Button cells and method of producing same

Information

  • Patent Grant
  • 11233264
  • Patent Number
    11,233,264
  • Date Filed
    Wednesday, September 6, 2017
    7 years ago
  • Date Issued
    Tuesday, January 25, 2022
    2 years ago
Abstract
A rechargeable button cell including a housing half-parts comprising a housing cup and a housing top separated from one another by an electrically insulating seal or film seal is disclosed. The button cell includes an electrode-separator assembly within the housing having a positive and a negative electrode in the form of flat layers connected to one another by a porous plastic film separator. The electrodes each include a metallic film or mesh embedded in a respective electrode material as a current collector, which acts as an output conductor that connects the electrodes to one of the flat bottom or flat top areas of the housing.
Description
TECHNICAL FIELD

This disclosure relates to button cells comprising two metallic housing half-parts separated from one another by an electrically insulating seal and which form a housing with a flat bottom area and a flat top area parallel to it, as well as within the housing, an electrode-separator assembly comprising at least one positive and at least one negative electrode, which are in the form of flat layers and are connected to one another by at least one flat separator, and to a method of producing such button cells.


BACKGROUND

Button cells normally have a housing consisting of two housing half-parts, a cell cup and a cell top. By way of example, these may be produced from nickel-plated deep-drawn metal sheet as stamped and drawn parts. The cell cup normally has positive polarity, and the housing top negative polarity. The housing may contain widely differing electrochemical systems, for example, zinc/MnO2, primary and secondary lithium systems, or secondary systems such as nickel/cadmium or nickel/metal hydride.


By way of example, rechargeable button cells based on nickel/metal hydride or lithium-ion systems are in widespread use. In the case of lithium-ion button cells, the electrochemically active materials are normally not arranged within the button cell housing in the form of individual electrodes, in the form of tablets, separated from one another by a separator. Instead, prefabricated electrode-separator assemblies are preferably inserted flat into the housing. In that case, a porous plastic film is preferably used as a separator, onto which the electrodes are laminated or adhesively bonded flat. The entire assembly comprising the separator and the electrodes generally have a maximum thickness of a few hundred μm. To allow button cell housings of normal dimensions to be filled, a plurality of such assemblies are therefore frequently placed flat one on top of the other. This allows stacks of any desired height, in principle, to be produced, in each case matched to the available dimensions of the button cell housing into which the stack is intended to be installed. This ensures optimum utilization of the available area within the housing.


By virtue of the design, however, various problems also occur in the case of button cells which contain such stacks of electrode-separator assemblies. On the one hand, it is necessary, of course, for the electrodes of the same polarity each to be connected to one another within the stack, and then each to make contact with the corresponding pole of the button cell housing. The required electrical contacts result in material costs, and the space occupied by them is, furthermore, no longer available for active material. In addition, the production of the electrode stacks is complicated and expensive since faults can easily occur when the assemblies make contact with one another, increasing the scrap rate. On the other hand, it has been found that button cells having a stack of electrodes and separators very quickly start to leak.


Traditionally, button cells have been closed in a liquid-tight manner by beading the edge of the cell cup over the edge of the cell top in conjunction with a plastic ring, which is arranged between the cell cup and the cell top and at the same time acts as a sealing element and for electrical insulation of the cell cup and of the cell top. Button cells such as these are described, for example, in DE 31 13 309.


However, alternatively, it is also possible to manufacture button cells in which the cell cup and the cell top are held together in the axial direction exclusively by a force-fitting connection, and which do not have a beaded-over cup edge. Button cells such as these and methods for their production are described in German Patent Application 10 2009 017 514. Irrespective of the various advantages which button cells such as these without beading may have, they can, however, not be loaded as heavily in the axial direction as comparable button cells with a beaded-over cup edge, in particular with respect to axial mechanical loads which are caused in the interior of the button cell. For example, the electrodes of rechargeable lithium-ion systems are continually subject to volume changes during charging and discharging processes. The axial forces which occur in this case can, of course, lead to leaks more readily in the case of button cells without beading than in the case of button cells with beading.


It could therefore be helpful to provide a button cell in which the problems mentioned above do not occur, or occur only to a greatly reduced extent. In particular, it could be helpful to provide a button cell that is resistant to mechanical loads which occur in the axial direction than conventional button cells, in particular even when they are manufactured as button cells without a beaded-over cup edge.


SUMMARY

We provide a rechargeable button cell including a housing half-parts comprising a housing cup and a housing top separated from one another by an electrically insulating injection-molded seal or film seal and which form a housing with a flat bottom area and a flat top area parallel to it, and an electrode-separator assembly within the housing comprising a positive and a negative electrode in the form of flat layers and connected to one another by a porous plastic film separator, wherein at least one of the electrodes is a lithium-intercalating electrode, the electrode layers are aligned essentially at right angles to the flat bottom and the flat top areas and the electrode-separator assembly is a spiral winding having end faces defining side surfaces of the spiral winding facing in an axial direction relative to the flat bottom area and the flat top area, the electrodes each comprise a metallic film or mesh embedded in a respective electrode material as a current collector, at least one of the current collectors acts as an output conductor that connects one of the electrodes to one of the flat bottom or flat top areas of the housing, wherein sub-areas of the current collector(s) not covered with the electrode material can be brought into contact with the button cell housing, or the button cell comprises at least one separate output conductor welded to the housing and to one of the current collectors and which connects one of the electrodes to one of the flat bottom or top areas, one of the electrodes connects to the flat bottom area or the flat top area via an output conductor in the form of a thin film resting flat between a plane defined by an end face of the spiral winding and the flat top or the flat bottom area to which it is connected, and at least one insulating means preventing direct mechanical and electrical contact between at least one end face of the winding and the flat bottom and/or flat top area.


We also provide a rechargeable button cell including housing half-parts comprising a housing cup and a housing top separated from one another by an electrically insulating injection-molded seal or film seal and which form a housing with a flat bottom area and a flat top area parallel to it, and an electrode-separator assembly within the housing comprising a positive and a negative electrode in the form of flat layers, and a porous plastic film arranged between the positive and negative electrodes, wherein at least one of the electrodes is a lithium-intercalating electrode, the electrode layers are aligned essentially at right angles to the flat bottom and the flat top areas and the electrode-separator assembly is a spiral winding having end faces defining side surfaces of the spiral winding facing in an axial direction relative to the flat bottom area and the flat top area, the electrodes each comprise a metallic film or mesh embedded in a respective electrode material as a current collector, at least one of the current collectors acts as an output conductor that connects one of the electrodes to one of the flat bottom or flat top areas of the housing, wherein sub-areas of the current collector(s) not covered with the electrode material can be brought into contact with the button cell housing, or the button cell comprises at least one separate output conductor welded to the housing and to one of the current collectors and which connects one of the electrodes to one of the flat bottom or top areas, one of the electrodes connects to the flat bottom area or the flat top area via an output conductor in the form of a thin film resting flat between a plane defined by an end face of the spiral winding and the flat top or the flat bottom area to which it is connected, and at least one insulating means preventing direct mechanical and electrical contact between at least one end face of the winding and the flat bottom and/or flat top area.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically illustrates the cross section through one preferred example of a button cell.



FIG. 2 illustrates the effect of heat treatment of a wound-up electrode-separator assembly, which is used in preferred examples of our method.



FIGS. 3a and 3b show electrode-separator assemblies in the form of a winding, as can be installed in a button cell.



FIG. 4 shows a section illustration of a further preferred example of a button cell.



FIG. 5 schematically illustrates the cross section through one preferred example of a button cell in which the edge of the cell cup is not beaded over the edge of the cell cop.





DETAILED DESCRIPTION

Our button cell comprises two metallic housing half-parts separated from one another by an electrically insulating seal and form a housing with a flat bottom area and a flat top area parallel to it. As already mentioned initially, the two housing half-parts are generally a so-called “housing cup” and a “housing top.” In particular, parts composed of nickel-plated steel or metal sheet are preferred as housing half-parts. Furthermore, trimetals, for example, with the sequence of nickel, steel (or stainless steel) and copper (with the nickel layer preferably forming the outer layer and the copper layer preferably forming the inside of the button cell housing) are particularly suitable for use as the metallic material.


By way of example, an injection-molded or film seal can be used as a seal. The latter are described, for example, in DE 196 47 593.


Within the housing, a button cell comprises an electric-separator assembly with at least one positive and at least one negative electrode. These are each in the form of flat electrode layers. The electrodes are connected to one another via a flat separator. The electrodes are preferably laminated or adhesively bonded onto this separator. The electrodes and the separator generally each have thicknesses only in the μm range. In general, a porous plastic film is used as the separator.


In contrast to the button cells mentioned above, our button cell is distinguished in particular by the electrode layers having a very particular orientation, specifically being aligned essentially at right angles to the flat bottom and top areas. While known button cells with stacked electrode-separator assemblies always contain these assemblies inserted flat such that the electrode layers are aligned essentially parallel to the flat bottom and top areas, the situation in our button cell is the opposite of this.


The right-angled alignment of the electrode layers has an unexpectedly considerable advantage, specifically because it has been found that this alignment results in a considerable improvement in the sealing characteristics of our button cell, particularly for button cells based on lithium-ion systems. The electrodes of rechargeable lithium-ion systems are continually subject to volume changes during charging and discharging processes. Volume changes such as these also occur, of course, in the electrodes of our button cell. However, the mechanical forces created during this process no longer act primarily axially, as in the case of a stack of electrode-separator assemblies which are inserted flat. Because of the right-angled alignment of the electrodes, they in fact act radially. Radial forces can be absorbed very much better than axial forces by the housing of a button cell. The improved sealing characteristics are presumably a result of this.


Particularly preferably, the electrodes and the flat separator of our button cell are each in the form of strips or ribbons. By way of example, the production of our button cell can be based on a separator material in the form of an endless ribbon, onto which the electrodes are applied, in particular laminated, once again in particular in the form of strips or at least rectangles.


In the housing of our button cell, this assembly is particularly preferably in the form of a winding, in particular in the form of a spiral winding. Windings such as these can be produced very easily using known methods (see, for example, DE 36 38 793), by applying the electrodes flat, in particular in the form of strips, to a separator which is in the form of an endless ribbon, in particular by laminating them on. In this case, the assembly comprising electrodes and separators is generally wound onto a so-called “winding mandrel.” Once the winding has been removed from the winding mandrel an axial cavity remains in the center of the winding. This allows the winding to expand into this cavity, if necessary. However, in some circumstances, this can lead to problems in making electrical contact between the electrodes and the metallic housing half-parts, and this will be described in more detail in the following text.


The electrode winding is preferably arranged within a button cell (so that the electrode layers of the winding are aligned at right angles to the flat bottom area and top area of the housing) such that the end faces of the winding face in the direction of the flat bottom area and of the flat top area.


Preferably, our button cells have a fixed winding core in the center of the winding, which at least partially fills the axial cavity in the center of the winding. A winding core such as this fixes the electrode winding in the radial direction and prevents possible implosion of the winding into the axial cavity. When the winding expands in this way, this also results in the reduction in the pressure which the end faces of the winding exert in the axial direction, and therefore in the direction of output conductors which may be arranged there (this is described in more detail further below). If this is prevented, then there are generally also no problems with making electrical contact between the electrodes and the metallic housing half-parts.


In addition, a winding core such as this also makes the button cell more robust against external mechanical influences. In general, it is no longer possible for the electrode winding in the button cell to be damaged by external mechanical pressure in the axial direction.


Preferably, the electrode winding is a spiral electrode winding, the axial cavity which has been mentioned in the center of the winding is preferably essentially cylindrical (in particular circular-cylindrical). On the casing side, it is bounded by the winding, and at the end it is bounded by corresponding surfaces of the bottom area and of the top area of the button cell housing.


Correspondingly, the winding core which is contained in our button cell is preferably also in the form of a cylinder, in particular a hollow cylinder. The height of a cylinder such as this preferably corresponds to the respective distance between the flat bottom area and the flat top area, which is parallel to it.


Particularly preferably, the winding core may have radially self-expanding characteristics. For example, it is possible for the winding core to be inserted in a radially compressed configuration into the axial cavity in the winding of a button cell. When the radially compressed winding core expands, it exerts a radial pressure on the electrode winding surrounding it, thus ensuring a contact pressure in the axial direction as well.


By way of example, an axially slotted hollow cylinder may be used as a radially self-expanding winding core. However, alternatively, it is also conceivable to use other radially self-expanding materials, for example, based on plastic.


Particularly preferably, the winding core is composed of a metal such as stainless steel or plastic.


Particularly preferably, the assembly comprising electrodes and a separator in our button cell has one of the following layer sequences:

    • negative electrode/separator/positive electrode/separator


or

    • positive electrode/separator/negative electrode/separator.


Assemblies such as these can be produced and wound very easily without short circuits occurring between electrodes of opposite polarity.


The separators which can be used in our button cell are preferably films composed of at least one plastic, in particular of at least one polyolefin. By way of example, the at least one polyolefin may be polyethylene. However, it is also possible to use multilayer separators, for example, separators composed of a sequence of different polyolefin layers, for example, with the sequence polyethylene/polypropylene/polyethylene.


It is not essential to use a plurality of separate separators to produce assemblies with the abovementioned sequence. In fact, a separator can also be looped around the end of one of the electrodes, thus resulting in both sides of this electrode being covered by the separator.


The separators which can preferably be used in our button cell preferably have a thickness of 3 μm to 100 μm, in particular of 10 μm to 50 μm.


The electrodes preferably have a thickness of 10 μm to 1000 μm, in particular of 30 μm to 500 μm.


Preferably, the negative electrode and the positive electrode in the electrode-separator assembly are arranged offset with respect to one another within the assembly. In this case, an offset arrangement is intended to mean that the electrodes are arranged such that this results in a respectively different separation between the electrodes and the flat bottom and top areas in the button cell. In the simplest case, for example, a positive and a negative electrode can be slightly offset as strips of the same width applied to the opposite sides of a separator ribbon, as a result of which the distance between the positive electrode and the upper separator edge is greater than the comparable distance measured from the negative electrode. This then applies in the opposite sense, of course, to the distance from the lower separator edge.


Particularly preferably, preferably as a result of this offset arrangement, the positive electrode, in particular an edge of the positive electrode, rests directly on the cup part, in particular in the flat bottom area of the cup part, while the negative electrode, in particular an edge of the negative electrode, rests directly on the top part, in particular in the flat top area of the top part. In this example, a direct electrical and mechanical contact is made between the electrodes and the cup and top parts. The offset arrangement of the electrodes with respect to one another therefore makes it possible for the electrodes to make contact with the respective housing parts, without any need to use additional electrical contacts and connecting means.


However, alternatively, it is also preferable for at least one of the electrodes, preferably both the at least one negative electrode and the at least one positive electrode in our button cell, to be connected to the flat bottom and top areas via one or more output conductors. By way of example, the output conductors may be output-conductor lugs composed of copper or some other suitable metal. On the electrode side, the output conductors may, for example, be connected to a current collector. The output conductors can be connected to the housing and/or to the current collectors by, for example, welding or via an clamped joint.


In the simplest case, the current collectors of the positive and negative electrodes can also themselves act as output conductors. Collectors such as these are generally metallic films or meshes which are embedded in the respective electrode material. Uncovered subareas, in particular end pieces, of collectors such as these can be bent around and can be brought into contact with the button cell housing.


The use of output conductors may be particularly advantageous if the negative electrode and the positive electrode within the assembly are arranged with respect to one another such that this results in the electrodes each being at the same distance from the flat bottom and top areas. Or, in other words, if the electrodes are not arranged offset with respect to one another within the electrode-separator assembly, as has been described above.


However, if the distance between electrodes of opposite polarity and the flat bottom and top areas is the same, this results in the risk of a positive and a negative electrode touching the metallic cup or top part at the same time, thus resulting in a short circuit. Preferably, the button cell may therefore comprise at least one insulating means, which prevents a direct mechanical and electrical contact between the end faces of the winding and the flat bottom and top areas.


It is preferable for the electrodes in our button cell such as this to be connected via the already mentioned separate output conductors to the flat bottom and top areas. These ensure the electrical contact between the electrodes and the housing.


In this case, it is preferable for at least a subsection of the output conductor or conductors in the bottom area and in the top area of the housing to rest flat on the inside of the housing half-parts. Ideally, the output conductors naturally make electrical contact with the insides of the housing when they are at least slightly pressed against the housing (if they are not welded to it in any case). This can be achieved surprisingly efficiently by a suitable arrangement of the winding core that has been mentioned, in our button cell.


By way of example, the insulating means may be a flat layer composed of plastic, for example, a plastic film, which is arranged between the end faces of the winding and the flat bottom and top areas of the housing of our button cell.


Corresponding to the above statements, the button cell is, in particular, a rechargeable button cell. Our button cell particularly preferably has at least one lithium-intercalating electrode.


The ratio of the height to the diameter of button cells is, by definition, less than 1. For our button cell, this ratio is particularly preferably 0.1 to 0.9, in particular 0.15 to 0.7. In this case, the height means the distance between the flat bottom area and the flat top area parallel to it. The diameter means the maximum distance between two points on the casing area of the button cell.


The button cell is particularly preferably a button cell which is not beaded over, as is described in DE 10 2009 017 514.8, mentioned above. Correspondingly, there is preferably an exclusively force-fitting connection between the housing half-parts. Therefore, our button cell does not have a beaded-over cup edge, as is always the case with known button cells. The button cell is closed without being beaded over.


Button cells such as these which are not beaded over generally make use of conventional cell cups and cell tops, which each have a bottom area and a top area, a casing area, an edge area which is arranged between the bottom and top areas and the casing area, and a cut edge. Together, the cell cup and cell top form a housing, which forms a receptacle for the conventional internal components of a button cell such as electrodes, separator and the like. As in the normal way, the bottom area of the cell cup and the top area of the cell top are aligned essentially parallel to one another in this housing. The casing areas of the cell cup and cell top in the finished button cell are aligned essentially at right angles to the bottom and top areas, and preferably have an essentially cylindrical geometry. The internal and external radii of the cell cup and cell top are preferably essentially constant in the casing areas. The edge areas, which have been mentioned, of the cell cup and cell top form the transition between the casing areas and the top and bottom areas. They are preferably therefore bounded on the one hand by essentially flat bottom and top areas, and on the other hand by the essentially cylindrical casing areas, which are arranged at right angles to them. By way of example, the edge areas may be in the form of a sharp edge, or else may be rounded.


The procedure for producing a button cell which is not beaded over is generally to first of all apply a seal to the casing area of a cell top. In a further step, the cell top is then inserted, with the seal fitted, into a cell cup thus resulting in an area in which the casing areas of the cell cup and cell top overlap. The size of the overlap area and the ratio of the overlapping area to the non-overlapping areas are in this case governed by the respective height of the casing areas of the cell cup and cell top, and by the depth of the insertion. With regard to the casing area of the cell top, it is preferable for between 20% and 99%, in particular between 30% and 99%, particularly preferably between 50% and 99%, to overlap the casing area of the cell cup (the percentages each relate to the height of the casing or of the casing area). Before being inserted into the housing cup and/or the housing top, the other conventional components of a button cell (electrodes, separator, electrolyte and the like) are inserted. After the cell top has been inserted completely into the cell cup a pressure is exerted on the casing area of the cell cup, in particular in the area of the cut edge, to seal the housing. In this case, a joined-together housing part should as far as possible not be subjected to any loads, or only to very small loads, in the axial direction. Therefore, the pressure is applied in particular radially. Apart from the sealing of the housing which has already been mentioned the external diameter of the cell housing can therefore also be calibrated.


It is particularly important for the heights of the casing areas of the cell cup and cell top to be matched to one another such that the cut edge of the cell cup is pressed against the casing area of the cell top by the pressure on the casing area of the cell cup. The heights of the casing areas are therefore preferably chosen such that it is impossible to bend the cut edge of the cell cup around inward over the edge area of the cell top which has been completely inserted into the cell cup. Correspondingly, the edge of the cell cup is not beaded over the edge area of the cell top. In consequence, the cell cup of a button cell manufactured using our method has a casing area with an essentially constant radius in the direction of the cut edge.


In the case of button cells produced using a method such as this, there is preferably an exclusively force-fitting connection between the housing components comprising the cell cup, the cell top and the seal. This ensures that the components are therefore held together in a preferred manner, essentially only by static-friction force.


Button cells without any beading over are particularly preferably produced using a cell cup which is conical at least in one subarea of its casing, such that at least its internal diameter increases in the direction of the cut edge. This makes it considerably easier to insert the cell top into the cell cup. The dimensions of the cell cup and cell top are preferably matched to one another such that relatively large opposing forces preferably do not occur until the top has been inserted virtually completely into the cup. The cone angle in this case is preferably 10 minutes to 3°, in particular 30 minutes to 1° 30 minutes.


The cell top, which is inserted into the cell cup with the applied seal, is preferably cylindrical, at least in a part of the casing area. This may relate in particular to that part of the casing area which overlaps the conical subarea of the cell cup casing that has been mentioned, after the cell top has been inserted into the cell cup. The casing of the cell top, and therefore also the casing area, is particularly preferably entirely cylindrical. The cell top therefore preferably has a constant external radius in the casing area. This may relate in particular to that part which overlaps the conical part of the casing area of the cell cup after the cell top has been inserted.


When a cell top with a cylindrical casing area is being inserted into a cell cup which is conical at least in one subarea of its casing, as has been described above, a gap which is open at the top is generally created between the cell cup and the cell top. This gap is generally closed again by the pressure on the casing area of the cell cup. Thus, the pressure on the casing area of the cell cup may be chosen such that the conical part of the casing area of the cell cup is pushed inward until the inside of the cell cup and the outside of the cell top are essentially at the same distance from one another in the overlapping area. The resultant button cell has casing areas which are aligned parallel to one another, in particular in the overlapping area.


One important aspect in this case is the choice of the seal which connects the cell cup to the cell top. The seal is preferably a plastic seal which connects the cell cup to the cell top. The seal is preferably a plastic seal composed of a thermoplastic.


The plastic seal is particularly preferably a film seal, for example, as is described in already cited DE 196 47 593, in particular a film seal composed of a thermoplastic.


Film seals can be produced with a very uniform thickness. When a suitable pressure is applied to the casing area of the cell cup, this results in an interference fit, as a consequence of which the button cell that has been produced has highly excellent sealing characteristics. The use of film seals makes it possible to dispense with the edge of the cell cup being beaded over without this on the other hand resulting in a need to accept disadvantages in other important characteristics.


It is very particularly preferable to use plastic seals, in particular plastic films, based on polyamide or based on polyether ether ketones in the present case.


It is preferable for the seal for a cell which is not beaded over to have an initial thickness in the range of 50 μm to 250 μm, particularly preferably 70 μm to 150 μm, in particular about 100 μm. The term “initial thickness” is in this case intended to mean the thickness of the seal before it is applied to the casing of the cell top. In contrast to this, the term “final thickness” is intended to mean the thickness of the seal in the finished cell. It is clear that, at least in the overlapping area, this generally corresponds to the distance between the inside of the cell cup and the outside of the cell top.


To allow a sufficiently large amount of friction to be produced between the cell cup and the cell top, both the external and internal radii of the cup and top should be matched to one another and to the thickness of the film seal. This is the only way to create a sufficiently high contact pressure to hold the two individual parts together. It is preferable for the parts used in this case for the difference between the external radius of the cell top, which is to be inserted into the cell cup, on the cut edge of the cell top and the smallest internal radius of the cell cup in that part of the casing area which overlaps the casing area of the cell top to be less than the initial thickness of the seal that is used. The difference is particularly preferably 10% to 90% of the initial thickness, in particular 30% to 70%, and very particularly preferably about 50%.


After the cell top has been inserted into the cell cup, a part of the casing area of the cell cup can be drawn radially inward. In particular, this relates to that part of the casing area which does not overlap the casing area of the cell top.


We found that this process of drawing in radially makes it possible to achieve considerably better sealing characteristics. Drawing in the cup casing results in a radial pressure being exerted on the edge section which rests on the inner wall of the housing cup and on the seal arranged between the housing top and the housing cup, with the seal in consequence being compressed in this area.


The drawing-in process can be carried out at the same time as the already mentioned exertion of pressure on the casing area of the cell cup, although the drawing-in process is preferably carried out in a subsequent, separate step.


Our method of producing a button cell can be used in particular to produce button cells as have been described above, that is to say button cells having a housing with a flat bottom area and a flat top area parallel to it. It is suitable for producing not only button cells which are not beaded over, but also for those which are beaded over.


With respect to the preferred examples of the individual components used in our method (housing parts and dimensions, electrodes, separator and the like), reference can therefore be made to the above statements and explanations in their entirety.


In general, the housing is assembled from a metallic cup part (housing cup) and a metallic top part (housing top), with an electrode-separator assembly with electrodes in the form of a flat layer being inserted into the housing such that the electrodes are aligned at right angles to the flat bottom area and top area.


As already mentioned, the electrode-separator assembly is preferably installed in the form of a winding, in particular a spiral winding.


In general, our method always comprises the following steps:

    • insertion of the winding into the metallic top part, and
    • insertion of the metallic top part with the winding into a metallic cup part.


The edge of the cup part is then optionally beaded over the edge of the top part.


When a button cell which is not beaded over is produced, the corresponding steps as described above are carried out.


Before the housing is closed, the electrodes are normally also impregnated with electrolyte solution.


For the insertion process, the winding is preferably rolled up on a winding mandrel. After or during the insertion process, the winding mandrel can then be removed. If required, the winding core that has been mentioned above is then inserted. Alternatively, the electrode-separator assembly can also be wound directly onto a core such as this.


The spiral winding is particularly preferably heat-treated on its end faces before being installed. In this case, it is at least briefly subjected to a temperature at which the separator in the winding is thermoplastically deformable. In general, the separator projects somewhat on the end faces of the winding, and this is itself subject to the precondition that the electrodes are arranged with the offset with respect to one another, as described above. The heat treatment allows the separator to be shrunk together somewhat, therefore, if required, even exposing the edge of an adjacent electrode, such that this can rest directly on the button cell housing.


The stated advantages and further advantages will become evident from the description which now follows of the drawings. In this case, individual features may be implemented on their own or in combination with one another. The described examples are intended only for explanation and better understanding, and should in no way be understood as being restrictive.



FIG. 1 schematically illustrates the cross section through one preferred example of a button cell 100. This has a metallic cup part 101 and metallic top part 102. The two parts are connected to one another, sealed by a seal 109. Together, they form a housing with a flat bottom area 103 and a flat top area 104 parallel to it. When in use, these flat areas 103 and 104 form the poles of the button cell, from which current can be drawn by a load. The edge 110 of the cell cup 101 is beaded inward over the edge of the cell top 102.


An arrangement comprising an electrode 105 in the form of a strip, an electrode 106 in the form of a strip, and the separators 107 in the form of strips is arranged in the interior of the electrode. The assembly comprising the electrodes 105 and 106 as well as the separators 107 is in this case in the form of a winding, whose end faces abut against the flat bottom area 103 and the flat top area 104, which is parallel to it. The assembly is wound up on the core 108 in the center of the button cell 100. Both the core 108 as well as the electrodes and separators which are wound around it are aligned at right angles to the flat bottom and top areas 104 and 103. When the volume of the electrodes increases or decreases during a charging or discharging process, the mechanical forces which result in this case act predominantly radially, and can be absorbed by the casing area of the button cell 100.


It should be stressed that the positive electrode 105 and the negative electrode 106 respectively rest directly on the cup part 101 and on the top part 102 of the button cell 100. There is no need for a separate output conductor for connecting the electrodes to the top part 102 and to the cup part 101.



FIG. 2 shows the effect of the heat treatment of an electrode-separator winding 200, which is provided in preferred examples of the method of producing a button cell. The illustration schematically shows a winding 200 comprising an assembly of a positive electrode 201 (bar with cross strips), a negative electrode 202 (white bar) and the separators 203 (detail). The positive and the negative electrodes 201 and 202 are in each case arranged offset with respect to one another. The separators 203 are composed of a thermoplastically deformable material.


When the separator edges which are located on the end faces 204 and 205 of the winding 200 are subjected to a high temperature (for example, of 250° C., as illustrated), then these separator edges shrink. The separators are drawn in at least partially between adjacent electrodes. In the process, the edges of the negative electrode 202 are exposed on the end face 204, while the edges of the positive electrode 201 are covered. The edges of the positive electrode 201 on the end face 205 are exposed, while the edges of the negative electrode 202 are covered.


When a winding that has been treated in this way is in use, this ensures that electrodes of the same polarity can each rest directly only on the housing cup or on the housing top. There is no need for separate electrical connections between the electrodes and the housing parts.



FIG. 3 shows an electrode-separator assembly for button cells in the form of a winding 300, with the illustration A depicting a plan view vertically from above at one of the end faces 301 of the winding 300, while the illustration B shows the winding 300 in a view obliquely from above. In both cases, this shows that the assembly comprises two layers; separators 302 and 303 as well as two electrode layers 304 and 305 (a positive and a negative electrode). The assembly is wound up in a spiral shape and is held together by an adhesive tape 306 on its outside.



FIG. 4 shows a sectioned illustration of one preferred example of a button cell 400. The figure shows the housing of the button cell comprising the cup part 401 and the top part 402, between which the seal 403 is arranged. An assembly of electrodes and separators, as is illustrated in FIG. 3, is contained as a spiral winding 404 (illustrated schematically in the cross section) within the housing. The separator layers 405 and 406 as well as the electrodes 407 and 408 of opposite polarity can also be seen well here. In this case, the electrode 407 is connected via the output conductor 410 to the top part 402, while the electrode 408 is connected via the output conductor 409 to the cup part 402. The output conductor 410 is preferably welded to the top part 402. In contrast, the output conductor 409 is connected to the cup part 402 via a clamping connection (it is clamped inbetween the supporting ring 413, on which the edge of the cell top rests, and the bottom of the cell cup). The insulating means 411 and 412 are arranged between the end faces of the winding and the cup part 401 and the top part 402, and are each in the form of thin plastic disks. This prevents electrodes of opposite polarity from being able to come into contact with the cup part 401 or the top part 402 at the same time. This prevents any short circuit.



FIG. 5 schematically illustrates the cross section through one preferred example of a button cell 500.


This button cell 500 has a metallic cup part 501 and a metallic top part 502. The two parts are connected to one another, sealed by a seal 510. Together, they form a housing with a flat bottom area 503 and a flat top area 504 parallel to it. When in use, these flat areas 503 and 504 form the poles of the button cell, from which current can be drawn by a load.


The cell top 502 is inserted into the cell cup 501 such that the casing areas of the cell top and of the cell cup overlap, with the internal radius of the cell cup 501 in the overlapping area being essentially constant in the direction of the cut edge. Therefore, the edge of the cell cup 501 is not beaded over the edge 511 of the cell top 502, and the preferred example described above for a button cell 500 is therefore a button cell which is not beaded over.


An assembly comprising an electrode 508 in the form of a strip, an electrode 509 in the form of a strip and separators 507 in the form of strips is arranged in the interior of the electrode. The assembly comprising the electrodes 508 and 509 as well as the separators 507 is in this case in the form of a winding, whose end faces face in the direction of the flat bottom area 503 and of the flat top area 504 which is parallel to it. The assembly is wound up on the winding core 512 in the center of the button cell 500. Both the core 512 and the electrodes and separators which are wound around it are aligned at right angles to the flat bottom and top areas 504 and 503. If the volume of the electrodes increases or decreases during a charging or discharging process, the mechanical forces which result in this case act predominantly radially, and can be absorbed by the casing area of the button cell 500.


The positive and the negative electrodes make contact with the housing half-part comprising the cup and top via the output conductor 505 and the output conductor 506. The output conductor 505 is composed of aluminum, and the output conductor 506 is composed of nickel (or alternatively of copper). Both output conductors are thin films, which rest flat between the end faces of the winding and the flat top and bottom areas 503 and 504. A continuous slight contact pressure is maintained on the output conductors by the winding core 512. The output conductors are preferably separated from the end faces of the winding by a separate insulator arrangement (not illustrated in the drawing), for example, by a thin film.

Claims
  • 1. A rechargeable button cell comprising: housing half-parts comprising a housing cup and a housing top separated from one another by an electrically insulating injection-molded seal or film seal, wherein the housing half-parts form a housing with a flat bottom area and a flat top area, the flat bottom area and the flat top area being parallel; andan electrode-separator assembly within the housing comprising a positive electrode, a negative electrode, and a porous plastic film separator, wherein each of the positive electrode and the negative electrode abuts the porous plastic film separator,wherein: at least one of the electrodes is a lithium-intercalating electrode,the electrode layers are aligned at essentially right angles to the flat bottom area and the flat top area,the electrode-separator assembly is a spiral winding having end faces defining side surfaces of the spiral winding facing in an axial direction relative to the flat bottom area and the flat top area,the electrodes each comprise a first portion of a respective metallic film or mesh,the first portion of each respective metallic film or mesh is embedded in an electrode material,at least one respective metallic film or mesh comprises a second portion not covered with electrode material,the second portion not covered with the electrode material is configured to act as an output conductor and is directly connected to the flat bottom area or the flat top area of the housing, andat least one insulator prevents direct mechanical and electrical contact between at least one respective end face of the winding and the flat bottom area and/or the flat top area.
  • 2. The button cell according to claim 1, wherein the button cell has a height to diameter ratio of less than 1.
  • 3. The button cell according to claim 2, wherein the height to diameter ratio is in a range of 0.1 to 0.9.
  • 4. The button cell according to claim 3, wherein the height to diameter ratio is in a range of 0.15 to 0.7.
  • 5. The button cell according to claim 1, wherein the at least one insulator is at least one flat layer composed of plastic disposed between the at least one respective end face of the winding and the flat bottom area and/or the flat top area.
  • 6. The button cell according to claim 5, wherein the at least one flat layer composed of plastic is at least one plastic film or at least one plastic disc.
  • 7. The button cell according to claim 5, wherein the electrode layers are ribbons having thicknesses of 10 μm to 1000 μm.
  • 8. The button cell according to claim 5, wherein the porous plastic film separator is in the form of a ribbon having a thickness of 3 μm to 100 μm.
  • 9. The rechargeable button cell according to claim 1, wherein the housing cup and the housing top each comprise a cylindrical casing area, an edge area, and a cut edge, wherein the casing areas are aligned at essentially right angles to the flat bottom area and the flat top area,wherein the edge areas form transitions between the casing areas and the flat bottom area and the flat top area, andwherein the housing top is inserted into the housing cup and the casing areas of the housing cup and the housing top overlap in an overlapping area.
  • 10. The rechargeable button cell according to claim 9, wherein the casing area of the housing cup has a height such that it is impossible to bend the cut edge of the housing cup inward over the edge area of the housing top.
  • 11. The rechargeable button cell according to claim 9, wherein the cylindrical casing area of the housing cup is bounded on one end by the edge area of the housing cup and on another end by the cut edge of the housing cup, and wherein the cylindrical casing area of the housing cup has an essentially constant radius.
  • 12. The rechargeable button cell according to claim 9, wherein the housing cup and the housing top are held together essentially only by static-friction force.
  • 13. The rechargeable button cell according to claim 1, wherein the second portion not covered with the electrode material is welded to the flat bottom area or the flat top area.
  • 14. The rechargeable button cell according to claim 1, wherein each of the positive and the negative electrode are connected to the porous plastic film separator.
  • 15. The rechargeable button cell according to claim 1, wherein at least one insulator further prevents direct mechanical and electrical contact between the at least one respective end face of the winding and at least part of the second portion not covered with the electrode material, configured to act as the output conductor, and directly connected to the flat bottom area or the flat top area of the housing.
  • 16. A rechargeable button cell comprising: housing half-parts comprising a housing cup and a housing top separated from one another by an electrically insulating injection-molded seal or film seal, wherein the housing half-parts form a housing with a flat bottom area and a flat top area, the flat bottom area and the flat top area being substantially parallel; andan electrode-separator assembly within the housing comprising a positive electrode, a negative electrode, and a porous plastic film separator arranged between the positive electrode and the negative electrode, the positive electrode and the negative electrode being in the form of layers,wherein: at least one of the electrodes is a lithium-intercalating electrode,the electrode layers are aligned at essentially right angles to the flat bottom and the flat top area,the electrode-separator assembly is a spiral winding having end faces extending parallel to the flat bottom area and the flat top area,the electrodes each comprise a first portion of a respective metallic film or mesh, the first portion of each respective metallic film or mesh being embedded in a respective electrode material,at least one respective metallic film or mesh comprises a second portion not covered with electrode material, the second portion not covered with electrode material being configured to act as an output conductorthe second portion not covered with electrode material rests flat along the flat bottom area or the flat top area, the second portion not covered with electrode material being directly connected to the flat bottom area or the flat top area, andan electrical insulator is provided to prevent direct mechanical and electrical contact between (i) the second portion not covered with electrode material and directly connected to the flat bottom area or the flat top area and (ii) edges of the first portions of the respective metallic films or meshes embedded in the respective electrode materials and disposed adjacent to a respective end face of the spiral winding that is adjacent to the flat bottom area or the flat top area to which the second portion is directly connected, andwherein the electrical insulator is provided in the form of portions of the porous plastic film that extend, in an axial direction substantially perpendicular to the flat bottom area and the flat top area, beyond a greatest axial extent of the first portions of the respective metallic films or meshes embedded in the respective electrode materials and comprised in the spiral winding.
  • 17. A rechargeable button cell comprising: a housing including a pair of housing halves, one of the housing halves including a housing cup and the other housing half part including a housing top, the housing cup and the housing top being separated from one another by an electrically insulating injection-molded seal or film seal, one of the housing halves including a flat bottom area and the other housing half including a flat top area substantially parallel to the flat bottom area;an electrode separator assembly disposed within the housing and comprising a positive electrode, negative electrode, and a porous separator arranged between the positive electrode and the negative electrode, at least one of the electrodes being a lithium-intercalating electrode, the electrodes being provided in the form of flat electrode layers aligned substantially at right angles to the flat bottom area and the flat top area, the electrode separator assembly including a spiral winding having end faces defining respective side surfaces of the spiral winding each facing in an axial direction relative to the flat bottom area and the flat top area,wherein the positive electrode and the negative electrode each include a respective electrode material and a first portion of a respective current collector provided in the form of a respective metallic film or mesh embedded in the respective electrode material,wherein at least one of the respective metallic films or meshes comprises a second portion not covered with electrode material, the second portion not covered with electrode material being configured to act as an output conductor,wherein the second portion not covered with electrode material forms a film disposed in direct electrical contact with one of the flat bottom area or the flat top area and electrically interconnecting a corresponding electrode to the flat bottom area or the flat top area,wherein the film rests flat between a plane defined by an adjacent end face of the spiral winding and the flat bottom area or the flat top area, andwherein at least one insulator is disposed to prevent direct mechanical and electrical contact between the adjacent end face of the winding and the flat bottom area or the flat top area.
  • 18. The rechargeable button cell according to claim 17, wherein the at least one insulator is a flat layer composed of plastic disposed between the adjacent end face of the winding and the flat bottom area and/or the flat top area.
  • 19. The rechargeable button cell according to claim 17, wherein the second portion not covered with the electrode material is welded to the flat bottom area or the flat top area.
  • 20. The rechargeable button cell according to claim 17, wherein the sub-area not covered with the electrode material is welded to the flat bottom area or the flat top area.
Priority Claims (3)
Number Date Country Kind
10 2009 008 859.8 Feb 2009 DE national
10 2009 030 359.6 Jun 2009 DE national
10 2009 060 788.9 Dec 2009 DE national
RELATED APPLICATIONS

This is a divisional of U.S. Ser. No. 15/283,568, filed Oct. 3, 2016, which is a continuation of U.S. Ser. No. 14/827,387, filed Aug. 17, 2015, which is a divisional of U.S. Ser. No. 13/146,669, filed Sep. 7, 2011, which is a § 371 of International Application No. PCT/EP2010/000787, with an international filing date of Feb. 9, 2010 (WO 2010/089152 A1, published Aug. 12, 2010), which is based on German Patent Application Nos. 10 2009 008 859.8, filed Feb. 9, 2009, 10 2009 030 359.6, filed Jun. 18, 2009, and 10 2009 060 788.9, filed Dec. 22, 2009.

US Referenced Citations (142)
Number Name Date Kind
3069489 Carmichael et al. Dec 1962 A
3748182 Brown Jul 1973 A
3827916 Fagan, Jr. Aug 1974 A
3960599 Reynier et al. Jun 1976 A
4053687 Coibion et al. Oct 1977 A
4091181 Merritt, Jr. May 1978 A
4220695 Ishida et al. Sep 1980 A
4224387 Nakayama Sep 1980 A
4262064 Nagle Apr 1981 A
4321316 Kuehl Mar 1982 A
4487819 Koga Dec 1984 A
4520085 Wyser May 1985 A
4539271 Crabtree Sep 1985 A
4554226 Simonton Nov 1985 A
4664989 Johnson May 1987 A
4927719 Ashihara et al. May 1990 A
5128219 Kohler et al. Jul 1992 A
5273842 Yamahira et al. Dec 1993 A
5356736 Kita et al. Oct 1994 A
5378560 Tomiyama Jan 1995 A
5432027 Tuttle et al. Jul 1995 A
5470357 Schmutz et al. Nov 1995 A
5567538 Oltman et al. Oct 1996 A
5603737 Marincic et al. Feb 1997 A
5626988 Daniel-Ivad et al. May 1997 A
5631104 Zhong et al. May 1997 A
5639569 Köhler et al. Jun 1997 A
5654114 Kubota et al. Aug 1997 A
5698340 Xue et al. Dec 1997 A
5792574 Mitate et al. Aug 1998 A
5912091 Daio et al. Jun 1999 A
6042625 Daio et al. Mar 2000 A
6045944 Okada et al. Apr 2000 A
6066184 Brenner May 2000 A
6143440 Volz et al. Nov 2000 A
6221524 Andrew et al. Apr 2001 B1
6245452 Oltman Jun 2001 B1
6265100 Saaski et al. Jul 2001 B1
6277522 Omaru et al. Aug 2001 B1
6277752 Chen Aug 2001 B1
6287719 Bailey Sep 2001 B1
6312848 Kilb et al. Nov 2001 B1
6379839 Inoue et al. Apr 2002 B1
6443999 Cantave et al. Sep 2002 B1
6468691 Malay et al. Oct 2002 B1
6495293 Arai et al. Dec 2002 B1
6516266 Shoji Feb 2003 B2
6682853 Kimijima et al. Jan 2004 B2
6723466 Oogami et al. Apr 2004 B2
6884541 Enomoto et al. Apr 2005 B2
6896994 Urairi et al. May 2005 B2
6964690 Goda et al. Nov 2005 B2
7108941 Hayashi et al. Sep 2006 B2
7195840 Kaun Mar 2007 B2
7276092 Holl et al. Oct 2007 B2
7341802 Ota et al. Mar 2008 B1
7432014 Konishiike et al. Oct 2008 B2
7455929 Dopp et al. Nov 2008 B2
7488553 Tsukamoto et al. Feb 2009 B2
7566515 Suzuki et al. Jul 2009 B2
7575830 Kawamura et al. Aug 2009 B2
7579105 Yoppolo et al. Aug 2009 B2
7582387 Howard et al. Sep 2009 B2
7641992 Howard et al. Jan 2010 B2
7642013 Howard et al. Jan 2010 B2
7662509 Howard et al. Feb 2010 B2
7745041 Kozuki et al. Jun 2010 B2
7794869 Howard et al. Sep 2010 B2
7803481 Howard et al. Sep 2010 B2
7811708 Lampe-Onnerud et al. Oct 2010 B2
7816026 Janmey Oct 2010 B2
7858236 Howard et al. Dec 2010 B2
7883790 Howard et al. Feb 2011 B2
7931980 Kwak et al. Apr 2011 B2
7951476 Kim May 2011 B2
7981541 Sato et al. Jul 2011 B2
8021775 Kaun Sep 2011 B2
8048570 Visco et al. Nov 2011 B2
8236441 Gardner et al. Aug 2012 B2
8435658 Yamashita et al. May 2013 B2
8465860 Pozin et al. Jun 2013 B2
8703327 Kim et al. Apr 2014 B2
9077022 Howard et al. Jul 2015 B2
9899640 Yabushita et al. Feb 2018 B2
20010009737 Lane Jul 2001 A1
20010016282 Kilb et al. Aug 2001 A1
20020034680 Inoue et al. Mar 2002 A1
20020106559 Takahashi et al. Aug 2002 A1
20020146621 Yageta et al. Oct 2002 A1
20020192559 Yoshimura et al. Dec 2002 A1
20030003370 Arai et al. Jan 2003 A1
20030013007 Kaun Jan 2003 A1
20030068557 Kumashiro et al. Apr 2003 A1
20030138693 Suzuki et al. Jul 2003 A1
20030162088 Nakanishi et al. Aug 2003 A1
20030175589 Kaminaka et al. Sep 2003 A1
20030193317 Shimamura et al. Oct 2003 A1
20040029004 Miyaki Feb 2004 A1
20040048151 Hayashi et al. Mar 2004 A1
20040048160 Omaru Mar 2004 A1
20040081895 Adachi et al. Apr 2004 A1
20040110061 Haug et al. Jun 2004 A1
20040115521 Cho Jun 2004 A1
20040202933 Yamaki et al. Oct 2004 A1
20050042506 Tomimoto et al. Feb 2005 A1
20050058904 Kano et al. Mar 2005 A1
20050064283 Anderson et al. Mar 2005 A1
20050074667 Yang Apr 2005 A1
20050142440 Yamaki et al. Jun 2005 A1
20050171383 Arai et al. Aug 2005 A1
20050181276 Miyaki Aug 2005 A1
20050233212 Kaun Oct 2005 A1
20050271938 Suzuki et al. Dec 2005 A1
20060093894 Scott et al. May 2006 A1
20060124973 Arai et al. Jun 2006 A1
20060183020 Davidson et al. Aug 2006 A1
20060228629 Christian et al. Oct 2006 A1
20070037058 Visco et al. Feb 2007 A1
20070117011 Myerberg et al. May 2007 A1
20070122698 Mitchell et al. May 2007 A1
20070172728 Yamashita et al. Jul 2007 A1
20070200101 Asao et al. Aug 2007 A1
20080003500 Issaev et al. Jan 2008 A1
20080003503 Kawakami et al. Jan 2008 A1
20080050652 Hirose et al. Feb 2008 A1
20080240480 Pinnell et al. Oct 2008 A1
20080241645 Pinnell et al. Oct 2008 A1
20080318126 Ishii Dec 2008 A1
20090123840 Shirane et al. May 2009 A1
20090208849 Pozin et al. Aug 2009 A1
20090325062 Brenner et al. Dec 2009 A1
20100196756 Wakita et al. Aug 2010 A1
20100227217 Fujikawa et al. Sep 2010 A1
20100266893 Martin et al. Oct 2010 A1
20110091753 Wang et al. Apr 2011 A1
20110200871 Pytlik et al. Aug 2011 A1
20120015224 Pytlik et al. Jan 2012 A1
20120028110 Brenner Feb 2012 A1
20120058386 Wyser et al. Mar 2012 A1
20120100406 Gaugler Apr 2012 A1
20130130066 Pytlik et al. May 2013 A1
20130216881 Gaugler Aug 2013 A1
Foreign Referenced Citations (105)
Number Date Country
1184338 Jun 1998 CN
1224934 Aug 1999 CN
2502410 Jul 2002 CN
2632871 Aug 2004 CN
1630126 Jun 2005 CN
1744347 Mar 2006 CN
2847540 Dec 2006 CN
2874790 Feb 2007 CN
1960040 May 2007 CN
101120462 Feb 2008 CN
101202357 Jun 2008 CN
101217188 Jul 2008 CN
101286572 Oct 2008 CN
101517820 Aug 2009 CN
201440429 Apr 2010 CN
1 71 758 May 1969 DE
31 13 309 Oct 1982 DE
36 38 793 May 1988 DE
196 47 593 May 1998 DE
697 00 312 Feb 2000 DE
198 57 638 Jun 2000 DE
10 2009 008859 Aug 2010 DE
10 2009 017 514 Oct 2010 DE
0 202 857 Jul 1991 EP
0829105 Mar 1998 EP
1137091 Sep 2001 EP
1315220 May 2003 EP
1318561 Jun 2003 EP
1 339 115 Aug 2003 EP
1 372 209 Dec 2003 EP
1 808 916 Jul 2007 EP
1873846 Jan 2008 EP
1886364 Feb 2008 EP
1 968 134 Sep 2008 EP
1088271 Oct 1967 GB
2 110 464 Jun 1983 GB
58-10375 Jan 1983 JP
S5842167 Mar 1983 JP
58-154178 Sep 1983 JP
59-78460 May 1984 JP
60-148058 Aug 1985 JP
S62-113358 May 1987 JP
62-139265 Jun 1987 JP
62-272472 Nov 1987 JP
63-285878 Nov 1988 JP
01-307176 Dec 1989 JP
H01309254 Dec 1989 JP
2-56871 Feb 1990 JP
2-60072 Feb 1990 JP
H03-225748 Oct 1991 JP
4-249073 Sep 1992 JP
05-121056 May 1993 JP
6-96750 Apr 1994 JP
7-153467 Jun 1995 JP
07-153488 Jun 1995 JP
08-293299 Nov 1996 JP
11-40189 Feb 1999 JP
11-135101 May 1999 JP
H11176414 Jul 1999 JP
2937456 Aug 1999 JP
H11245066 Sep 1999 JP
11-345626 Dec 1999 JP
11-354150 Dec 1999 JP
2000-077040 Mar 2000 JP
2000082486 Mar 2000 JP
2000-164259 Jun 2000 JP
2000156218 Jun 2000 JP
2000331717 Nov 2000 JP
2002-042744 Feb 2002 JP
2002-100408 Apr 2002 JP
2002-134073 May 2002 JP
2002-134096 May 2002 JP
2002-164076 Jun 2002 JP
2002-289257 Oct 2002 JP
2002-289259 Oct 2002 JP
2002-289260 Oct 2002 JP
2002-298803 Oct 2002 JP
2002-324584 Nov 2002 JP
2002-352789 Dec 2002 JP
2003-031266 Jan 2003 JP
2003-077543 Mar 2003 JP
2003-123830 Apr 2003 JP
2003217562 Jul 2003 JP
2003-249201 Sep 2003 JP
2004-139800 May 2004 JP
2004-158318 Jun 2004 JP
2004-362968 Dec 2004 JP
2006040596 Feb 2006 JP
3902330 Apr 2007 JP
2007-200683 Aug 2007 JP
2007-220601 Aug 2007 JP
2007207535 Aug 2007 JP
2007-294111 Nov 2007 JP
2007294111 Nov 2007 JP
2008-047303 Feb 2008 JP
2008103109 May 2008 JP
2008198552 Aug 2008 JP
2008-251192 Oct 2008 JP
2008-262825 Oct 2008 JP
2008-262826 Oct 2008 JP
2008-262827 Oct 2008 JP
2009-199761 Sep 2009 JP
20030087316 Nov 2003 KR
2008118478 Oct 2008 WO
2010089152 Aug 2010 WO
Non-Patent Literature Citations (146)
Entry
JPO machine translation of Kobayashi, JP2006116981. (Year: 2007).
Office Action dated Oct. 1, 2018, of related U.S. Appl. No. 15/433,654.
Official Action dated Aug. 29, 2014 from related U.S. Appl. No. 13/378,117.
Linden, D., et al., “Handbook of Batteries,” 2002, Third Edition, The McGraw-Hill Companies, Inc., Sections 11.4, 11.4.1, 14.1, 14.5.2, 14.8 and 14.8.2, and Figs. 11.2, 11.5, 14.38, 34.13, 35.30 and 35.32.
Zhang, Guoshun et al. “Application of Auto Laser Welding in Rechargeable Battery Manufacturing,” Chinese Journal of Lasers, vol. 35, No. 11, Nov. 2008.
Qu, Guoqiang, “Initial Analysis on the Working Principle of Through the Partition Welding,” Feb. 1989.
Yi, Si-ping et al. “Laser Auto-Welding for Lithium Battery Tab,” Chinese Journal of Power Sources, vol. 29, No. 2, pp. 80-81, Feb. 2005.
“Button Cell,” Electropedia, International Electrotechnical Commission, Apr. 2004.
Machine English language translation of “coin-shaped nonaqueous electrolyte solution secondary battery” by Higuchi Isato et al. in JP 2008-262825 (A)—Oct. 30, 2008.
“Notification of invalidation request acceptance” against Chinese patent No. 201080036551.3, Jan. 2020.
“Annulment” against EP 2 394 324 B1, Jan. 22, 2020.
“Complaint for Patent Infringement” of U.S. Pat. Nos. 9,153,835; 9,496,581; and 9,799,913 against Samsung Electronics America, Inc., Feb. 5, 2020.
“Complaint for Patent Infringement” of U.S. Pat. Nos. 9,153,835; 9,496,581; and 9,799,913 against Amazon.com, Inc., Feb. 24, 2020.
“Complaint for Patent Infringement” of U.S. Pat. Nos. 9,153,835; 9,496,581; 9,799,913; and 9,799,858 against Best Buy Co., Inc., Feb. 24, 2020.
“Complaint for Patent Infringement” of U.S. Pat. Nos. 9,153,835; 9,496,581; and 9,799,913 against Costco Wholesale Corporation, Feb. 24, 2020.
“Complaint for Patent Infringement” of U.S. Pat. Nos. 9,153,835; 9,496,581; 9,799,913; and 9,799,858 against Audio Partnership LLC and Audio Partnership PLC, Mar. 3, 2020.
“Complaint for Patent Infringement” of U.S. Pat. Nos. 9,153,835; 9,496,581; 9,799,913; and 9,799,858 against PEAG, LLC, Mar. 4, 2020.
“Notice of acceptance of request for invalidation” against Chinese patent application No. 201080007121.9, dated Jun. 17, 2020.
Office Action dated May 28, 2019, of related U.S. Appl. No. 15/699,435.
“VARTA's Opening Claim Construction Brief,” Case 2:20-cv-00051-JRG, Document 77, filed Dec. 4, 2020.
“Defendants' Responsive Claim Construction Brief in Case Nos. 2:20-CV-00071 and 2:20-CV-00138,” Case 2:20-cv-00051-JRG, Document 80, filed Dec. 18, 2020.
“VARTA's Reply Claim Construction Brief,” Case 2:20-cv-00051-JRG, Document 81, filed Dec. 28, 2020.
Email chain RE: VARTA v. JLab & Audio Partnership—Claim Construction Proposed Compromises and Clarifications, Exhibit 12, Case 2:20-cv-00051-JRG, Document 77-12, filed Dec. 4, 2020.
“Joint Claim Construction Chart: Varta Microbatteries GmbH v. Costo Wholesale Corp, et al.,” Exhibits A-D, Case 2:20-cv-00051-JRG, Documents 84-1-84-4, filed Jan. 4, 2021.
Professional translation of JP2007-294111A, Case 2:20-cv-00051-JRG, Document 80-4, filed Dec. 18, 2020.
Button Cell Battery Safety Act of 2011, S.1165, 112th Congress 1st Session, Jun. 9, 2011, Exhibit 6, Case 2:20-cv-00051-JRG, Document 77-6, filed Dec. 4, 2020.
“Patent Rule 4-5(d) Joint Claim Construction Chart,” Case 2:20-cv-00051-JRG, Document 84, filed Jan. 4, 2021.
“Button Cell,” Wikipedia, Dec. 2, 2020, Exhibit 7, Case 2:20-cv-00051-JRG, Document 77-7, filed Dec. 4, 2020.
Responses and Appeal Brief for U.S. Appl. No. 13/378,117, Exhibit 8, Case 2:20-cv-00051-JRG, Document 77-8, filed Dec. 4, 2020.
USPTO Office Action for U.S. Appl. No. 14/827,387, filed Oct. 15, 2015, Exhibit 6, Case 2:20-cv-00051-JRG, Document 80-6, dated Dec. 18, 2020.
Decision Granting Institution of Inter Partes Review, Case IPR 2020-01211, U.S. Pat. No. 9,496,581, Jan. 6, 2021.
Decision Granting Institution of Inter Partes Review, Case IPR 2020-01212, U.S. Pat. No. 9,153,835, Jan. 6, 2021.
Decision Granting Institution of Inter Partes Review, Case IPR 2020-01213, U.S. Pat. No. 9,799,858, Jan. 6, 2021.
Decision Granting Institution of Inter Partes Review, Case IPR 2020-01214, U.S. Pat. No. 9,979,913, Jan. 6, 2021.
IPR2020-01211 Petitioner Response with Exhibits, Jun. 23, 2021.
IPR2020-01211 Petitioner Opposition to Motion to Amend with Exhibits, Jun. 23, 2021.
IPR2020-01212 Petitioner Response with Exhibits, Jun. 23, 2021.
IPR2020-01212 Petitioner Opposition to Motion to Amend with Exhibits, Jun. 23, 2021.
IPR2020-01213 Petitioner Response with Exhibits, Jun. 23, 2021.
IPR2020-01213 Petitioner Opposition to Motion to Amend with Exhibits, Jun. 23, 2021.
IPR2020-01214 Petitioner Response with Exhibits, Jun. 23, 2021.
IPR2020-01214 Petitioner Opposition to Motion to Amend with Exhibits, Jun. 23, 2021.
IPR2021-00474 Petition for IPR of U.S. Pat. No. 9,496,581 with Exhibits, Feb. 2, 2021.
IPR2021-00474 Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response, Feb. 10, 2021.
IPR2021-00474 Petitioner Eve Energy Co., Ltd.'s Power of Attorney, Feb. 1, 2021.
IEC, International Standard, Primary batteries—Part 2: Physical and electrical specifications, IEC 60086-2, eleventh edition, Dec. 2006, International Electrotechnical Commission, Switzerland, pp. 1-64.
IPR 2020-01211 Patent Owner's Response with Exhibits, Mar. 31, 2021.
IPR 2020-01212 Patent Owner's Response with Exhibits, Mar. 31, 2021.
IPR 2020-01213 Patent Owner's Response with Exhibits, Mar. 31, 2021.
IPR 2020-01214 Patent Owner's Response with Exhibits, Mar. 31, 2021.
IPR 2020-01211 Patent Owner's Contingent Motion to Amend with Exhibits, Mar. 31, 2021.
IPR 2020-01212 Patent Owner's Contingent Motion to Amend with Exhibits, Mar. 31, 2021.
IPR 2020-01213 Patent Owner's Contingent Motion to Amend with Exhibits, Mar. 31, 2021.
IPR 2020-01214 Patent Owner's Contingent Motion to Amend with Exhibits, Mar. 31, 2021.
Patent Owner's Preliminary Response, Case IPR 2020-01211, U.S. Pat. No. 9,496,581, Oct. 7, 2020.
Patent Owner's Preliminary Response, Case IPR 2020-01212, U.S. Pat. No. 9,153,835, Oct. 7, 2020.
Patent Owner's Preliminary Response, Case IPR 2020-01213, U.S. Pat. No. 9,799,858, Oct. 7, 2020.
Patent Owner's Preliminary Response, Case IPR 2020-01214, U.S. Pat. No. 9,799,913, Oct. 7, 2020.
Declaration of Dr. Martin Peckerar Regarding Claim Construction, Oct. 23, 2020.
Declaration of William H. Gardner, Jul. 7, 2020.
Supplemental Expert Declaration of William H. Gardner, Oct. 23, 2020.
William H. Gardner CV, Oct. 7, 2020.
Frankenberger, Martin et al. “Laminated Lithium Ion Batteries with improved fast charging capability,” Journal of Electroanalytical Chemistry 837 (2019) 151-158, Elsevier B.V., Feb. 17, 2019.
Chart comparing U.S. Pat. No. 9,799,858 to PCT/EP2010/058637, Jul. 7, 2020.
Email chain re: VARTA v. PEAG LLC (E.D.Tex. No. 2:20-71) and VARTA v. Audio Partnership LLC (N.D.III. No. 1:20-1568), Apr. 27, 2020.
First Amended Consolidation Order, Case No. 2:20-cv-00051, Document 21, filed May 7, 2020.
Discovery Order in Civil Action Nos. 2:20-00029, 2:20-00071, 2:20-00138; Case No. 2:20-cv-00051-JRG; Document 51; filed Jun. 10, 2020.
Docket Control Order, Case No. 2:20-cv-00051-JRG, Document 54, filed Jun. 11, 2020.
Defendants PEAG, LLC D/B/A JLAB Audio, Audio Partnership LLC and Audio Partnership PLC D/B/A Cambridge Audio's Opposed Motion to Stay Pending Inter Partes Review in Case Nos. 2:20-CV-00071 and 2:20-CV-00138; Case 2:20-cv-0051-JRG; Document 64; filed Aug. 20, 2020.
Plaintiff VARTA Microbattery GmbH's Opposition to Defendants' Motion to Stay Pending Inter Partes Review, Case 2:20-cv-00051-JRG, Document 65, filed Sep. 3, 2020.
Order denying stay, Case 2:20-cv-00051-JRG, Document 68, filed Oct. 6, 2020.
Complaint for Patent Infringement of U.S. Pat. Nos. 9,153,835; 9,496,581; 9,799,913; and 9,799,858 against Cambridge Audio, Case 2:20-cv-00138, Document 1, filed May 4, 2020.
Defendant PEAG, LLC D/B/A JLAB Audio's Answer to Complaint for Patent Infringement, Case 2:20-cv-00051-JRG, Document 26, filed May 13, 2020.
Joint Motion for Entry of Docket Control Order, Case 2:20-cv-00051-JRG, Document 45, filed Jun. 8, 2020.
Translation of KR20030087316, Jun. 12, 2020.
“VARTA's Opening Claim Construction Brief,” with Exhibits, Case 2:20-cv-00051-JRG, Document 77, filed Dec. 4, 2020.
“Defendants' Responsive Claim Construction Brief in Case Nos. 2:20-CV-00071 and 2:20-CV-00138,” with Exhibits, Case 2:20-cv-00051-JRG, Document 80, filed Dec. 18, 2020.
“Patent Rule 4-5(d) Joint Claim Construction Chart,” with Exhibits, Case 2:20-cv-00051-JRG, Document 84, filed Jan. 4, 2021.
IPR2021-01207 Petition for IPR of U.S. Pat. No. 10,804,506 with Exhibits, Jun. 30, 2021.
“Declaration of William H. Gardner,” IPR2021-01206 and IPR2021-01207, Jun. 29, 2021.
IPR2021-01206 Petition for IPR of U.S. Pat. No. 10,971,776 with Exhibits, Jun. 30, 2021.
U.S. Appl. No. 17/173,257, filed Feb. 11, 2021.
U.S. Appl. No. 17/173,222, filed Feb. 11, 2021.
U.S. Appl. No. 15/433,654, filed Feb. 15, 2017.
U.S. Appl. No. 15/699,435, filed Sep. 8, 2017.
U.S. Appl. No. 16/693,538, filed Nov. 25, 2019.
U.S. Appl. No. 16/812,482, filed Mar. 9, 2020.
U.S. Appl. No. 16/813,776, filed Mar. 10, 2020.
U.S. Appl. No. 16/810,976, filed Mar. 6, 2020.
U.S. Appl. No. 16/810,998, filed Mar. 6, 2020.
InvenTek Corp., “Our Technology,” Dec. 6, 2004, https://web.archive.org/web/20041206230046/http://inventekcorp.com/page3.html.
InvenTek Corporation, “Powerful Design: Technology,” Nov. 22, 2007, https://web.archive.org/web/20071122010915/http://inventekcorp.com/technology.html.
InvenTek Corporation, “Powerful Design: Partners,” Nov. 22, 2007, https://web.archive.org/web/20071122011734/http://inventekcorp.com/partners.html.
Saft Specialty Battery Group, “Premium lithium battery LM 17130,” Doc. No. 31089-2-0908, Sep. 2008.
Saft, “Premium lithium battery LM 22150,” Doc N° 32040-2-0313, Mar. 2013.
Saft Specialty Battery Group, “Premium lithium battery LO 34 SX,” Doc N° 31099-2-0411, Apr. 2011.
Saft Specialty Battery Group, “Rechargeable lithium-ion battery VL 34480,” Doc. N° 54054-2-0607, Jun. 2007.
Saft, “Saft lithium batteries: Selector guide,” Doc. N° 54083-2-0320, Mar. 2020.
Saft, “Saft lithium batteries: Selector guide,” Doc. N° 54083-2-0613, Jun. 2013.
Safi Specialty Battery Group, “Saft lithium-ion rechargeable batteries for transportable power applications,” Doc. N° 54047-2-0706, Jul. 2006.
Ultralife Corporation, “UB0006,” https://www.ultralifecorporation.com/ECommerce/product/ub0006/type-ba-5367-33v-limno2, retrieved Jul. 15, 2020.
Ultralife Batteries, Inc., “UB0006: BA-5367/U” https://web.archive.org/web/20061109153052/http://www.ultralifebatteries.com/datasheet.php?ID=UB0006#top, Nov. 9, 2006.
Ultralife Batteries, Inc., “BA-5367/U Technical Datasheet,” Aug. 4, 2006.
Ultralife Corporation, “BA-5367/U Technical Datasheet,” Aug. 27, 2015.
Ultralife Batteries, Inc., “Product Summary Guide: Technical Datasheet,” Sep. 27, 2006.
Ultralife Batteries, Inc., “Ultralife: Lithium-Manganese Dioxide Primary and Lithium Ion Rechargeable Batteries,” Dec. 13, 2004.
Ultralife Corporation, “Lithium Carbon Mono-fluoride / Manganese Dioxide Hybrid Application Guide,” Apr. 2, 2014.
Defendants' P.R. 3-3 Invalidity Contentions, Jul. 10, 2020.
Petition for Inter Partes Review of U.S. Pat. No. 9,799,858, Jul. 7, 2020.
Petition for Inter Partes Review of U.S. Pat. No. 9,153,835, Jul. 7, 2020.
Petition for Inter Partes Review of U.S. Pat. No. 9,496,581, Jul. 7, 2020.
Petition for Inter Partes Review of U.S. Pat. No. 9,799,913, Jul. 7, 2020.
Exhibit 1 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 2 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 3 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 4 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 5 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 6 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 7 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 8 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 9 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 10 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Exhibit 11 of Defendant's Invalidity Contentions, Jul. 10, 2020.
Jul. 10, 2020 Statement of Thomas Kaun.
IPR2021-00474, U.S. Pat. No. 9,496,581, Paper 6, Owner's Preliminary Response with Exhibit, Jul. 13, 2021.
IPR2021-00474, U.S. Pat. No. 9,496,581, Paper 10, Decision Granting IPR, Aug. 9, 2021.
IPR2020-01212, U.S. Pat. No. 9,153,835, Paper 27, Patent Owner's Revised Contingent Motion to Amend with Exhibits, Aug. 4, 2021.
IPR2020-01212, U.S. Pat. No. 9,153,835, Paper 28, Patent Owner's Sur-Reply with Exhibits, Aug. 4, 2021.
IPR2020-01211, U.S. Pat. No. 9,496,581, Paper 28, Patent Owner's Revisec Contingent Motion to Amend with Exhibits, Aug. 4, 2021.
IPR2020-01211, U.S. Pat. No. 9,496,581, Paper 29, Patent Owner's Sur-Reply with Exhibits, Aug. 4, 2021.
IPR2020-01213, U.S. Pat. No. 9,799,858, Paper 28, Patent Owner's Revised Contingent Motion to Amend with Exhibits, Aug. 4, 2021.
IPR2020-01213, U.S. Pat. No. 9,799,858, Paper 29, Patent Owner's Sur-Reply with Exhibits, Aug. 4, 2021.
IPR2020-01214, U.S. Pat. No. 9,799,913, Paper 27, Patent Owner's Revised Contingent Motion to Amend with Exhibits, Aug. 4, 2021.
IPR2020-01214, U.S. Pat. No. 9,799,913, Paper 28, Patent Owner's Sur-Reply with Exhibits, Aug. 4, 2021.
IPR2020-01211, U.S. Pat. No. 9,496,581, Patent Owner's Reply in Support of its Revised Contingent Motion to Amend with New Exhibit, Oct. 8, 2021.
IPR2020-01212, U.S. Pat. No. 9,153,835, Patent Owner's Reply in Support of its Revised Contingent Motion to Amend with New Exhibit, Oct. 8, 2021.
IPR2020-01213, U.S. Pat. No. 9,799,858, Patent Owner's Reply in Support of its Revised Contingent Motion to Amend with New Exhibit, Oct. 8, 2021.
IPR2020-01214, U.S. Pat. No. 9,799,913, Patent Owner's Reply in Support of its Revised Contingent Motion to Amend with New Exhibit, Oct. 8, 2021.
IPR2021-01206, U.S. Pat. No. 10,971,776, Patent Owner's Preliminary Response, Oct. 12, 2021.
IPR2021-01207, U.S. Pat. No. 10,804,506, Patent Owner's Preliminary Response, Oct. 12, 2021.
IPR2020-01211, U.S. Pat. No. 9,496,581, Paper 35, Petitioner's Opposition to Patent Owner's Revised Contingent Motion to Amend with Exhibits, Sep. 17, 2021.
IPR2020-01212, U.S. Pat. No. 9,153,835, Paper 34, Petitioner's Opposition to Patent Owner's Revised Contingent Motion to Amend with Exhibits, Sep. 17, 2021.
IPR2020-01213, U.S. Pat. No. 9,799,858, Paper 35, Petitioner's Opposition to Patent Owner's Revised Contingent Motion to Amend with Exhibits, Sep. 17, 2021.
IPR2020-01214, U.S. Pat. No. 9,799,913, Paper 34, Petitioner's Opposition to Patent Owner's Revised Contingent Motion to Amend with Exhibits, Sep. 17, 2021.
IPR2021-00474, U.S. Pat. No. 9,496,581, Patent Owner's Contingent Motion to Amend with Exhibits, Nov. 8, 2021.
IPR2021-00474, U.S. Pat. No. 9,496,581, Patent Owner's Response with Exhibits, Nov. 8, 2021.
Related Publications (1)
Number Date Country
20170365874 A1 Dec 2017 US
Divisions (2)
Number Date Country
Parent 15283568 Oct 2016 US
Child 15696354 US
Parent 13146669 US
Child 14827387 US
Continuations (1)
Number Date Country
Parent 14827387 Aug 2015 US
Child 15283568 US