 and 111, which act as conductors and are connected to the electrodes, bear flat on these regions. These conductors are shielded from the end sides of the winding by the insulating elements 112 and 113. The latter are thin plastic films. The wall thickness of the housing in the region of the plane bottom or top region is generally 30 μm to 400 μm. The thickness of the metal foils 110 and 111 acting as conductors generally lies 5 μm to 100 μm.
Welding of the metal foils 110 and 111, acting as conductors, to the respective housing half, which is preferably done by the schematically represented laser 114, is preferably carried out in that subregion of the bottom region or of the top region of the button cell housing which delimits the axial cavity at the center of the winding on the end side. This creates a weld bead 115 which passes fully through the housing of the button cell 100 from the outside inward, and by which the internally lying metal foils 110 and 111 acting as conductors are firmly connected to the inner side of the housing. This can be seen clearly in the detail enlargement (
The conductor position in a winding of electrode foils obtained according to
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. It will be understood that changes and modifications may be made by those of ordinary skill within the scope of the following claims. In particular, the present invention covers further embodiments with any combination of features from different embodiments described above and below. Additionally, statements made herein characterizing the invention refer to an embodiment of the invention and not necessarily all embodiments.
The terms used in the claims should be construed to have the broadest reasonable interpretation consistent with the foregoing description. For example, the use of the article “a” or “the” in introducing an element should not be interpreted as being exclusive of a plurality of elements. Likewise, the recitation of “or” should be interpreted as being inclusive, such that the recitation of “A or B” is not exclusive of “A and B,” unless it is clear from the context or the foregoing description that only one of A and B is intended. Further, the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise. Moreover, the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 030 359.6 | Jun 2009 | DE | national |
10 2009 060 800.1 | Dec 2009 | DE | national |
This application is a divisional of U.S. application Ser. No. 15/699,435, filed Sep. 8, 2017, which is a divisional application of U.S. application Ser. No. 13/378,117 filed Dec. 14, 2011, which is a § 371 of International Application No. PCT/EP2010/058637, with an international filing date of Jun. 18, 2010 (WO 2010/146154 A2, published Dec. 23, 2010), which is based on German Patent Application Nos. 10 2009 030 359.6, filed Jun. 18, 2009, and 10 2009 060 800.1, filed Dec. 31, 2009, all of which applications are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3069489 | Carmichael et al. | Dec 1962 | A |
3748182 | Brown | Jul 1973 | A |
3827916 | Fagan, Jr. | Aug 1974 | A |
3960599 | Reynier et al. | Jun 1976 | A |
4053687 | Coibion et al. | Oct 1977 | A |
4091181 | Merritt, Jr. | May 1978 | A |
4220695 | Ishida et al. | Sep 1980 | A |
4224387 | Nakayama | Sep 1980 | A |
4262064 | Nagle | Apr 1981 | A |
4321316 | Kuehl | Mar 1982 | A |
4487819 | Koga | Dec 1984 | A |
4520085 | Wyser | May 1985 | A |
4539271 | Crabtree | Sep 1985 | A |
4554226 | Simonton | Nov 1985 | A |
4664989 | Johnson | May 1987 | A |
4927719 | Ashihara et al. | May 1990 | A |
5128219 | Kohler et al. | Jul 1992 | A |
5273842 | Yamahira et al. | Dec 1993 | A |
5356736 | Kita et al. | Oct 1994 | A |
5378560 | Tomiyama | Jan 1995 | A |
5432027 | Tuttle et al. | Jul 1995 | A |
5470357 | Schmutz et al. | Nov 1995 | A |
5567538 | Oltman et al. | Oct 1996 | A |
5603737 | Marincic et al. | Feb 1997 | A |
5626988 | Daniel-Ivad et al. | May 1997 | A |
5631104 | Zhong et al. | May 1997 | A |
5639569 | Köhler et al. | Jun 1997 | A |
5698340 | Xue et al. | Dec 1997 | A |
5792574 | Mitate et al. | Aug 1998 | A |
5912091 | Daio et al. | Jun 1999 | A |
6042625 | Daio et al. | Mar 2000 | A |
6045944 | Okada et al. | Apr 2000 | A |
6066184 | Brenner | May 2000 | A |
6143440 | Volz et al. | Nov 2000 | A |
6221524 | Andrew et al. | Apr 2001 | B1 |
6245452 | Oltman | Jun 2001 | B1 |
6265100 | Saaski et al. | Jul 2001 | B1 |
6277522 | Omaru et al. | Aug 2001 | B1 |
6277752 | Chen | Aug 2001 | B1 |
6287719 | Bailey | Sep 2001 | B1 |
6312848 | Kilb et al. | Nov 2001 | B1 |
6443999 | Cantave et al. | Sep 2002 | B1 |
6468691 | Malay et al. | Oct 2002 | B1 |
6495293 | Arai et al. | Dec 2002 | B1 |
6516266 | Shoji | Feb 2003 | B2 |
6682853 | Kimijima et al. | Jan 2004 | B2 |
6723466 | Oogami et al. | Apr 2004 | B2 |
6884541 | Enomoto et al. | Apr 2005 | B2 |
6896994 | Urairi et al. | May 2005 | B2 |
6964690 | Goda et al. | Nov 2005 | B2 |
7108941 | Hayashi et al. | Sep 2006 | B2 |
7195840 | Kaun | Mar 2007 | B2 |
7276092 | Holl et al. | Oct 2007 | B2 |
7341802 | Ota et al. | Mar 2008 | B1 |
7432014 | Konishiike et al. | Oct 2008 | B2 |
7455929 | Dopp et al. | Nov 2008 | B2 |
7488553 | Tsukamoto et al. | Feb 2009 | B2 |
7566515 | Suzuki et al. | Jul 2009 | B2 |
7579105 | Yoppolo et al. | Aug 2009 | B2 |
7582387 | Howard et al. | Sep 2009 | B2 |
7641992 | Howard et al. | Jan 2010 | B2 |
7642013 | Howard et al. | Jan 2010 | B2 |
7662509 | Howard et al. | Feb 2010 | B2 |
7745041 | Kozuki et al. | Jun 2010 | B2 |
7794869 | Howard et al. | Sep 2010 | B2 |
7803481 | Howard et al. | Sep 2010 | B2 |
7816026 | Janmey | Oct 2010 | B2 |
7858236 | Howard et al. | Dec 2010 | B2 |
7883790 | Howard et al. | Feb 2011 | B2 |
7931980 | Kwak et al. | Apr 2011 | B2 |
7951476 | Kim | May 2011 | B2 |
7981541 | Sato et al. | Jul 2011 | B2 |
8021775 | Kaun | Sep 2011 | B2 |
8048570 | Visco et al. | Nov 2011 | B2 |
8236441 | Gardner et al. | Aug 2012 | B2 |
8435658 | Yamashita et al. | May 2013 | B2 |
8465860 | Pozin et al. | Jun 2013 | B2 |
8703327 | Kim et al. | Apr 2014 | B2 |
9077022 | Howard et al. | Jul 2015 | B2 |
9899640 | Yabushita et al. | Feb 2018 | B2 |
20010009737 | Lane | Jul 2001 | A1 |
20010016282 | Kilb et al. | Aug 2001 | A1 |
20020034680 | Inoue | Mar 2002 | A1 |
20020106559 | Takahashi et al. | Aug 2002 | A1 |
20020146621 | Yageta et al. | Oct 2002 | A1 |
20020192559 | Yoshimura et al. | Dec 2002 | A1 |
20030003370 | Arai et al. | Jan 2003 | A1 |
20030013007 | Kaun | Jan 2003 | A1 |
20030068557 | Kumashiro et al. | Apr 2003 | A1 |
20030138693 | Suzuki et al. | Jul 2003 | A1 |
20030162088 | Nakanishi et al. | Aug 2003 | A1 |
20030175589 | Kaminaka et al. | Sep 2003 | A1 |
20030193317 | Shimamura et al. | Oct 2003 | A1 |
20040029004 | Miyaki | Feb 2004 | A1 |
20040048151 | Hayashi et al. | Mar 2004 | A1 |
20040048160 | Omaru | Mar 2004 | A1 |
20040081895 | Adachi et al. | Apr 2004 | A1 |
20040110061 | Haug et al. | Jun 2004 | A1 |
20040115521 | Cho | Jun 2004 | A1 |
20040202933 | Yamaki et al. | Oct 2004 | A1 |
20050042506 | Tomimoto et al. | Feb 2005 | A1 |
20050058904 | Kano et al. | Mar 2005 | A1 |
20050064283 | Anderson et al. | Mar 2005 | A1 |
20050074667 | Yang | Apr 2005 | A1 |
20050142440 | Yamaki et al. | Jun 2005 | A1 |
20050171383 | Arai et al. | Aug 2005 | A1 |
20050181276 | Miyaki | Aug 2005 | A1 |
20050233212 | Kaun | Oct 2005 | A1 |
20050271938 | Suzuki et al. | Dec 2005 | A1 |
20060093894 | Scott et al. | May 2006 | A1 |
20060124973 | Arai et al. | Jun 2006 | A1 |
20060183020 | Davidson et al. | Aug 2006 | A1 |
20060228629 | Christian et al. | Oct 2006 | A1 |
20070037058 | Visco et al. | Feb 2007 | A1 |
20070122698 | Mitchell et al. | May 2007 | A1 |
20070172728 | Yamashita et al. | Jul 2007 | A1 |
20070200101 | Asao et al. | Aug 2007 | A1 |
20080003500 | Issaev et al. | Jan 2008 | A1 |
20080003503 | Kawakami et al. | Jan 2008 | A1 |
20080050652 | Hirose et al. | Feb 2008 | A1 |
20080240480 | Pinnell et al. | Oct 2008 | A1 |
20080241645 | Pinnell et al. | Oct 2008 | A1 |
20080318126 | Ishii | Dec 2008 | A1 |
20090123840 | Shirane et al. | May 2009 | A1 |
20090208849 | Pozin et al. | Aug 2009 | A1 |
20090325062 | Brenner et al. | Dec 2009 | A1 |
20100196756 | Wakita et al. | Aug 2010 | A1 |
20100227217 | Fujikawa et al. | Sep 2010 | A1 |
20100266893 | Martin et al. | Oct 2010 | A1 |
20110091753 | Wang et al. | Apr 2011 | A1 |
20110200871 | Pytlik et al. | Aug 2011 | A1 |
20120015224 | Pytlik et al. | Jan 2012 | A1 |
20120028110 | Brenner | Feb 2012 | A1 |
20120058386 | Wyser et al. | Mar 2012 | A1 |
20120100406 | Gaugler | Apr 2012 | A1 |
20130130066 | Pytlik et al. | May 2013 | A1 |
20130216881 | Gaugler | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1873846 | Jan 2008 | AL |
1184338 | Jun 1998 | CN |
1224934 | Aug 1999 | CN |
2502410 | Jul 2002 | CN |
2632871 | Aug 2004 | CN |
1630126 | Jun 2005 | CN |
1744347 | Mar 2006 | CN |
2847540 | Dec 2006 | CN |
2874790 | Feb 2007 | CN |
1960040 | May 2007 | CN |
101120462 | Feb 2008 | CN |
101202357 | Jun 2008 | CN |
101217188 | Jul 2008 | CN |
101286572 | Oct 2008 | CN |
101517820 | Aug 2009 | CN |
201440429 | Apr 2010 | CN |
3113309 | Oct 1982 | DE |
3638793 | May 1988 | DE |
19647593 | May 1998 | DE |
69700312 | Feb 2000 | DE |
19857638 | Jun 2000 | DE |
102009008859 | Aug 2010 | DE |
102009017514 | Oct 2010 | DE |
0202857 | Jul 1991 | EP |
1137091 | Sep 2001 | EP |
1315220 | May 2003 | EP |
1318561 | Jun 2003 | EP |
1339115 | Aug 2003 | EP |
1372209 | Dec 2003 | EP |
1808916 | Jul 2007 | EP |
1886364 | Feb 2008 | EP |
1968134 | Sep 2008 | EP |
1088271 | Oct 1967 | GB |
2110464 | Jun 1983 | GB |
S58-10375 | Jan 1983 | JP |
S5842167 | Mar 1983 | JP |
S58-154178 | Sep 1983 | JP |
S59-78460 | May 1984 | JP |
S60-148058 | Aug 1985 | JP |
S62-113358 | May 1987 | JP |
S62-139265 | Jun 1987 | JP |
S62-272472 | Nov 1987 | JP |
S63-285878 | Nov 1988 | JP |
H01-307176 | Dec 1989 | JP |
H01309254 | Dec 1989 | JP |
H02-56871 | Feb 1990 | JP |
H02-60072 | Feb 1990 | JP |
H03-225748 | Oct 1991 | JP |
H04-249073 | Sep 1992 | JP |
H05-121056 | May 1993 | JP |
H06-96750 | Apr 1994 | JP |
H07-153467 | Jun 1995 | JP |
H07-153488 | Jun 1995 | JP |
H08-293299 | Nov 1996 | JP |
H11-40189 | Feb 1999 | JP |
H11-135101 | May 1999 | JP |
H11176414 | Jul 1999 | JP |
2937456 | Aug 1999 | JP |
H11245066 | Sep 1999 | JP |
H11-345626 | Dec 1999 | JP |
H11-354150 | Dec 1999 | JP |
2000-77040 | Mar 2000 | JP |
2000082486 | Mar 2000 | JP |
2000-164259 | Jun 2000 | JP |
2000156218 | Jun 2000 | JP |
2000331717 | Nov 2000 | JP |
2002-042744 | Feb 2002 | JP |
2002-100408 | Apr 2002 | JP |
2002-134073 | May 2002 | JP |
2002-134096 | May 2002 | JP |
2002-164076 | Jun 2002 | JP |
2002-289257 | Oct 2002 | JP |
2002-289259 | Oct 2002 | JP |
2002-289260 | Oct 2002 | JP |
2002-298803 | Oct 2002 | JP |
2002-324584 | Nov 2002 | JP |
2002-352789 | Dec 2002 | JP |
2003-031266 | Jan 2003 | JP |
2003-077543 | Mar 2003 | JP |
2003-123830 | Apr 2003 | JP |
2003217562 | Jul 2003 | JP |
2003-249201 | Sep 2003 | JP |
2004-139800 | May 2004 | JP |
2004-158318 | Jun 2004 | JP |
2004-362968 | Dec 2004 | JP |
2006-040596 | Feb 2006 | JP |
3902330 | Apr 2007 | JP |
2007-200683 | Aug 2007 | JP |
2007-220601 | Aug 2007 | JP |
2007207535 | Aug 2007 | JP |
2007-29411 | Nov 2007 | JP |
2007-294111 | Nov 2007 | JP |
2008-047303 | Feb 2008 | JP |
2008103109 | May 2008 | JP |
2008198552 | Aug 2008 | JP |
2008-251192 | Oct 2008 | JP |
2008-262825 | Oct 2008 | JP |
2008-262826 | Oct 2008 | JP |
2008-262827 | Oct 2008 | JP |
2009-199761 | Sep 2009 | JP |
20030087316 | Nov 2003 | KR |
2008118478 | Oct 2008 | WO |
WO 2010089152 | Aug 2010 | WO |
Entry |
---|
Machine English language translation of Kobayashi Yoshikazu in JP 2007-294111 (Year: 2007). |
Zhang, Guoshun et al. “Application of Auto Laser Welding in Rechargeable Battery Manufacturing,” Chinese Journal of Lasers, vol. 35, No. 11, Nov. 2008. |
Qu, Guogiang, “Initial Analysis on the Working Principle of Through the Partition Welding,” Feb. 1989. |
Yi, Si-ping et al. “Laser Auto-Welding for Lithium Battery Tab,” Chinese Journal of Power Sources, vol. 29, No. 2, pp. 80-81, Feb. 2005. |
“Button Cell,” Electropedia, International Electrotechnical Commission, Apr. 2004. |
“Notification of invalidation request acceptance” against Chinese patent No. 201080036551.3, Jan. 2020. |
“Annulment” against EP 2 394 324 B1, Jan. 22, 2020. |
“Complaint for Patent Infringement” of U.S. Pat. No. 9,153,835; U.S. Pat. No. 9,496,581; and U.S. Pat. No. 9,799,913 against Samsung Electronics America, Inc., Feb. 5, 2020. |
Linden, D. et al. “Handbook of Batteries,” 2002, Third Edition, The McGraw-Hill Companies, Inc., Sections 11.4, 11.4.1, 14.1,14.5.2, 14.8 and 14.8.2, and Figs. 11.2, 11.5, 14.38, 34.13, 35.30 and 35.32. |
“Complaint for Patent Infringement” of U.S. Pat. No. 9,153,835; U.S. Pat. No. 9,496,581; and U.S. Pat. No. 9,799,913 against Amazon.com, Inc., Feb. 24, 2020. |
“Complaint for Patent Infringement” of U.S. Pat. No. 9,153,835; U.S. Pat. No. 9,496,581; U.S. Pat. No. 9,799,913; and U.S. Pat. No. 9,799,858 against Best Buy Co., Inc., Feb. 24, 2020. |
“Complaint for Patent Infringement” of U.S. Pat. No. 9,153,835; U.S. Pat. No. 9,496,581; and U.S. Pat. No. 9,799,913 against Costco Wholesale Corporation, Feb. 24, 2020. |
“Complaint for Patent Infringement” of U.S. Pat. No. 9,153,835; U.S. Pat. No. 9,496,581; U.S. Pat. No. 9,799,913; and U.S. Pat. No. 9,799,858 against Audio Partnership LLC and Audio Partnership PLC, Mar. 3, 2020. |
“Complaint for Patent Infringement” of U.S. Pat. No. 9,153,835; U.S. Pat. No. 9,496,581; U.S. Pat. No. 9,799,913; and U.S. Pat. No. 9,799,858 against PEAG, LLC, Mar. 4, 2020. |
U.S. Appl. No. 16/812,482, filed Mar. 9, 2020. |
U.S. Appl. No. 16/813,776, filed Mar. 10, 2020. |
U.S. Appl. No. 16/810,976, filed Mar. 6, 2020. |
U.S. Appl. No. 16/810,998, filed Mar. 6, 2020. |
InvenTek Corp., “Our Technology,” Dec. 6, 2004, https://web.archive.org/web/20041206230046/http://inventekcorp.com/page3.html. |
InvenTek Corporation, “Powerful Design: Technology,” Nov. 22, 2007, https://web.archive.org/web/20071122010915/http://inventekcorp.com/technology.html. |
InvenTek Corporation, “Powerful Design: Partners,” Nov. 22, 2007, https://web.archive.org/web/20071122011734/http://inventekcorp.com/partners.html. |
Saft Specialty Battery Group, “Premium lithium battery LM 17130,” Doc. No. 31089-2-0908, Sep. 2008. |
Saft, “Premium lithium battery LM 22150,” Doc No. 32040-2-0313, Mar. 2013. |
Saft Specialty Battery Group, “Premium lithium battery LO 34 SX,” Doc No. 31099-2-0411, Apr. 2011. |
Saft Specialty Battery Group, “Rechargeable lithium-ion battery VL 34480,” Doc. No. 54054-2-0607, Jun. 2007. |
Saft, “Sail lithium batteries: Selector guide,” Doc. No. 54083-2-0320, Mar. 2020. |
Saft, “Saft lithium batteries: Selector guide,” Doc. No. 54083-2-0613, Jun. 2013. |
Saft Specialty Battery Group, “Saft lithium-ion rechargeable batteries for transportable power applications,” Doc. No. 54047-2-0706, Jul. 2006. |
Ultralife Corporation, “UB0006,” https://www.ultralifecorporation.com/ECommerce/product/ub0006/type-ba-5367-33v-limno2, retrieved Jul. 15, 2020. |
Ultralife Batteries, Inc.,“UB0006: BA-5367/U” https://web.archive.org/web/20061109153052/http://www.ultralifebatteries.com/datasheet.php?ID=UB0006#top, Nov. 9, 2006. |
Ultralife Batteries, Inc.,“BA-5367/U Technical Datasheet,” Aug. 4, 2006. |
Ultralife Corporation, “BA-5367/U Technical Datasheet,” Aug. 27, 2015. |
Ultralife Batteries, Inc., “Product Summary Guide: Technical Datasheet,” Sep. 27, 2006. |
Ultralife Batteries, Inc., “Ultralife: Lithium-Manganese Dioxide Primary and Lithium Ion Rechargeable Batteries,” Dec. 13, 2004. |
Ultralife Corporation, “Lithium Carbon Mono-fluoride / Manganese Dioxide Hybrid Application Guide,” Apr. 2, 2014. |
Defendants' P.R. 3-3 Invalidity Contentions, Jul. 10, 2020. |
Petition for Inter Partes Review of U.S. Pat. No. 9,799,858, Jul. 7, 2020. |
Petition for Inter Partes Review of U.S. Pat. No. 9,153,835, Jul. 7, 2020. |
Petition for Inter Partes Review of U.S. Pat. No. 9,496,581, Jul. 7, 2020. |
Petition for Inter Partes Review of U.S. Pat. No. 9,799,913, Jul. 7, 2020. |
Exhibit 1 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 2 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 3 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 4 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 5 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 6 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 7 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 8 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 9 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 10 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Exhibit 11 of Defendant's Invalidity Contentions, Jul. 10, 2020. |
Jul. 10, 2020 Statement of Thomas Kaun. |
“Notice of acceptance of request for invalidation” against Chinese patent application No. 201080007121.9, dated Jun. 17, 2020. |
U.S. Appl. No. 15/433,654, filed Feb. 15, 2017. |
U.S. Appl. No. 15/696,354, filed Sep. 6, 2017. |
U.S. Appl. No. 16/693,538, filed Nov. 25, 2019. |
U.S. Appl. No. 16/792,420, filed Feb. 17, 2020. |
U.S. Appl. No. 16/796,977, filed Feb. 21, 2020. |
Patent Owner's Preliminary Response, Case IPR 2020-01211, U.S. Pat. No. 9,496,581, Oct. 7, 2020. |
Patent Owner's Preliminary Response, Case IPR 2020-01212, U.S. Pat. No. 9,153,835, Oct. 7, 2020. |
Patent Owner's Preliminary Response, Case IPR 2020-01213, U.S. Pat. No. 9,799,858, Oct. 7, 2020. |
Patent Owner's Preliminary Response, Case IPR 2020-01214, U.S. Pat. No. 9,799,913, Oct. 7, 2020. |
Declaration of Dr. Martin Peckerar Regarding Claim Construction, Oct. 23, 2020. |
Declaration of William H. Gardner, Jul. 7, 2020. |
Supplemental Expert Declaration of William H. Gardner, Oct. 23, 2020. |
William H. Gardner CV, Oct. 7, 2020. |
Frankenberger, Martin et al. “Laminated Lithium Ion Batteries with improved fast charging capability,” Journal of Electroanalytical Chemistry 837 (2019) 151-158, Elsevier B.V., Feb. 17, 2019. |
Chart comparing U.S. Pat. No. 9,799,858 to PCT/EP2010/058637, Jul. 7, 2020. |
Email chain re: VARTA v. PEAG LLC (E.D.Tex. No. 2:20-71) and VARTA v. Audio Partnership LLc (N.D.III. No. 1:20-1568), Apr. 27, 2020. |
First Amended Consolidation Order, Case No. 2:20-cv-00051, Document 21, filed May 7, 2020. |
Discovery Order in Civil Action Nos. 2:20-00029, 2:20-00071, 2:20-00138; Case No. 2:20-cv-00051-JRG; Document 51; filed Jun. 10, 2020. |
Docket Control Order, Case No. 2:20-cv-00051-JRG, Document 54, filed Jun. 11, 2020. |
Defendants PEAG, LLC D/B/A JLAB Audio, Audio Partnership LLC and Audio Partnership PLC D/B/A Cambridge Audio's Opposed Motion to Stay Pending Inter Partes Review in Case Nos. 2:20-CV-00071 and 2:20-CV-00138; Case 2:20-cv-0051-JRG; Document 64; filed Aug. 20, 2020. |
Plaintiff VARTA Microbattery GmbH's Opposition to Defendants' Motion to Stay Pending Inter Partes Review, Case 2:20-cv-00051-JRG, Document 65, filed Sep. 3, 2020. |
Order denying stay, Case 2:20-cv-00051-JRG, Document 68, filed Oct. 6, 2020. |
Complaint for Patent Infringement of U.S. Pat. No. 9,153,835; U.S. Pat. No. 9,496,581; U.S. Pat. No. 9,799,913; and U.S. Pat. No. 9,799,858 against Cambridge Audio, Case 2:20-cv-00138, Document 1, filed May 4, 2020. |
Defendant PEAG, LLC D/B/A JLAB Audio's Answer to Complaint for Patent Infringement, Case 2:20-cv-00051-JRG, Document 26, filed May 13, 2020. |
Joint Motion for Entry of Docket Control Order, Case 2:20-cv-00051-JRG, Document 45, filed Jun. 8, 2020. |
Translation of KR20030087316, Jun. 12, 2020. |
“VARTA's Opening Claim Construction Brief,” with Exhibits, Case 2:20-cv-00051-JRG, Document 77, filed Dec. 4, 2020. |
“Defendants' Responsive Claim Construction Brief in Case Nos. 2:20-CV-00071 and 2:20-CV-00138,” with Exhibits, Case 2:20-cv-00051-JRG, Document 80, filed Dec. 18,2020. |
“VARTA's Reply Claim Construction Brief,” Case 2:20-cv-00051-JRG, Document 81, filed Dec. 28, 2020. |
“Patent Rule 4-5(d) Joint Claim Construction Chart,” with Exhibits, Case 2:20-cv-00051-JRG, Document 84, filed Jan 4, 2021. |
Decision Granting Institution of Inter Partes Review, Case IPR 2020-01211, U.S. Pat. No. 9,496,581, Jan. 6, 2021. |
Decision Granting Institution of Inter Partes Review, Case IPR 2020-01212, U.S. Pat. No. 9,153,835, Jan. 6, 2021. |
Decision Granting Institution of Inter Partes Review, Case IPR 2020-01213, U.S. Pat. No. 9,799,858, Jan. 6, 2021. |
Decision Granting Institution of Inter Partes Review, Case IPR 2020-01214, U.S. Pat. No. 9,979,913, Jan. 6, 2021. |
U.S. Appl. No. 17/173,257, filed Feb. 11, 2021. |
U.S. Appl. No. 17/173,222, filed Feb. 11, 2021. |
U.S. Appl. No. 15/699,435, filed Sep. 8, 2017. |
IPR 2020-01211 Patent Owner's Response with Exhibits, Mar. 31, 2021. |
IPR 2020-01212 Patent Owner's Response with Exhibits, Mar. 31, 2021. |
IPR 2020-01213 Patent Owner's Response with Exhibits, Mar. 31, 2021. |
IPR 2020-01214 Patent Owner's Response with Exhibits, Mar. 31, 2021. |
IPR 2020-01211 Patent Owner's Contingent Motion to Amend with Exhibits, Mar. 31, 2021. |
IPR 2020-01212 Patent Owner's Contingent Motion to Amend with Exhibits, Mar. 31, 2021. |
IPR 2020-01213 Patent Owner's Contingent Motion to Amend with Exhibits, Mar. 31, 2021. |
IPR 2020-01214 Patent Owner's Contingent Motion to Amend with Exhibits, Mar. 31, 2021. |
Number | Date | Country | |
---|---|---|---|
20200194736 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15699435 | Sep 2017 | US |
Child | 16798509 | US | |
Parent | 13378117 | US | |
Child | 15699435 | US |