The disclosed technology relates generally to button pressing and, more specifically, to pressing buttons by pressing a plate against a ball into a button.
Remote controls are ubiquitous. Such devices transmit a signal wirelessly using infrared, radio frequency, or otherwise, to a receiver. They are used for various receiving devices, including televisions, garage doors, gates, cars, and even window shades, as well as model craft. They work well, but require specialized devices which transmit particular encoded data. The easiest way to operate a receiving device, for a consumer, is simply to use the remote control provided by the manufacturer or retailer.
While programmable devices exist, these too are standalone devices which require manual button presses to operate. Still further, it is not always possible to copy the transmitted signal, as manufacturers may encrypt or distort the transmission in a way that changes each time or requires a particular piece of hardware. Third party remote control is discouraged, difficult, or simply not worth the expense.
The problem is that current remotes are each proprietary in size, shape, and codes transmitted. In order to create a truly universal remote, one would need to be able to transmit infrared, radio frequency (RF), and have buttons Which are equally easy to use as remote control, while coding for many different remote controls being used in one interface. There exists a need in the art to be able to operate such remotes from a common interface while retaining functionality, ease of producing the desired transmission, and minimum expense.
Embodiments of the disclosed technology include a button-pressing kit. The kit has a fixed plate which abuts a transmitter device. A “plate” is defined as a rigid length of material having an elongated length extending further than any other dimension of the material. The transmitter device has a depressible button on an exterior surface thereof. The transmitter can be a remote control and may have more than one depressible button. The “button,” for purposes of this disclosure, is a mechanical button which activates an electrical switch being depressed. “Depressed,” for purposes of this specification, is movement of a button, such that an electrical gate is opened or closed (e.g., switched on or off), activating transmission of a radio, light, or other signal. A resilient ball abuts the button and extends above a plane defined by outermost extents of the exterior surface of the transmitter device. “Resilient” is defined as “above to be deformed by pressure and substantially and repeatedly return to its original shape.” An axially rotating plate abuts the resilient ball.
Axial rotation (rotating around an axis) in a first direction depresses the button, based on pressure applied by the resilient ball against the button. A motor can cause this axial rotation. However, upon the pressure being too great (e.g., resistance on the motor determined), the button can be considered “depressed,” and the motor can rotate in the other direction, sending the movable plate back to a starting point.
In order to depress the button, a specific input may be required, such as on a tactile sensor. This input may be a code entered based on placement and quantity of taps on a housing or a larger structure (such as a car) in which the devices are kept.
The resilient ball can stick to the button (have adhesive connection) and lacks sticking ability with respect to the axially rotating plate (lacks adhesive connection).
More specifically, an embodiment of the disclosed technology can have a compressible ball (defined as “able to be compressed to less than 80% of its non-compressed size while still returning to it's original size), a plate with dowel extending past the plate at a first end, and a housing with portals holding the dowel on either end of the dowel. The compressible ball is positioned between the plate and a device with a button, the device with a button abutting the housing (on the inside or outside of the housing). The compressible ball and the button can be removably and/or adhesively connected. A motor can be mechanically engaged with the plate at a second end, the second end being at an opposite side from the first end. One “side” is differentiated from another by way of a midpoint halfway between the extreme ends. An “end” is defined as between an edge and 20% of the distance from end to end. An “extreme end” is defined as no more than 3% of the distance from the edge of the respective side to the other edge on the opposite side.
A spin of the motor in a first direction causes the dowel to rotate and compress the compressible ball against the button, whereas a spin in a second opposite direction causes the dowel to rotate away from the button, pulling the plate away from the button as well. This spin/rotating can be activated based on a sequence of pressure placed on the housing directly, or through another object, such as the exterior of a car or windshield.
The same concept is also described with respect to its method of use. A button-pressing method is carried out by way of adhering a compressible or resilient ball on a button of a remote control (a type of transmitter designed to act on another object from a distance via wireless transmission of data), placing the remote control between a housing and a rotatable plate, and rotating the rotatable plate towards the remote control at least until the button is pressed. The ball extends above a plane defined by outermost extents of an exterior surface of the remote control. Receipt of a specific tactile input pattern or a remote transmission (different from the transmission of the remote control/transmitter) can cause the rotating. When a tactile input pattern is used, this can be on an exterior of a car causing the button to be pressed and the car to be unlocked.
“Substantially” and “substantially shown,” for purposes of this specification, are defined as “at least 90%,” or as otherwise indicated. Any device may “comprise” or “consist of” the devices mentioned there-in, as limited by the claims.
It should be understood that the use of “and/or” is defined inclusively such that the term “a and/or b” should be read to include the sets: “a and b,” “a or b,” “a,” “b.”
Embodiments of the disclosed technology have a compressible or resilient ball (which can be of any shape, such as spherical, conical, prism, cylindrical, etc.). This ball is placed on a button to be pressed, such as on a remote control or transmitter. The ball rises above the rest of the surface of the remote control or transmitter, and, as such, an item pressing down along the surface will contact and press the ball and, therefore, the button beneath it, before any other item on the surface of the remote control or transmitter. As such, a plate is used for this pushing, allowing a user to place the ball on a button of his/her choice and insert it in a housing, so that, when the plate is pushed downwards, it will, in turn, cause the chosen button to be pressed. The plate is held with a dowel on a first end, extending past the plate (meaning, the flat elongated side) thereof at a second end, and into portals which are part of, or fixed to, the housing. The compressible ball is thus positioned between the plate and the button to be pressed, the device abutting the housing and/or a fixed plate on its other side. A motor is activated to push the plate down at an angle (or transverse to the button, bottom of the housing, or top of the housing) to activate the button.
Embodiments of the disclosed technology will become clearer in view of the following description of the drawings.
The transmitter, such as transmitter 110, is then placed within a housing 10 having a rigid back wall or plate and rotatable/movable plate 20. By way of a motor 26 or other movement device, the movable plate 20 is rotated about an axis defined by a dowel 22 which fits within slots of the side walls 16 of the housing 10. A far end 24 of the movable plate 20 then moves downwards, applying pressure on the resilient ball 200. A cover or front panel 14 of the housing 10 can have a display 12. The cover 14 can have sensors which sense touch or vibration, in order to determine that a code or pattern has been made there-on to cause the button (e.g., button 116) to be pressed by the downward rotation of the movable plate 20. The display 12 can update as the code or pattern is entered, to show the present status of the code entered.
Referring now to the housing 10 specifically and in more detail, there are two portals 18, one in each side wall 16, which are adapted for a dowel 22. The dowel 22 has a length greater than that of the narrower plane of the rectangular-shaped movable plate 20, as well as greater than that of the housing 16. Portals for holding the dowel 22 or end of the movable plate 20 can be interior to the housing as well. The end 24 of the movable plate 20 then moves up or down, based on the rotation of the motor 26, which is translated by way of gearing known in the order into up/down motion at a contact point near the extreme end 25 of the movable plate 20. Thus, one end of the plate 30 remains at a constant height, in embodiments of the disclosed technology, while the other end 25 moves downwards onto the resilient ball.
Once the resilient ball is pressed, it may begin to compress or may be incompressible by way of the forces placed against it by the movable plate 20. Upon (further) pressing, the side of the ball 200 adjacent to the button (e.g., button 134) is moved downwards, causing the button 134 to move. Once resistance is above a certain level, the downward movement of the movable plate 20 is ceased, and it moves back upwards to a resting position, above the transmitter 130 and resilient ball 200. In the resting position, the movable plate 20 is spaced apart from the resilient ball 200 and transmitter 130.
Discussing now the resilient ball 200 specifically, the ball can have adhesive properties, allowing it to be placed on or against a button and adhere-thereto. A separate adhesive may be used (such as tape or even glue), but in embodiments, the surface or surface coating of the ball, or at least a single side of the ball, is “sticky” (defined as, “designed to stick to things on contact”). The side opposite the side with adhesive quality (“sticky”) can be non-adhesive (“non-sticky”) with reference to its ability to stick to the moving plate 20, such as a glass or plastic plate, which can be coated with a non-stick coating, or have a surface that does not adhere to the resilient ball 200. Still further, only one side of the ball 200 has adhesive qualities in embodiments of the disclosed technology, whereas the other side is smooth and/or non-sticky. One can stick the ball to a button only with one side (the sticking/adhesive side,) while the remaining portions of the exterior of the resilient ball 200 do not stick. The ball 200 can have a flat bottom which is sticky, while a remaining, generally spherical, portion and/or top flat side lacks sticky qualities.
In an embodiment, the device is placed inside a car with the housing adjacent to, or stuck to, a windshield or window. Tapping on the respective glass of the car is used to enter a code detected by a sensor within the housing, which activates the moving of the movable plate, pressing an unlock button, unlocking the car.
While the disclosed technology has been taught with specific reference to the above embodiments, a person having ordinary skill in the art will recognize that changes can be made in form and detail without departing from the spirit and the scope of the disclosed technology. The described embodiments are to be considered in all respects only as illustrative and not restrictive. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope. Combinations of any of the methods and apparatuses described hereinabove are also contemplated and within the scope of the invention.
This application incorporates by reference U.S. patent application Ser. No. 14/822,084 entitled Double Wireless Receipt and Transmission with Mechanical Movement Causing Second Wireless Transmission having a filing date of Aug. 10, 2015, having the same inventors as the present application.