Button providing force sensing and/or haptic output

Information

  • Patent Grant
  • 10691211
  • Patent Number
    10,691,211
  • Date Filed
    Friday, September 28, 2018
    6 years ago
  • Date Issued
    Tuesday, June 23, 2020
    4 years ago
Abstract
A module includes a permanent magnet biased electromagnetic haptic engine having a stator and a rotor; a constraint coupled to the stator and the rotor; and a force sensor at least partially attached to the permanent magnet biased electromagnetic haptic engine and configured to sense a force applied to the rotor. The constraint is configured to constrain closure of a gap between the rotor and the stator and bias the rotor toward a rest position in which the rotor is separated from the stator by the gap.
Description
FIELD

The described embodiments generally relate to a button that provides force sensing and/or haptic output. More particularly, the described embodiments relate to a button having a force sensor (or tactile switch) that may trigger operation of a haptic engine of the button, and to alternative embodiments of a haptic engine for a button. The haptic engine may be a permanent magnet biased electromagnetic haptic engine (or a permanent magnet biased normal flux electromagnetic haptic engine).


BACKGROUND

A device such as a smartphone, tablet computer, or electronic watch may include a button that is usable to provide input to the device. In some cases, the button may be a volume button. In some cases, the button may be context-sensitive, and may be configured to receive different types of input based on an active context (e.g., an active utility or application) running on the device. Such a button may be located along a sidewall of a device, and may move toward the sidewall when a user presses the button. Pressing the button with an applied force that exceeds a threshold may trigger actuation (e.g., a state change) of a mechanical switch disposed behind the button. In some cases, a button may pivot along the sidewall. For example, the top of the button may be pressed and pivot toward the sidewall to increase a sound volume, or the bottom of the button may be pressed and pivot toward the sidewall to decrease the sound volume.


SUMMARY

Embodiments of the systems, devices, methods, and apparatus described in the present disclosure are directed to a button that provides force sensing and/or haptic output. In some cases, a button may be associated with a force sensor (or tactile switch) that triggers operation of a haptic engine in response to detecting a force (or press) on the button. The haptic engine may be a permanent magnet biased electromagnetic haptic engine (or a permanent magnet biased normal flux electromagnetic haptic engine).


In a first aspect, the present disclosure describes a module having a permanent magnet biased electromagnetic haptic engine. The haptic engine may include a stator and a rotor. A constraint may be coupled to the stator and the rotor. A force sensor may be at least partially attached to the permanent magnet biased electromagnetic haptic engine, and may be configured to sense a force applied to the rotor. The constraint may be configured to constrain closure of a gap between the rotor and the stator and bias the rotor toward a rest position in which the rotor is separated from the stator by the gap.


In another aspect, the present disclosure describes another module. The module may include a haptic engine, a force sensor, and a constraint. The haptic engine may have a stationary portion and a movable portion. The movable portion may be configured to move non-linearly, when the haptic engine is stimulated by an electrical signal, to provide a haptic output. The force sensor may be at least partially attached to the haptic engine and configured to sense a force applied to the module. The constraint may be configured to constrain movement of the movable portion relative to the stationary portion, and bias the movable portion toward a rest position in which the movable portion is separated from the stationary portion by a gap.


In still another aspect of the disclosure, a method of providing a haptic response to a user is described. The method may include constraining relative motion between a stationary portion and a movable portion of a haptic engine, to bias the movable portion toward a rest position in which the movable portion is separated from the stationary portion by a gap, and to constrain closure of the gap. The method may further include determining a force applied to a button using a force sensor, where the button is mechanically coupled to the movable portion; determining the determined force matches a predetermined force; identifying a haptic actuation waveform associated with the predetermined force; and applying the haptic actuation waveform to the haptic engine. Relative motion between the stationary portion and the movable portion may be constrained to a pivot of the movable portion with respect to the stationary portion.


In addition to the aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and by study of the following description.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:



FIGS. 1A-1C show an example of an electronic device;



FIGS. 2A & 2B show partially exploded views of button assemblies in relation to a housing;



FIG. 2C shows a cross-section of an alternative configuration of a button assembly;



FIG. 3 shows an exploded view of an example haptic engine;



FIGS. 4A-4C show an assembled cross-section of the haptic engine and button described with reference to FIG. 3;



FIGS. 5-8, 9A & 9B show alternatives to the haptic engine described with reference to FIGS. 4A-4C;



FIGS. 10A, 10B, 11A, 11B & 12A-12E show example embodiments of rotors;



FIG. 13A shows a cross-section of the components described with reference to FIG. 3, with an alternative force sensor;



FIG. 13B shows an alternative way to wrap a flex circuit around the rotor core (or alternatively the first stator) described with reference to FIG. 13A;



FIG. 14A shows another cross-section of the components described with reference to FIG. 3, with another alternative force sensor;



FIG. 14B shows an isometric view of a flex circuit used to implement the force sensor described with reference to FIG. 14A;



FIG. 15 shows an example two-dimensional arrangement of force sensing elements;



FIGS. 16A-16C, there are shown alternative configurations of a rotor core;



FIGS. 17A-17D show another example haptic engine;



FIG. 18 illustrates an example method of providing a haptic response to a user; and



FIG. 19 shows a sample electrical block diagram of an electronic device.





The use of cross-hatching or shading in the accompanying figures is generally provided to clarify the boundaries between adjacent elements and also to facilitate legibility of the figures. Accordingly, neither the presence nor the absence of cross-hatching or shading conveys or indicates any preference or requirement for particular materials, material properties, element proportions, element dimensions, commonalities of similarly illustrated elements, or any other characteristic, attribute, or property for any element illustrated in the accompanying figures.


Additionally, it should be understood that the proportions and dimensions (either relative or absolute) of the various features and elements (and collections and groupings thereof) and the boundaries, separations, and positional relationships presented therebetween, are provided in the accompanying figures merely to facilitate an understanding of the various embodiments described herein and, accordingly, may not necessarily be presented or illustrated to scale, and are not intended to indicate any preference or requirement for an illustrated embodiment to the exclusion of embodiments described with reference thereto.


DETAILED DESCRIPTION

Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following description is not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.


Described herein are techniques that enable a button to provide force sensing and/or haptic output functionality. In some cases, a button may be associated with a force sensor that triggers operation of a haptic engine in response to detecting a force on the button. In other cases, the force sensing and haptic output functions may be decoupled. The haptic engine may be a permanent magnet biased electromagnetic haptic engine (or a permanent magnet biased normal flux electromagnetic haptic engine)—e.g., a haptic engine having a rotor or shuttle that is biased by one or more permanent magnets, and electromagnetically actuated.


In some embodiments, the haptic engine and force sensor associated with a button may be combined in a single module.


In some embodiments, the force sensor associated with a button may include a plurality of force sensing elements distributed in one, two, or three dimensions. Such force sensing elements may be used to determine both the amount of force applied to the button, as well as a location of the force. In this manner, and by way of example, a button that does not move when pressed may be operated as the functional equivalent of a button that can be pressed in multiple locations, such as a volume button that can be pressed along a top portion or a bottom portion to increase or lower a sound volume.


In some embodiments, the force sensor associated with a button may sense a force pattern applied to a button, such as a sequence of longer or shorter presses. The force sensor may also or alternatively be configured to distinguish a button tap from a button press having a longer duration.


In some embodiments, the haptic engine associated with a button may be driven using different haptic actuation waveforms, to provide different types of haptic output. The different haptic actuation waveforms may provide different haptic output at the button. In some embodiments, a processor, controller, or other circuit associated with a button, or a circuit in communication with the button, may determine whether a force applied to the button matches a predetermined force, and if so, stimulate the haptic engine using a particular haptic actuation waveform that has been paired with the predetermined force. A haptic engine may also be stimulated using different haptic actuation waveforms based on a device's context (e.g., based on an active utility or application).


In some embodiments, a module providing force sensing and haptic output functionality may be programmed to customize the manner in which force sensing is performed or haptic output is provided.


Various of the described embodiments may be operated at low power or provide high engine force density (e.g., a high force with low travel). In an embodiment incorporating the features described with reference to FIGS. 3, 4A-4C, 10A-10B, & 13A, a haptic output providing nearly 2 Newtons (N) of force (e.g., 1 N of rotational force on one side of a rotor and 1N of rotational force on the other side of the rotor, providing a net rotational force of 2 N) and a torque of 2.5 N-millimeters (Nmm) has been generated with a haptic engine volume of less than 150 cubic millimeters (mm3) and button travel of ±0.10 mm. Such performance is significantly better than the haptic output of known button alternatives of similar and larger size.


The haptic engine embodiments described herein can provide a haptic output force that increases linearly with the current applied to the haptic engine and movement of a rotor or shuttle.


These and other embodiments are described with reference to FIGS. 1A-19. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes only and should not be construed as limiting.


Directional terminology, such as “top”, “bottom”, “upper”, “lower”, “front”, “back”, “over”, “under”, “above”, “below”, “left”, “right”, etc. is used with reference to the orientation of some of the components in some of the figures described below. Because components in various embodiments can be positioned in a number of different orientations, directional terminology is used for purposes of illustration only and is in no way limiting. The directional terminology is intended to be construed broadly, and therefore should not be interpreted to preclude components being oriented in different ways. The use of alternative terminology, such as “or”, is intended to indicate different combinations of the alternative elements. For example, A or B is intended to include, A, or B, or A and B.



FIGS. 1A-1C show an example of an electronic device or simply “device” 100. The device's dimensions and form factor, including the ratio of the length of its long sides to the length of its short sides, suggest that the device 100 is a mobile phone (e.g., a smartphone). However, the device's dimensions and form factor are arbitrarily chosen, and the device 100 could alternatively be any portable electronic device including, for example a mobile phone, tablet computer, portable computer, portable music player, health monitor device, portable terminal, or other portable or mobile device. FIG. 1A shows a front isometric view of the device 100; FIG. 1B shows a rear isometric view of the device 100; and FIG. 1C shows a cross-section of the device 100. The device 100 may include a housing 102 that at least partially surrounds a display 104. The housing 102 may include or support a front cover 106 or a rear cover 108. The front cover 106 may be positioned over the display 104, and may provide a window through which the display 104 may be viewed. In some embodiments, the display 104 may be attached to (or abut) the housing 102 and/or the front cover 106.


As shown in FIGS. 1A & 1B, the device 100 may include various other components. For example, the front of the device 100 may include one or more front-facing cameras 110, speakers 112, microphones, or other components 114 (e.g., audio, imaging, or sensing components) that are configured to transmit or receive signals to/from the device 100. In some cases, a front-facing camera 120, alone or in combination with other sensors, may be configured to operate as a bio-authentication or facial recognition sensor. The device 100 may also include various input devices, including a mechanical or virtual button 116, which may be located along the front surface of the device 100. The device 100 may also include buttons or other input devices positioned along a sidewall of the housing 102 and/or on rear surface of the device 100. For example, a volume button or multipurpose button 118 may be positioned along the sidewall of the housing 102, and in some cases may extend through an aperture in the sidewall. By way of example, the rear surface of the device 100 is shown to include a rear-facing camera 120 or other optical sensor (see, FIG. 1B). A flash or light source may also be positioned along the rear of the device 100 (e.g., near the camera 120). In some cases, the rear surface of the device may include multiple rear-facing cameras.


As discussed previously, the device 100 may include a display 104 that is at least partially surrounded by the housing 102. The display 104 may include one or more display elements including, for example, a light-emitting display (LED), organic light-emitting display (OLED), liquid crystal display (LCD), electroluminescent display (EL), or other type of display element. The display 104 may also include one or more touch and/or force sensors that are configured to detect a touch and/or a force applied to a surface of the cover 106. The touch sensor may include a capacitive array of nodes or elements that are configured to detect a location of a touch on the surface of the cover 106. The force sensor may include a capacitive array and/or strain sensor that is configured to detect an amount of force applied to the surface of the cover 106.



FIG. 1C depicts a cross-section of the device 100 shown in FIGS. 1A and 1B. As shown in FIG. 1C, the rear cover 108 may be a discrete or separate component that is attached to the sidewall 122. In other cases, the rear cover 108 may be integrally formed with part or all of the sidewall 122.


As shown in FIG. 1C, the sidewall 122 or housing 102 may define an interior volume 124 in which various electronic components of the device 100, including the display 104, may be positioned. In this example, the display 104 is at least partially positioned within the internal volume 128 and attached to an inner surface of the cover 106. A touch sensor, force sensor, or other sensing element may be integrated with the cover 106 and/or the display 104 and may be configured to detect a touch and/or force applied to an outer surface of the cover 106. In some cases, the touch sensor, force sensor, and/or other sensing element may be positioned between the cover 106 and the display 104.


The touch sensor and/or force sensor may include an array of electrodes that are configured to detect a location and/or force of a touch using a capacitive, resistive, strain-based, or other sensing configuration. The touch sensor may include, for example, a set of capacitive touch sensing elements, a set of resistive touch sensing elements, or a set of ultrasonic touch sensing elements. When a user of the device touches the cover 106, the touch sensor (or touch sensing system) may detect one or more touches on the cover 106 and determine locations of the touches on the cover 106. The touches may include, for example, touches by a user's finger or stylus. A force sensor or force sensing system may include, for example, a set of capacitive force sensing elements, a set of resistive force sensing elements, or one or more pressure transducers. When a user of the device 100 presses on the cover 106 (e.g., applies a force to the cover 106), the force sensing system may determine an amount of force applied to the cover 106. In some embodiments, the force sensor (or force sensing system) may be used alone or in combination with the touch sensor (or touch sensing system) to determine a location of an applied force, or an amount of force associated with each touch in a set of multiple contemporaneous touches.



FIG. 1C further shows the button 118 along the sidewall 122 The button may be accessible to a user of the device 100 and extend outward from the sidewall 122. In some cases, a portion of the button 118 may be positioned within a recess in the sidewall 122. Alternatively, the entire button 118 may be positioned within a recess in the sidewall 122, and the button 118 may be flush with the housing or inset into the housing.


The button may extend through the housing and attach to a haptic engine and force sensor. In some embodiments, the haptic engine and force sensor may be combined in a single module 126. By way of example, the haptic engine may include a permanent magnet biased electromagnetic haptic engine, or a permanent magnet normal flux electromagnetic haptic engine. Also by way of example, the haptic engine may cause the button to pivot back-and-forth in relation to an axis, translate back-in forth parallel to the sidewall 122, or translate back-and-forth transverse to the sidewall 122. The force sensor may include, for example, a capacitive force sensor, a resistive force sensor, an ultrasonic force sensor, or a pressure sensor.



FIG. 2A shows a partially exploded view of a button assembly 200 in relation to a housing (e.g., the sidewall 202). The button assembly 200 may include a button 204 and a button base 206. The button base 206 may be mechanically coupled to an interior of the housing. For example, the button base 206 may be mounted to an interior of the sidewall 202, which may be an example of the sidewall 122 described with reference to FIGS. 1A-1C. The button base 206 may be mechanically coupled to the sidewall 202 by one or more screws 208 that extend through one or more holes 210 in the button base 206. Each screw 208 may be threaded into a hole 212 along an interior surface of the sidewall 202 such that a screw head of the screw 208 bears against a surface of the button base 206 opposite the sidewall 202 and holds the button base 206 against the sidewall 202. The button base 206 may also or alternatively be mechanically coupled to the interior surface of the sidewall 202 by other means, such as by an adhesive or welds. In some embodiments, an o-ring, leap seal, diaphragm seal, or other type of seal may be positioned or formed between each leg 216 of the button 204 and the sidewall 202. Alternatively or additionally, a gasket or seal may be positioned or formed between the button base 206 and sidewall 202. The gasket or seal may prevent moisture, dirt, or other contaminants from entering a device through a button base-to-sidewall interface. In some cases, the sidewall 202 may have a recess 214 in which part or all of the button 204 may reside, or over which part or all of the button 204 may be positioned. In other cases, the sidewall 202 need not have such a recess 214.


The button base 206 may include a haptic engine and a force sensor (e.g., a capacitive force sensor or strain sensor). The haptic engine may include a stationary portion (e.g., a stator) and a movable portion (e.g., a rotor or shuttle). In some cases, the haptic engine may include multiple stationary portions (e.g., a first stator and a second stator, a button base housing, and so on) or multiple movable portions. One or more components of the haptic engine (e.g., one or more of the stationary portion(s) and/or movable portion(s)) may be stimulated to provide a haptic output to the button 204. For example, an electrical signal (e.g., an alternating current) may be applied to a coil (i.e., a conductive coil) wound around a stationary or movable portion of the haptic engine, thereby selectively increasing the flux of a magnetic field produced by one or more permanent magnets that bias the haptic engine, and periodically reversing the direction of the flux to cause the movable portion(s) to move with respect to the stationary portion(s) and provide a haptic output as the movable portion(s) move back-and-forth. The flux is “selectively” increased in that it is increased on some faces of a rotor or shuttle and decreased on opposing faces, resulting in an increased net rotational force that provides or increases a torque about an axis of a rotor, or an increased net translational force that provides or increases a force along an axis of a shuttle. In cases where the movable portion includes a rotor, the movable portion may be configured to move non-linearly (e.g., pivot) when the haptic engine is stimulated to provide a haptic output. In cases where the movable portion includes a shuttle, the movable portion may be configured to move linearly (e.g., translate) when the haptic engine is stimulated to provide a haptic output. In some cases, the button base 206 may include a constraint, which constraint may be configured to constrain movement of the movable portion(s) relative to the stationary portion(s) (e.g., constrain closure of a gap between a movable portion and a stationary portion), bias the movable portion toward a rest position in which the movable portion is separated from the stationary portion by a gap, and/or guide or constrain motion to motion along a desired path.


The button 204 may have a first major surface and a second major surface. The first major surface may be a user interaction surface that faces away from the sidewall 202, and the second major surface may be a device-facing surface that faces toward the sidewall 202. One or more legs 216 may extend perpendicularly from the second major surface. By way of example, two legs 216 are shown in FIG. 2A. The legs 216 may be aligned with and inserted through respective holes 218, 220 in the sidewall 202 and button base 206, and may be mechanically coupled to the movable portion of the haptic engine. In some cases, the leg(s) 216 may be mechanically coupled to the movable portion by one or more screws 222 that extend through one or more holes in the movable portion. Each screw 222 may be threaded into a hole in a respective leg 216 of the button 204 such that a screw head of the screw 222 bears against a surface of the movable portion opposite the leg 216 and mechanically couples the button 204 to the movable portion.


The force sensor may include components attached to one or more components of the haptic engine, or more generally, to the button base 206. In some embodiments, different components of the force sensor may be attached to the movable portion or stationary portion of the haptic engine, and may be separated by a capacitive gap. A force applied to the button (e.g., a user's press) may cause the movable portion to move toward or away from the stationary portion, thereby changing the width of the capacitive gap and enabling the applied force (or an amount or location of the applied force) to be detected. In some embodiments, the force sensor may include one or more strain sensors disposed on the button base 206 or button 204. In these latter embodiments, flex of the button base 206 (e.g., the housing of, or a mount for, the button base 206), one or more components within the button base 206 (e.g., a stator, rotor, shuttle, or other component capable of flexing), or the button 204, in response to a force applied to the button 204, may cause a change in the output of a strain sensor (e.g., a strain gauge), which output enable the applied force (or an amount or location of the applied force) to be detected.


As shown in phantom in FIG. 2A, the configuration of the button base 206 may enable it to be used with different sizes, shapes, or styles of buttons (e.g., button 204 or button 224). In alternative embodiments, and as shown in FIG. 2B, a button 226 may be permanently or semi-permanently attached to a button base 228 (e.g., by one or more welds). In these embodiments, a sidewall 230 of a housing may include an opening 232 through which the button 226 may be inserted before the button base 228 is mechanically coupled to the sidewall 230 (e.g., using one or more screws 222).



FIG. 2C shows a cross-section of an alternative configuration of a button assembly 234. The cross-section shows portions of a device sidewall 236, with a button 238 extending through an opening in the sidewall 236. A button base 240 may be attached to an interior of the sidewall 236 by an adhesive, welds, or other attachment mechanism 242, and the button 238 may be removably or semi-permanently attached to the button base 240, as described with reference to FIG. 2A or 2B for example. In the embodiment shown in FIG. 2C, the button base 240 (and in some cases a stator portion of the button base 240) may form a portion of the sidewall 236 that faces the button 238 (e.g., a portion of the sidewall 236 below the button 238). An o-ring or other type of seal 244 may surround each leg of the button 238 to prevent moisture and debris from entering the button base 240 or interfering with other components interior to the sidewall 236.



FIG. 3 shows an exploded view of an example haptic engine 300. The haptic engine 300 is an example of the haptic engine included in the button base 206 described with reference to FIGS. 2A & 2B, and in some cases may be a permanent magnet biased electromagnetic haptic engine (or a permanent magnet biased normal flux electromagnetic haptic engine).


The haptic engine 300 may include one or more stationary portions and one or more movable portions, in addition to a constraint 314 that is configured to constrain movement of the movable portion(s) relative to the stationary portion(s) and bias the movable portion(s) toward a rest position in which the movable portion(s) are separated from the stationary portion(s) by one or more gaps. By way of example, the stationary portion(s) may include a pair of ferritic stators (e.g., a first stator 302 and a second stator 304), and the movable portion(s) may include a rotor 306 that is positioned between the first and second stators 302, 304. In some embodiments, the first and second stators 302, 304 may be held in a spaced apart position by one or more brackets 338, 340 that may be welded or clipped to the stators 302, 304. When the components of the haptic engine 300 are assembled, the rotor 306 may be separated from the first stator 302 by a first gap 308 (e.g., a first rotor-to-stator gap), and from the second stator 304 by a second gap 310 (e.g., a second rotor-to-stator gap). The rotor 306 may be configured to move non-linearly (e.g., pivot about a longitudinal axis 312 parallel to each of the first and second stators 302, 304, the rotor 306, and a sidewall to which a button base including the haptic engine 300 is mounted). The constraint 314 may constrain closure of the first and second gaps 308, 310 and bias the rotor 306 toward a rest position in which the rotor 306 is separated from the first and second stators 302, 304 by the first and second gaps 308, 310. The rotor 306 may have a height that would allow it to pivot about the longitudinal axis 312 and contact (e.g., crash against) the first stator 302 and/or the second stator 304 in the absence of the constraint 314.


A button 316 may be mechanically coupled to the haptic engine 300. For example, a button 316 may be mechanically coupled to the rotor 306, such that movement of the rotor 306 may provide a haptic output to the button 316. In some cases, the button 316 may be attached to the rotor 306 by screws 318 that pass through holes 320, 322, 324 in the second stator 304, the rotor 306, and the first stator 302. The screws 318 may be received by threaded inserts in the legs 326 of the button 316, and heads of the screws 318 may bear against a surface of the rotor 306.


In some embodiments, the constraint 314 may include a flexure 314a that has rotor attachment portions 328a, 328b on either side of a stator attachment portion 330. The stator attachment portion 330 may be attached to the first stator 302, and the rotor attachment portions 328a, 328b (e.g., one or more arms or extensions extending from the stator attachment portion 330) may be attached to the rotor 306. In some embodiments, the stator attachment portion 330 may be attached to the first stator 302 along an axis 332 of the flexure 314a. The flexure 314a may constrain movement of the rotor 306 to movement about a pivot axis (e.g., the longitudinal axis 312), and may provide a linearly consistent stiffness opposing the pivot movement. In some cases, the flexure 314a may be a metal flexure that is welded or clamped to the first stator 302 (e.g., clamped to the first stator 302 by a clamp 334 that is welded to the first stator 302; in FIG. 3, the clamp 334 is shown to include two strips aligned with the axis 332 of the flexure 314a). In some cases, the rotor attachment portions 328a, 328b may be welded to the sides of a rotor core, or otherwise clipped or fastened to a rotor core, such that movement of the rotor 306 imparts forces to the arms 328a, 328b of the flexure 314a, and the flexure 314a in turn imparts forces to the rotor core to constrain movement of the rotor 306. The forces imparted by the flexure 314a may be stronger than forces imparted by the rotor 306 when the haptic engine 300 is not being stimulated by an electrical signal to produce haptic output at the button 316, but weaker than the forces imparted by the rotor 306 when the haptic engine 300 is stimulated by an electrical signal to produce haptic output. In this manner, the flexure 314a may bias the rotor 306 toward a rest position in which the rotor 306 is separated from the stators 302, 304 by rotor-to-stator gaps, but stimulation of the haptic engine 300 by an electrical signal may overcome the forces imparted to the rotor 306 by the flexure 314a, at least to a degree, and cause the rotor 306 to pivot back-and-forth between the stators 302, 304.


As another example, the constraint 314 may alternatively or additionally provided by a set of one or more elastomers (e.g., one or more elastomeric pads, such as silicone pads) or other compliant material(s) 314b. The compliant material(s) 314b may be disposed (positioned) between the first stator 302 and the rotor 306 in the first gap 308, and/or between the second stator 304 and the rotor 306 in the second gap 310. The compliant material(s) 314b may constrain movement of the rotor 306 to movement about a pivot axis (e.g., the longitudinal axis 312). The compliant material(s) 314b may also damp movement of the rotor 306. In some cases, the compliant material(s) 314b may be adhesively bonded to the rotor 306 and one or more of the stators 302, 304. Similarly to the flexure 314a, the forces imparted by the compliant material(s) 314b may be stronger than forces imparted by the rotor 306 when the haptic engine 300 is not being stimulated by an electrical signal to produce haptic output at the button 316, but weaker than the forces imparted by the rotor 306 when the haptic engine 300 is stimulated by an electrical signal to produce haptic output. In this manner, the compliant material(s) 314b may bias the rotor 306 toward a rest position in which the rotor 306 is separated from the stators 302, 304 by rotor-to-stator gaps, but stimulation of the haptic engine 300 by an electrical signal may overcome the forces imparted to the rotor 306 by the compliant material(s) 314b, at least to a degree, and cause the rotor 306 to pivot back-and-forth between the stators 302, 304.


The compliant material(s) 314b may be aligned with an axis of the button 316, as shown in FIG. 3, or distributed along an axis, plane, or planes that are transverse to a user interaction surface of the button 316 (e.g., in a one, two, or three-dimensional array).


In some alternative embodiments, the haptic engine 300 shown in FIG. 3 may include only one stator (e.g., the first stator 302), and the rotor 306 may move with respect to the one stator.


As also shown in FIG. 3, a force sensor 336 may be at least partially attached to the haptic engine 300. The force sensor 336 may be configured to sense a force applied to the haptic engine 300 or a module including the haptic engine 300. For example, the force sensor 336 may be configured to sense a force applied to the rotor 306 when a user presses the button 316. In some embodiments, the force sensor 336 may include one or more strain sensors 336a attached to the first stator 302 or the second stator 304. When a user applies a force to the button 316 (e.g., presses the button 316), the strain sensor(s) 336a may flex. Outputs of the strain sensor(s) 336a may change in a manner that is related to the amount or location of the force applied to the button 316. In alternative embodiments, the strain sensors 336a may be positioned elsewhere on the haptic engine 300, or on a housing of the haptic engine 300 (e.g., on the button base described with reference to FIG. 2A or 2B). In further alternative embodiments, the force sensor 336 may additionally or alternatively include a capacitive force sensor or other type of force sensor.


Turning now to FIGS. 4A-4C, there is shown an assembled cross-section of the haptic engine 300 and button 316 described with reference to FIG. 3. As shown, the arms 328a, 328b that extend from the flexure 314a may extend around upper and lower surfaces of the first stator 302, and may be attached to the upper and lower surfaces of the rotor 306 (e.g., to upper and lower surfaces or sides of a rotor core).



FIG. 4A shows the haptic engine 300 at rest. FIGS. 4B & 4C show the haptic engine 300 after it has been stimulated to provide a haptic output. More specifically, FIG. 4B shows the haptic engine 300 after the rotor 306 has pivoted clockwise to a maximum extent, and FIG. 4C shows the haptic engine 300 after the rotor 306 has pivoted counter-clockwise to a maximum extent. While the haptic engine 300 is being stimulated, the rotor 306 may pivot back-and-forth between the states shown in FIGS. 4B & 4C to provide haptic output to the button 316. Stimulation of the haptic engine 300 causes the rotor 306 to move non-linearly (e.g., pivot) with enough force to overcome the spring force of the flexure 314a and the shear force of the compliant material(s) 314b. After stimulation of the haptic engine 300 ceases, the spring force of the flexure 314a and/or the shear force(s) of the compliant material(s) 314b may be sufficient to restore the rotor 306 to the rest position shown in FIG. 4A.


Each of the flexure 314a and/or compliant material(s) 314b may be configured to provide a first stiffness opposing the non-linear movement of the rotor 306, and a second stiffness opposing a force applied to the button 316 (i.e., asymmetric first and second stiffnesses). This can enable the stiffnesses to be individually adjusted (e.g., to separately tune the force input and haptic output user experiences for the button 316).



FIG. 5 shows an alternative haptic engine 500 that is similar to the haptic engine 300 described with reference to FIGS. 4A-4C. The alternative haptic engine 500 lacks the compliant material(s) 314b and instead relies on the flexure 314a to constrain motion of the rotor 306.



FIG. 6 shows another alternative haptic engine 600 that is similar to the haptic engine 300 described with reference to FIGS. 4A-4C. The alternative haptic engine 600 shown in FIG. 6 lacks the flexure 314a and relies instead on the compliant material(s) 314b to constrain motion of the rotor 306.



FIG. 7 shows yet another alternative haptic engine 700 that is similar to the haptic engine 300 described with reference to FIGS. 4A-4C. The alternative haptic engine 700 shown in FIG. 7 distributes the compliant material(s) 314b differently than what is shown in FIGS. 4A-4C. In particular, the compliant material(s) 314b may be positioned in a two or three-dimensional array, within the gaps 308, 310 between the stators 302, 304 and rotor 306.



FIG. 8 shows a haptic engine 800 similar to that described with reference to FIGS. 4A-4C, but with the flexure 314a attached to the second stator 304 instead of the first stator 302. By attaching the flexure 314a to the haptic engine (e.g., to the second stator 304) along an axis disposed on a side of the rotor 306 opposite the button 316, instead of along an axis disposed on a same side of the rotor 306 as the button 316 (as shown in FIGS. 4A-4C), the moment arm of the rotor 306 with respect to the button 316 may be changed, and the haptic output provided to the button 316 may be changed.



FIGS. 9A & 9B show a haptic engine 900 similar to that shown in FIGS. 4A-4C, but with the stator and rotor components swapped so that a stator 902 is positioned between portions 904a, 904b of a rotor 904. FIG. 9A shows the haptic engine 900 at rest, and FIG. 9B shows the haptic engine 900 with the rotor 904 in a left-most (or counter-clockwise) state. The embodiment shown in FIGS. 9A & 9B allows the button 906 to be attached to an outer component of the haptic engine 900 (e.g., to the rotor portion 904b). A flexure 314a or other constraint may be attached to the rotor 904 and stator 902 similarly to how a flexure 314 is attached to the stators 302, 304 and rotor 306 described with reference to FIGS. 4A-4C.


Referring now to FIGS. 10A & 10B, there is shown an example embodiment of the rotor described with reference to FIGS. 3, 4A-4C, 5-8, & 9A-9B.



FIGS. 10A-12E illustrate various examples of a permanent magnet biased electromagnetic haptic engine (or permanent magnet biased normal flux electromagnetic haptic engine). In some embodiments, one of the haptic engines described with reference to FIGS. 10A-12E may be used as the haptic engine described with reference to FIGS. 1A-9B.



FIGS. 10A & 10B show a haptic engine 1000 having a rotor 1002 positioned between first and second stators 1004, 1006. The stators 1004, 1006 may take the form of ferritic plates. The rotor 1002 may have an H-shaped core 1008 having two side plates connected by an intermediate plate that joins the two side plates. The different plates of the core 1008 may be attached (e.g., welded) to one another, or integrally formed as a monolithic component.


A first coil 1010 may be wound around the core 1008 (e.g., around the intermediate plate) near one side plate of the core 1008, and a second coil 1012 may be wound around the core 1008 (e.g., around the intermediate plate) near the other side plate of the core 1008. The first and second coils 1010, 1012 may be electrically connected in series or in parallel. A parallel connection of the coils 1010, 1012 may provide a reduction in the total resistance of the coils 1010, 1012, and/or may enable the use of a thinner wire to achieve the same resistance as a series connection of the coils 1010, 1012. A first permanent magnet 1014 may be attached to a first surface of the core 1008 (e.g., to a first surface of the intermediate plate), and a second permanent magnet 1016 may be attached to a second surface of the core 1008 (e.g., to a second surface of the intermediate plate, opposite the first surface of the intermediate plate). The first and second permanent magnets 1014, 1016 may be oriented with their north poles facing the same direction (e.g., to the right in FIG. 10B).


As shown in FIG. 10B, the permanent magnets 1014, 1016 may form a magnetic bias field indicated by flux 1018. The magnetic bias field may be differentially changed by flux 1020 when the haptic engine 1000 is stimulated by applying an electrical signal (e.g., a current) to the coils 1010, 1012. For example, the flux 1018 and 1020 may add at a first pair of opposite corners of the haptic engine 1000, and subtract at a second pair of opposite corners of the haptic engine 1000, thereby causing the rotor 1002 to pivot. The rotor 1002 may be caused to pivot in an opposite direction by reversing the current in the coils, or by removing the current and letting the momentum of the restorative force provided by a constraint (e.g., constraint 314a or 314b, not shown) to cause the rotor 306 to pivot in the opposite direction. Note that, in the absence of a constraint (e.g., the constraint 314a or 314b), the rotor 306 would pivot in the absence of an electrical signal applied to the coils 1010, 1012 and crash against the first and second stators 1004, 1006.



FIGS. 11A & 11B show a haptic engine 1100 that is similar to the haptic engine 1000 described with reference to FIGS. 10A & 10B, but without the second stator 1006.



FIG. 12A shows a haptic engine 1200 that is similar to the haptic engine 1100, but with the coils 1010, 1012 wound around perpendicular extensions 1202, 1204 from a core 1206, such that the coils 1010, 1012 are planar to one another. A single permanent magnet 1208 may be attached to a surface of the core 1206, between the coils 1010, 1012.



FIG. 12B shows a haptic engine 1210 that is similar to the haptic engine 1200 described with reference to FIG. 12A, but with a singular coil 1212 wound around an extension of the core 1214, and permanent magnets 1216, 1218 attached to the core 1214 on opposite sides of the coil 1212. The haptic engine 1210 includes a single stator 1220.



FIG. 12C shows a haptic engine 1230 having a rotor 1232 positioned between first and second stators 1234, 1236. The rotor 1232 includes an H-shaped core 1238 in which the H-profile of the core 1238 extends planar to the first and second stators 1234, 1236. A coil 1240 is wound around the middle portion of the H-profile, and permanent magnets 1242 and 1244 are attached to the H-shaped core 1238 within upper and lower voids of the H-shaped profile.



FIG. 12D shows a haptic engine 1250 having a rotor 1252 positioned adjacent a pair of planar stators 1254, 1256. The rotor 1252 may be configured similarly to the rotor shown in FIG. 12B, but in some cases may have a larger coil 1258 that extends between stators 1254, 1256.



FIG. 12E shows a haptic engine 1260 that is similar to the haptic engine 1250 described with reference to FIG. 12D, but with a second pair of planar stators 1262, 1264 positioned on a side of the rotor 1252 opposite the first pair of planar stators 1254, 1256. The coil 1258 may also extend between the stators 1262 and 1264.


In alternative embodiments of the haptic engines described with reference to FIGS. 10A-12E, the core of a rotor may be less H-shaped or non-H-shaped, and one or more stators may be C-shaped and extend at least partially around the rotor. In some embodiments, only a single coil and a single permanent magnet may be included on a rotor. Alternatively, one or more coils or permanent magnets may be positioned on a stator, instead of or in addition to one or more coils or permanent magnets positioned on a rotor.



FIG. 13A shows a cross-section of the components described with reference to FIG. 3, but for the constraint (which may be included in a module including the components shown in FIG. 13A, but which is not shown in FIG. 13A). The components include the haptic engine 300 (e.g., the rotor 306 positioned between first and second stators 302, 304). In some embodiments, the haptic engine 300 may be further configured as described with reference to any of FIGS. 3-12E. In contrast to the force sensor 336 shown in FIG. 3, the components shown in FIG. 13A include a capacitive force sensor 1302 that is at least partially attached to the haptic engine 300. FIG. 13A also shows the button 316 described with reference to FIG. 3, with its legs 326 inserted through a housing 1320 (e.g., a sidewall of a device) and attached to the rotor 306 by screws 318. The capacitive force sensor 1302 may be configured to sense a force applied to the button 316, and thereby to the rotor 306, in response to user or other interaction with the button 316 (e.g., the capacitive force sensor 1302 may sense a force that is applied to the button 316 parallel to a rotor-to-stator gap, or a force applied to the button 316 which has a force component parallel to the rotor-to-stator gap).


By way of example, the capacitive force sensor 1302 is shown to include two force sensing elements 1302a, each of which may be similarly configured. The two force sensing elements 1302a may be positioned at different locations relative to a user interaction surface of the button 316. As shown, the two force sensing elements 1302a may be spaced apart along the housing 1320, at opposite ends of the haptic engine 300. In alternative embodiments, the capacitive force sensor 1302 may include more force sensing elements (e.g., 3-4 force sensing elements, or 3-8 force sensing elements) or fewer force sensing elements (e.g., one force sensing element). In the case of three or more force sensing elements, the force sensing elements may be positioned in a one-dimensional array or two-dimensional array with respect to the user interaction surface of the button 316.


Each force sensing element 1302a may include a set of electrodes 1304, 1306, and each set of electrodes may include a first electrode 1304 attached to the rotor 306, and a second electrode 1306 attached to one of the stators (e.g., the first stator 302) and separated from the first electrode 1304 by a capacitive gap 1308. In some embodiments, the first electrode 1304 may be attached to an extension 1310 of the rotor's core, on a side of the core that faces the first stator 302; and the second electrode 1306 may be attached to an extension 1312 of the first stator 302, on a side of the first stator 302 that faces the rotor 306.


In some cases, the first electrode 1304 may be attached to or included in a first flex circuit 1314 (or printed circuit board) attached to the core, and the second electrode 1306 may be attached to or included in a second flex circuit 1316 (or printed circuit board) attached to the first stator 302. By way of example, the first flex circuit 1314 may carry power, ground, or other electrical signals to the first electrode 1304, as well as to the rotor 306. For example, the first flex circuit 1314 may carry an electrical signal (e.g., power) to a coil (or coils) attached to the rotor 306, to stimulate the haptic engine 300 to provide a haptic output. Also by way of example, the second flex circuit 1316 may carry power, ground, or other electrical signals to the second electrode 1306, as well as to a controller, processor, or other circuit 1318 coupled to the second flex circuit 1316. Alternatively, the circuit 1318 may be coupled to the first flex circuit 1314, or to both flex circuits 1314, 1316. The second flex circuit 1316 may also carry electrical signals away from the second electrode 1306 or circuit 1318, or couple the second electrode 1306 to the circuit 1318. The first and second flex circuits 1314, 1316 may electrically isolate the first and second electrodes 1304, 1306 from the core and first stator 302.


The first flex circuit 1314 may be adhesively bonded, clipped, or otherwise attached to the rotor core. The second flex circuit 1316 may be adhesively bonded, clipped, or otherwise attached to the first stator 302.


In some embodiments, the circuit 1318 may be used to detect or measure a capacitance of the second electrode 1306 of each force sensing element 1302a, and provide an indication of whether a force applied to the button 316 is detected. In some cases, the first electrode 1304 may be driven with an electrical signal as the capacitance of the second electrode 1306 is measured. The circuit 1318 may also or alternatively indicate a value of a capacitance of the second electrode 1306, which value may be routed to an off-module controller, processor, or other circuit via the second flex circuit 1316. In some embodiments, the circuit 1318 or an off-module circuit may use the different outputs of different force sensing elements (e.g., outputs of the two force sensing elements 1302a shown in FIG. 13A) to determine an amount of force applied to the button 316 or a location of a force applied to the button 316 (i.e., a force location). For example, measurements provided by different force sensing elements may be averaged or otherwise combined to determine an amount of force; or measurements provided by different force sensing elements, in combination with the locations of the force sensing elements with respect to a surface of the button, can be used to determine a force location. In some embodiments, the circuit 1318 may provide a pattern of capacitances to the off-module circuit. The pattern of capacitances may indicate a type of force input to the button 316 (e.g., a particular command or input). The pattern of capacitances (or force pattern) provided by the circuit 1318 may be timing insensitive, or may include a pattern of capacitances sensed within a particular time period, or may include a pattern of capacitances and an indication of times between the capacitances.


The signals carried by the first or second flex circuit 1314, 1316 may include analog and/or digital signals (e.g., analog or digital indications of the presence, amount, or location of a force may be provided via analog and/or digital signals).


In some embodiments, the first and second flex circuits 1314, 1316 may be electrically coupled, and the circuit 1318 may provide an electrical signal to the haptic engine 300, to stimulate the haptic engine 300 to provide a haptic output, in response to detecting the presence of a force on the button 316 (or in response to determining that a particular amount of force, location of force, or pattern of force has been applied to the button 316). The circuit 1318 may provide a single type of electrical signal or haptic actuation waveform to the haptic engine 300 in response to determining that a force, or a particular type of force, has been applied to the button 316. Alternatively, the circuit 1318 may identify a haptic actuation waveform associated with a particular type of force applied to the button 316, and apply the identified haptic actuation waveform to the haptic engine 300 (e.g., to produce different types of haptic output in response to determining that different types of force have been applied to the button 316). In some embodiments, different haptic actuation waveforms may have different amplitudes, different frequencies, and/or different patterns.



FIG. 13A shows an example arrangement of flex circuits 1314, 1316 in which the first flex circuit 1314 wraps around each of opposite ends of the rotor core, and the second flex circuit 1316 wraps around each of opposite ends of the first stator 302. The portions of the first flex circuit 1314 shown at the left and right of FIG. 13A may be connected by another portion of the first flex circuit 1314 that extends between the two end portions. In some cases, the portion of the first flex circuit 1314 that connects the two end portions may be bent or folded to extend perpendicularly to the two end portions (and in some cases, the folded portion may connected to an off-module circuit). The portions of the second flex circuit 1316 shown in FIG. 13A may be connected similarly to how the portions of the first flex circuit 1314 are connected, and may also be connected to an off-module circuit.



FIG. 13B shows an alternative way to wrap a flex circuit around the rotor core 1358 (or alternatively the first stator 302) described with reference to FIG. 13A. As shown, the flex circuit 1350 may include a central portion 1352 that connects pairs of tab portions 1354, 1356 at opposite ends of the central portion 1352. One pair of tab portions 1354 extends perpendicularly from the central portion 1352, over first and second opposite faces of the rotor core 1358, near one end of the rotor core 1358. Another pair of tab portions 1356 extends perpendicularly from the central portion 1352, over the first and second opposite faces of the rotor core 1358, near an opposite end of the rotor core 1358. The flex circuit 1350 may be adhesively bonded, clipped, or otherwise attached to the rotor core 1358.


In alternative flex circuit arrangements, a flex circuit may be attached to the rotor or stator without wrapping the flex circuit around the rotor or stator. However, wrapping a flex circuit around a rotor core may provide a flex circuit surface for coil lead connections, if needed, or may increase the flex service loop length and flexibility, if needed. In some embodiments, the rotor and stator flex circuits may be coupled by a hot bar or other element.



FIG. 14A shows another cross-section of the components described with reference to FIG. 3, but for the constraint (which may be included in a module including the components shown in FIG. 14A, but which is not shown in FIG. 14A). The components include a haptic engine (e.g., a rotor positioned between first and second stators). The components include the haptic engine 300 (e.g., the rotor 306 positioned between first and second stators 302, 304). In some embodiments, the haptic engine 300 may be further configured as described with reference to any of FIGS. 3-12E. The components shown in FIG. 14A also include a capacitive force sensor 1402 that is at least partially attached to the haptic engine 300. FIG. 14A also shows the button 316 described with reference to FIG. 3, with its legs 326 inserted through a housing 1418 (e.g., a sidewall of a device) and attached to the rotor 306 by screws 318. The capacitive force sensor 1402 may be configured to sense a force applied to the button 316, and thereby to the rotor 306, in response to user or other interaction with the button 316 (e.g., the capacitive force sensor 1402 may sense a force that is applied to the button 316 parallel to a rotor-to-stator gap, or a force applied to the button 316 which has a force component parallel to the rotor-to-stator gap).


By way of example, the capacitive force sensor 1402 is shown to include two force sensing elements 1402a, each of which may be similarly configured. The two force sensing elements 1402a may be positioned at different locations relative to a user interaction surface of the button 316. As shown, the two force sensing elements 1402a may be spaced apart along the housing 1418, at opposite ends of the haptic engine 300. In alternative embodiments, the capacitive force sensor 1402 may include more force sensing elements (e.g., 3-4 force sensing elements, or 3-8 force sensing elements) or fewer force sensing elements (e.g., one force sensing element). In the case of three or more force sensing elements, the force sensing elements may be positioned in a one-dimensional array or two-dimensional array with respect to the user interaction surface of the button 316.


Each force sensing element 1402a may include a set of electrodes 1404, 1406, and each set of electrodes may include a first electrode 1404 attached to the rotor 306, and a second electrode 1406 attached to one of the stators (e.g., the first stator 302) and separated from the first electrode 1404 by a capacitive gap 1408. In some embodiments, the first electrode 1404 may be attached to a flex circuit 1410 or clip connected (e.g., adhesively bonded or clipped) to the rotor's core, and the second electrode 1406 may be attached to the first stator 302, on a side of the first stator 302 that faces the rotor 306.


In some cases, the flex circuit 1410 or clip to which the first electrode 1404 is attached may include a central portion 1412 that faces the button 316, and arms 1414 that extend perpendicularly from the central portion 1412 and are attached to the rotor 306 (e.g., to its core), as shown in FIGS. 14A & 14B. The second electrode 1406 may be attached to or included in a second flex circuit 1416 (or printed circuit board) attached to the first stator 302. By way of example, the flex circuits 1410, 1416 may carry power, ground, or other electrical signals similarly to the first and second flex circuits 1314, 1316 described with reference to FIG. 13A.


In some embodiments, a circuit may be electrically coupled to one or both of the flex circuits 1410, 1416 and used to detect or measure a capacitance of the second electrode 1406 of each of the force sensing elements, and provide an indication of whether a force applied to the button 316 is detected. The circuit may also or alternatively indicate a value of a capacitance of the second electrode 1406, which value may be routed to an off-module controller, processor, or other circuit via the second flex circuit 1416. In some embodiments, the circuit or an off-module circuit may use the different outputs of different force sensing elements (e.g., outputs of the two force sensing elements 1402a shown in FIG. 14A) to determine an amount of force applied to the button 316 or a location of a force applied to the button 316 (i.e., a force location). In some embodiments, the circuit may provide a pattern of capacitances to the off-module circuit. The pattern of capacitances may indicate a type of force input to the button 316 (e.g., a particular command or input). The pattern of capacitances (or force pattern) provided by the circuit may be timing insensitive, or include a pattern of capacitances sensed within a particular time period, or include a pattern of capacitances and an indication of times between the capacitances.


The signals carried by the flex circuits 1410, 1416 may include analog and/or digital signals (e.g., analog or digital indications of the presence, amount, or location of a force may be provided via analog and/or digital signals).


In some embodiments, the flex circuits 1410, 1416 may be electrically coupled, and a circuit coupled to the flex circuits 1410, 1416 may provide an electrical signal to the haptic engine 300, to stimulate the haptic engine to provide a haptic output, in response to detecting the presence of a force on the button 316 (or in response to determining that a particular amount of force, location of force, or pattern of force has been applied to the button 316). The circuit may provide one or more haptic actuation waveforms as described with reference to FIG. 13A.


A capacitive force sensor may additionally or alternatively include other types of force sensing elements in which a first electrode of the force sensing element is attached to a movable portion of a module, and a second electrode of the force sensing element is attached to a stationary portion of the module and separated from the first electrode by a capacitive gap. The force sensing elements may be positioned within or outside a stator-to-rotor gap.



FIG. 15 shows an example two-dimensional arrangement of force sensing elements 1500, which force sensing elements 1500 may be incorporated into the force sensor described with reference to FIG. 13A or 14A, or into other force sensors. The example arrangement shown in FIG. 15 includes four force sensing elements 1500 disposed near the corners of a haptic engine (or near the corners of a button's user interaction surface). The force sensing elements 1500 may alternatively be distributed uniformly across a surface or volume 1502. A two-dimensional array of force sensing elements 1500 can be used to determine what portion of a button is pressed, or to sense the components of a force applied in different directions (e.g., a side-to-side movement as might be provided to a ringer on/off switch). A one-dimensional array of force sensing elements 1500 can also be used to determine what portion of a button is pressed, but only along one button axis. In some embodiments, only three of the force sensing elements 1500 may be provided, or the force sensing elements 1500 may be disposed in different positions.


Turning now to FIGS. 16A-16C, there are shown alternative configurations of a rotor core. As shown in FIG. 16A, a rotor core 1600 may include a first rigid plate 1602 and a second rigid plate 1604 having opposing surfaces joined by a third rigid plate 1606 to form an H-shaped core 1600. In some embodiments, a first pair of plates 1608, 1610 may be stacked and welded to form the first rigid plate 1602, and a second pair of plates may be stacked and welded to form the second rigid plate 1604. In some embodiments, a third pair of plates may be stacked and welded to form the third rigid plate 1606 (not shown).



FIG. 16B shows an alternative rotor core 1620. As shown in FIG. 16B, a first pair of plates 1622, 1624 may be positioned side-by-side and welded together such that first slot is formed between the plates 1622, 1624 of the first pair. A second pair of plates 16261628 may also be positioned side-by-side and welded together such that a second slot is formed between the plates 1626, 1628 of the second pair. Opposite sides of a fifth plate 1630 may be inserted into the respective first and second slots, and the first and second pairs of plates 1622/1624, 1626/1628 may be welded to the opposite sides of the fifth plate 1630.



FIG. 16C shows another alternative rotor core 1640. As shown in FIG. 16C, a first plate 1642 may have opposite side portions that are bent perpendicularly to a central portion of the first plate 1642. A second plate 1644 may be formed similarly to the first plate 1642, stacked on the first plate 1642, and welded to the first plate 1642 such that corresponding side portions of the first and second plates 16421644 extend in opposite directions. A third plate 1646 may be welded to a first set of corresponding side portions of the first and second plates 1642, 1644, and a fourth plate 1648 may be welded to a second set of corresponding side portions of the first and second plates 16421644.


Any of the plates described with reference to FIGS. 16A-16C may include one plate or a set of two or more stacked plates.



FIGS. 17A-17D show another example haptic engine 1700 (or button assembly). FIG. 17A shows an exploded isometric view of the haptic engine 1700. FIG. 17B shows an isometric view of an inner surface of a first component 1704 of a stator 1702 of the haptic engine 1700. FIG. 17C shows an assembled version of the haptic engine 1700. FIG. 17D shows an assembled cross-section of the haptic engine 1700. The haptic engine 1700 is an example of the haptic engine included in the button base 206 described with reference to FIGS. 2A & 2B, and in some cases may be a permanent magnet biased electromagnetic haptic engine (or a permanent magnet biased normal flux electromagnetic haptic engine).


The haptic engine 1700 may include one or more stationary portions and one or more movable portions, in addition to a constraint 1714 that is configured to constrain movement of the movable portion(s) relative to the stationary portion(s) and bias the movable portion(s) toward a rest position in which the movable portion(s) are separated from the stationary portion(s) by one or more gaps. By way of example, the stationary portion(s) may include a ferritic stator 1702 including a set of two or four components (e.g., walls) 1704, 1706, 1708, 1710 defining a channel, and the movable portion(s) may include a ferritic shuttle 1712 that is positioned in and movable within the channel. When the components of the haptic engine 1700 are assembled, the shuttle 1712 may be separated from a first component 1704 of the stator 1702 by a first gap 1716 (e.g., a first shuttle-to-stator gap), and from a second component 1706 of the stator 1702 by a second gap 1718 (e.g., a second shuttle-to-stator gap). The shuttle 1712 may be configured to move linearly (e.g., translate along an axis 1720 that perpendicularly intersects the first and second components 1704, 1706 of the stator 1702. The constraint 1714 may constrain closure of the first and second gaps 1716, 1718 and bias the shuttle 1712 toward a rest position in which the shuttle 1712 is separated from the first and second components 1708, 1710 of the stator 1702 by the first and second gaps 1716, 1718. The shuttle 1712 may be magnetically attracted to one or the other of the first and second components 1708, 1710 of the stator 1702, and may contact (e.g., crash against) the stator 1702 in the absence of the constraint 1714.


A button 1722 may be mechanically coupled to the haptic engine 1700. For example, a button 1722 may be mechanically coupled to the shuttle 1712 such that movement of the shuttle 1712 may provide a haptic output to the button 1722. In some cases, the button 1722 may be attached to the shuttle 1712 by a screw that passes through holes 1724, 1726, 1728 in the second component 1706 of the stator 1702, the shuttle 1712, and the first component 1704 of the stator 1702. The screw may be received by a threaded insert in a leg 1730 (or other button attachment member) of the button 1722, and a head of the screw may bear against a surface of the shuttle 1712.


In some embodiments, the constraint 1714 may include one or more flexures 714a. Although two flexures 714a are shown in FIG. 17A, only one flexure 1714a may be included in some embodiments. Each flexure 1714a may have shuttle attachment portions 1732a, 1732b on either side of a stator attachment portion 1734. The stator attachment portion 1734 of each flexure may extend along one side of a pair of opposite sides, and may be spaced apart from the shuttle 1712 (e.g., by a gap 1716 or gap 1718). An assembly including the flexures 1714a and the shuttle 1712 may be combined with the stator 1702 by positioning the third and fourth components 1708, 1710 of the stator 1702 within the gaps 1716, 1718. The third and fourth components 1708, 1710 may only partially fill the gaps 1716, 1718, thereby leaving space for the shuttle 1712 to translate. The stator attachment portion 1734 of one flexure 1714a may be attached to the third component 1708 of the stator 1702, and the stator attachment portion 1734 of the other flexure 1714a may be attached to the fourth component 1710 of the stator 1702. In some embodiments, a clamp 1736 (e.g., a stiffening clamp) may be welded or otherwise attached to the stator attachment portion 1734 of a flexure 1714a and used to limit the flex of the flexure 1714a along the stator attachment portion 1734. More generally, the flexure 1714a may extend in a direction transverse to a direction of linear movement of the shuttle 1712, and may be spaced apart from a first side of the shuttle 1712 that is transverse to the direction of linear movement. The flexure 1714a may connect at least one side of the shuttle 1712, other than the first side, to the stator 1702.


The shuttle attachment portions 1732a, 1732b (e.g., one or more arms or extensions extending from the stator attachment portion 1734) of a flexure 1714a may be attached to opposite sides or ends of the shuttle 1712, along an axis transverse to the axis 1720 along which the shuttle 1712 translates. In some embodiments, the shuttle attachment portions 1732a or 1732b of different flexures 1714a, which shuttle attachment portions 1732a or 1732b are attached to a same end of the shuttle 1712, may be mechanically coupled by a clamp 1738 (e.g., a stiffening clamp).


The flexure 1714a may constrain movement of the shuttle 1712 to translation movement along the axis 1720, and may provide a linearly consistent stiffness opposing the translation movement. In some cases, the flexures 1714a may be metal flexures. Each of the flexures 1714a may function similarly to the flexure 314a described with reference to FIG. 3.


As another example, the constraint 1714 may alternatively or additionally include a set of one or more elastomers (e.g., one or more elastomeric pads, such as silicone pads) or other compliant material(s) 1714b. The compliant material(s) 1714b may be disposed (positioned) between the first component 1704 of the stator 1702 and the shuttle 1712, and/or between the second component 1706 of the stator 1702 and the shuttle 1712. The compliant material(s) 1714b may constrain movement of the shuttle 1712 and bias the shuttle 1712 toward a rest position that maintains the gaps 1716 and 1718. The compliant material(s) 1714b may also damp movement of the shuttle 1712. In some cases, the compliant material(s) 1714b may be adhesively bonded to the component 1704 or 1706 of the stator 1702 and the shuttle 1712.


In some cases, the compliant material(s) 1714b may be distributed in a two or three-dimensional array.


Each of the flexure 1714a and/or the compliant material(s) 1714b may be configured to provide a first stiffness opposing the linear movement of the shuttle 1712, and a second stiffness opposing a force applied to the button 1722 (i.e., asymmetric first and second stiffnesses). This can enable the stiffnesses to be individually adjusted (e.g., to separately tune the force input and haptic output user experiences for the button 1722).


By way of example, and as shown in FIGS. 17A, 17B, & 17D, the haptic engine 1700 may include one or more permanent magnets 1740 (e.g., two permanent magnets 1740) mounted to one or each of the first and second housing components 1704, 1706 of the stator 1702, and one or more coils 1742 wound around an inward extension of one or more of the third and fourth components 1708, 1710 of the stator 1702. By way of example, the permanent magnets 1740 may be disposed on first opposite sides of the shuttle 1712, in planes parallel to the axis 1720 along which the shuttle 1712 translates. Each of the permanent magnets 1740 may be magnetized toward the shuttle 1712, with the permanent magnets 1740 on one side of the shuttle 1712 opposing the permanent magnets 1740 on the other side of the shuttle 1712. Also by way of example, the coils 1742 may be disposed on second opposite sides of the shuttle 1712 and wound in planes that bisect the axis 1720 along which the shuttle 1712 translates. The coils 1742 may be electrically connected in series or in parallel. A parallel connection of the coils 1742 may provide a reduction in the total resistance of the coils 1742, and/or may enable the use of a thinner wire to achieve the same resistance as a series connection of the coils 1742. In some alternative embodiments, permanent magnets may be positioned on two or four sides of the shuttle 1712. In the case of four permanent magnets, the sides that include the permanent magnets would not be used for the coils. In some alternative embodiments, the coils may be combined on one side of the shuttle 1712. The permanent magnets may be attached to the stator or the shuttle. When the coils 1742 are stimulated by an electrical signal (e.g., a current), the flux of a magnetic bias field created by the permanent magnets may be selectively increased, and the shuttle 1712 may overcome the biasing forces of the constraints 1714 and translate along the axis 1720. The flux is “selectively” increased in that it is increased on some faces of the shuttle 1712 and decreased on opposing faces, resulting in an increased net translational force that provides or increases a force along the axis 1720 of the shuttle 1712. In alternative embodiments of the haptic engine 1700, one or more permanent magnets and coils may be positioned about (or on) the shuttle 1712 in other ways.


As also shown in FIG. 17A, a force sensor 1744 may be at least partially attached to the haptic engine 1700 and configured to sense a force applied to the module (e.g., a force applied to a user interaction surface of the button 1722, which force is received by the shuttle 1712, the stator 1702, or a housing for the haptic engine 1700). In some embodiments, the force sensor 1744 may include one or more strain sensors 1744a attached to an exterior surface of the second component 1706 of the stator 1702, or to other surfaces of the stator 1702. In some embodiments, the strain sensors 1744a may be formed on a flex circuit 1746, and the flex circuit 1746 may be adhesively bonded or otherwise attached to a surface of the stator 1702. Alternatively, one or more strain sensors may be attached to the flexure 1714a (e.g., at or near a shuttle attachment portion 1732a, 1732b or elsewhere), or to another component. When a user applies a force to the button 1722 (e.g., presses the button 1722), the strain sensor(s) 1744a may flex. Outputs of the strain sensor(s) 1744a may change in a manner that is related to the amount or location of the force applied to the button 1722. In alternative embodiments, the strain sensors 1744a may be positioned elsewhere on the haptic engine 1700, or on a housing of the haptic engine 1700. In further alternative embodiments, the force sensor 1744 may additionally or alternatively include a capacitive force sensor or other type of force sensor, such as a capacitive force sensor having first and second spaced apart electrodes mounted in a gap between the first component 1704 of the stator 1702 and the shuttle 1712, or a capacitive force sensor having first and second spaced apart electrodes mounted between the button 1722 and the first component 1704 of the stator 1702.


In some embodiments, the flex circuit 1746 may include a circuit such as the circuit 1318 described with reference to FIG. 13A. In some embodiments, the flex circuit 1746 may be electrically coupled to an off-module processor, controller, or other circuit. In some embodiments, the flex circuit 1746, or another flex circuit that may or may not be coupled to the flex circuit 1746, may be electrically coupled to the coils 1742.


As shown in FIGS. 17A & 17C, the button 1722 may have a user interaction surface that extends parallel (or substantially parallel) to the axis 1720 along which the shuttle 1712 translates. In alternative embodiments, the button 1722 may have a user interaction surface that extends transverse to (e.g., intersects) the axis 1720 along which the shuttle 1712 translates, and the attachment member 1730 may extend through or around the flexure 1714a and fourth housing component 1710 of the stator 1702. In the latter embodiments, the button 1722 may move in and out with respect to an exterior surface of a housing, instead of translating along an exterior surface of the housing.



FIG. 18 illustrates an example method 1800 of providing a haptic response to a user. The method 1800 may be performed by, or using, any of the modules or button assemblies described herein. The method 1800 may also be performed by, or using, other modules or button assemblies.


At block 1802, the method 1800 may include constraining relative motion between a stationary portion and a movable portion of a haptic engine, to bias the movable portion toward a rest position in which the movable portion is separated from the stationary portion by a gap, and to constrain closure of the gap. The movable portion may be mechanically coupled to a button. In some embodiments, the relative motion between the stationary portion and the movable portion may be constrained to a pivot of the movable portion with respect to the stationary portion. In other embodiments, the relative motion between the stationary portion and the movable portion is constrained to translation of the movable portion along an axis. The operation(s) at block 1802 may be performed by one or more of the constrains described herein.


At block 1804, the method 1800 may include determining a force applied to the button using a force sensor (e.g., a capacitive force sensor, a strain sensor, a tactile switch, and so on). The operation(s) at block 1804 may be performed by one or more of the force sensors described herein.


At block 1806, the method 1800 may include determining the determined force matches a predetermined force. The operation(s) at block 1806 may be performed by one or more of the on-module or off-module circuits described herein.


At block 1808, the method 1800 may include identifying a haptic actuation waveform associated with the predetermined force. In some embodiments, different haptic actuation waveforms may have different amplitudes, different frequencies, and/or different patterns. The operation(s) at block 1808 may be performed by one or more of the on-module or off-module circuits described herein.


At block 1810, the method 1800 may include applying the haptic actuation waveform to the haptic engine. The operation(s) at block 1810 may be performed by one or more of the on-module or off-module circuits described herein.


In some embodiments of the method 1800, the force sensor may include at least two force sensing elements positioned at different locations relative to a user interaction surface of the button, and the force may be determined using different outputs of the different force sensing elements, as described, for example, with reference to FIGS. 13A14A. In some of these embodiments, the determined force may include a determined amount of force, and the predetermined force may include a predetermined amount of force. Additionally or alternatively, the determined force may include a determined force location, and the predetermined force may include a predetermined force location.


In some embodiments of the method 1800, the determined force may include a determined force pattern, and the predetermined force may include a predetermined force pattern.


In some embodiments of the method 1800, the relative motion between the stationary portion and the movable portion may be constrained to translation along an axis transverse to a direction of the force applied to the button. Alternatively, the relative motion may be constrained to translation along an axis parallel to the direction of the force applied to the button.


In some embodiments, the method 1800 may include measuring the gap, between the movable and stationary portions of the haptic engine, and controlling the gap's width in a closed loop fashion (e.g., to provide haptic output, or to maintain the gap width when no haptic output is being provided). The gap width may be measured capacitively, optically, or by other means.


In some embodiments, the method 1800 may not include the operations at blocks 1808 and 1810, and may instead include the operation of taking an action associated with the predetermined force, without providing a haptic output. For example, the method 1800 may include providing an input to an application or utility running on a device, altering the output of a user interface (e.g., a display) of the device, providing an audible notification, etc.



FIG. 19 shows a sample electrical block diagram of an electronic device 1900, which may be the electronic device described with reference to FIGS. 1A-1C. The electronic device 1900 may include a display 1902 (e.g., a light-emitting display), a processor 1904, a power source 1906, a memory 1908 or storage device, a sensor system 1910, and an input/output (I/O) mechanism 1912 (e.g., an input/output device and/or input/output port). The processor 1904 may control some or all of the operations of the electronic device 1900. The processor 1904 may communicate, either directly or indirectly, with substantially all of the components of the electronic device 1900. For example, a system bus or other communication mechanism 1914 may provide communication between the processor 1904, the power source 1906, the memory 1908, the sensor system 1910, and/or the input/output mechanism 1912.


The processor 1904 may be implemented as any electronic device capable of processing, receiving, or transmitting data or instructions. For example, the processor 1904 may be a microprocessor, a central processing unit (CPU), an application-specific integrated circuit (ASIC), a digital signal processor (DSP), or combinations of such devices. As described herein, the term “processor” is meant to encompass a single processor or processing unit, multiple processors, multiple processing units, or other suitably configured computing element or elements. In some embodiments, the processor 1904 may include or be an example of the circuit 1318 described with reference to FIG. 13A.


In some embodiments, the components of the electronic device 1900 may be controlled by multiple processors. For example, select components of the electronic device 1900 may be controlled by a first processor and other components of the electronic device 1900 may be controlled by a second processor, where the first and second processors may or may not be in communication with each other.


The power source 1906 may be implemented with any device capable of providing energy to the electronic device 1900. For example, the power source 1906 may be one or more batteries or rechargeable batteries. Additionally or alternatively, the power source 1906 may be a power connector or power cord that connects the electronic device 1900 to another power source, such as a wall outlet.


The memory 1908 may store electronic data that may be used by the electronic device 1900. For example, the memory 1908 may store electrical data or content such as, for example, audio and video files, documents and applications, device settings and user preferences, timing signals, control signals, data structures or databases, image data, or focus settings. The memory 1908 may be configured as any type of memory. By way of example only, the memory 1908 may be implemented as random access memory, read-only memory, Flash memory, removable memory, other types of storage elements, or combinations of such devices.


The electronic device 1900 may also include one or more sensors defining the sensor system 1910. The sensors may be positioned substantially anywhere on the electronic device 1900. The sensor(s) may be configured to sense substantially any type of characteristic, such as but not limited to, touch, force, pressure, light, heat, movement, relative motion, biometric data, and so on. For example, the sensor system 1910 may include a touch sensor, a force sensor, a heat sensor, a position sensor, a light or optical sensor, an accelerometer, a pressure sensor (e.g., a pressure transducer), a gyroscope, a magnetometer, a health monitoring sensor, and so on. Additionally, the one or more sensors may utilize any suitable sensing technology, including, but not limited to, capacitive, ultrasonic, resistive, optical, ultrasound, piezoelectric, and thermal sensing technology. In some embodiments, the sensor(s) may include the force sensor in any of the modules or button assemblies described herein.


The I/O mechanism 1912 may transmit and/or receive data from a user or another electronic device. An I/O device may include a display, a touch sensing input surface such as a track pad, one or more buttons (e.g., a graphical user interface “home” button, or one of the buttons described herein), one or more cameras, one or more microphones or speakers, one or more ports such as a microphone port, and/or a keyboard. Additionally or alternatively, an I/O device or port may transmit electronic signals via a communications network, such as a wireless and/or wired network connection. Examples of wireless and wired network connections include, but are not limited to, cellular, Wi-Fi, Bluetooth, IR, and Ethernet connections. The I/O mechanism 1912 may also provide feedback (e.g., a haptic output) to a user, and may include the haptic engine of any of the modules or button assemblies described herein.


The foregoing description, for purposes of explanation, uses specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art, after reading this description, that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art, after reading this description, that many modifications and variations are possible in view of the above teachings.

Claims
  • 1. A module, comprising: a permanent magnet biased electromagnetic haptic engine, comprising: a first stator;a second stator; anda rotor sandwiched between the first stator and the second stator;a constraint coupled to the first stator and the rotor; anda force sensor at least partially attached to the permanent magnet biased electromagnetic haptic engine and configured to sense a force applied to the rotor; wherein:the constraint is configured to, constrain closure of a pair of gaps between the rotor and the first stator, and between the rotor and the second stator, and bias the rotor toward a rest position in which the rotor is separated from the first stator and the second stator by the pair of gaps; andcause the rotor to move about an axis of the constraint when the rotor is moved by the permanent magnet biased electromagnetic haptic engine.
  • 2. The module of claim 1, wherein the rotor comprises: a core;at least one coil wound around the core; andat least one permanent magnet on a surface of the core.
  • 3. The module of claim 1, further comprising a button, mechanically coupled to the permanent magnet biased electromagnetic haptic engine.
  • 4. The module of claim 3, wherein the button is mechanically coupled to the rotor.
  • 5. The module of claim 3, wherein the constraint is attached to the permanent magnet biased electromagnetic haptic engine along the axis of the constraint, and the axis of the constraint is disposed on a same side of the rotor as the button.
  • 6. The module of claim 3, wherein the constraint is attached to the permanent magnet biased electromagnetic haptic engine along the axis of the constraint, and the axis of the constraint is disposed on a side of the rotor opposite the button.
  • 7. The module of claim 1, wherein the constraint comprises a metal flexure having rotor attachment portions on either side of a stator attachment portion.
  • 8. The module of claim 1, wherein the constraint comprises an elastomer disposed between the first stator and the rotor.
  • 9. The module of claim 1, wherein the force sensor comprises a capacitive force sensor.
  • 10. The module of claim 1, wherein the force sensor comprises a strain sensor.
  • 11. A module, comprising: a haptic engine having a movable portion sandwiched between a first stationary portion and a second stationary portion, the movable portion configured to move non-linearly when the haptic engine is stimulated by an electrical signal;a force sensor at least partially attached to the haptic engine and configured to sense a force applied to the module; anda constraint configured to constrain movement of the movable portion relative to the first stationary portion and the second stationary portion and bias the movable portion toward a rest position in which the movable portion is separated from the first stationary portion and the second stationary portion by a pair of gaps.
  • 12. The module of claim 11, wherein the constraint is configured to provide a first stiffness opposing the non-linear movement of the movable portion.
  • 13. The module of claim 11, further comprising: a button attached to the movable portion of the haptic engine; wherein:the force applied to the module comprises a force applied to the button; andthe constraint is configured to provide a second stiffness opposing a force applied to the button.
  • 14. The module of claim 11, wherein the constraint constrains movement of the movable portion to movement about a pivot axis.
  • 15. The module of claim 11, wherein the constraint comprises an elastomer.
  • 16. The module of claim 11, wherein the constraint comprises a metal flexure.
  • 17. A method of providing a haptic response to a user, comprising: using a flexure attached to a haptic engine along an axis to, constrain relative motion between a stationary portion and a movable portion of the haptic engine;bias the movable portion toward a rest position in which the movable portion is separated from the stationary portion by a gap; andconstrain closure of the gap;determining a force applied to a button using a force sensor, the button mechanically coupled to the movable portion;determining the determined force matches a predetermined force;identifying a haptic actuation waveform associated with the predetermined force; andapplying the haptic actuation waveform to the haptic engine; wherein:the application of the haptic actuation waveform to the haptic engine causes the movable portion of the haptic engine to move non-linearly about the axis along which the flexure is attached to the haptic engine.
  • 18. The method of claim 17, wherein: the force sensor comprises at least two force sensing elements positioned at different locations relative to a user interaction surface of the button;the force is determined using different outputs of the different force sensing elements;determining the force comprises determining an amount of force; anddetermining the determined force matches the predetermined force comprises determining the determined amount of force matches a predetermined amount of force.
  • 19. The method of claim 17, wherein: the force sensor comprises at least two force sensing elements positioned at different locations relative to a user interaction surface of the button;the force is determined using different outputs of the different force sensing elements;determining the force comprises determining a force location; anddetermining the determined force matches the predetermined force comprises determining the determined force location matches a predetermined force location.
  • 20. The method of claim 17, wherein: determining the force comprises determining a force pattern; anddetermining the determined force matches the predetermined force comprises determining the determined force pattern matches a predetermined force pattern.
US Referenced Citations (481)
Number Name Date Kind
3001049 Didier Sep 1961 A
3390287 Sonderegger Jun 1968 A
3419739 Clements Dec 1968 A
4236132 Zissimopoulos Nov 1980 A
4412148 Klicker et al. Oct 1983 A
4414984 Zarudiansky Nov 1983 A
4490815 Umehara et al. Dec 1984 A
4695813 Nobutoki et al. Sep 1987 A
4975616 Park Dec 1990 A
5010772 Bourland Apr 1991 A
5245734 Issartel Sep 1993 A
5283408 Chen Feb 1994 A
5293161 MacDonald et al. Mar 1994 A
5317221 Kubo et al. May 1994 A
5365140 Ohya et al. Nov 1994 A
5434549 Hirabayashi et al. Jul 1995 A
5436622 Gutman et al. Jul 1995 A
5510584 Norris Apr 1996 A
5510783 Findlater et al. Apr 1996 A
5513100 Parker et al. Apr 1996 A
5587875 Sellers Dec 1996 A
5590020 Sellers Dec 1996 A
5602715 Lempicki et al. Feb 1997 A
5619005 Shibukawa et al. Apr 1997 A
5621610 Moore et al. Apr 1997 A
5625532 Sellers Apr 1997 A
5629578 Winzer et al. May 1997 A
5635928 Takagi et al. Jun 1997 A
5718418 Gugsch Feb 1998 A
5739759 Nakazawa et al. Apr 1998 A
5742242 Sellers Apr 1998 A
5783765 Muramatsu Jul 1998 A
5793605 Sellers Aug 1998 A
5812116 Malhi Sep 1998 A
5813142 Demon Sep 1998 A
5818149 Safari et al. Oct 1998 A
5896076 Van Namen Apr 1999 A
5907199 Miller May 1999 A
5951908 Cui et al. Sep 1999 A
5959613 Rosenberg et al. Sep 1999 A
5973441 Lo et al. Oct 1999 A
5982304 Selker et al. Nov 1999 A
5982612 Roylance Nov 1999 A
5995026 Sellers Nov 1999 A
5999084 Armstrong Dec 1999 A
6069433 Lazarus et al. May 2000 A
6078308 Rosenberg et al. Jun 2000 A
6127756 Iwaki Oct 2000 A
6135886 Armstrong Oct 2000 A
6184868 Shahoian et al. Feb 2001 B1
6218966 Goodwin Apr 2001 B1
6219033 Rosenberg Apr 2001 B1
6220550 McKillip, Jr. Apr 2001 B1
6222525 Armstrong Apr 2001 B1
6252336 Hall Jun 2001 B1
6342880 Rosenberg et al. Jan 2002 B2
6351205 Armstrong Feb 2002 B1
6373465 Jolly et al. Apr 2002 B2
6408187 Merriam Jun 2002 B1
6411276 Braun et al. Jun 2002 B1
6429849 An Aug 2002 B1
6438393 Surronen Aug 2002 B1
6444928 Okamoto et al. Sep 2002 B2
6455973 Ineson Sep 2002 B1
6465921 Horng Oct 2002 B1
6552404 Hynes Apr 2003 B1
6552471 Chandran et al. Apr 2003 B1
6557072 Osborn Apr 2003 B2
6642857 Schediwy Nov 2003 B1
6693626 Rosenberg Feb 2004 B1
6717573 Shahoian et al. Apr 2004 B1
6809462 Pelrine et al. Oct 2004 B2
6809727 Piot et al. Oct 2004 B2
6864877 Braun et al. Mar 2005 B2
6906697 Rosenberg Jun 2005 B2
6906700 Armstrong Jun 2005 B1
6906703 Vablais et al. Jun 2005 B2
6952203 Banerjee et al. Oct 2005 B2
6954657 Bork et al. Oct 2005 B2
6963762 Kaaresoja et al. Nov 2005 B2
6995752 Lu Feb 2006 B2
7005811 Wakuda et al. Feb 2006 B2
7016707 Fujisawa et al. Mar 2006 B2
7022927 Hsu Apr 2006 B2
7023112 Miyamoto et al. Apr 2006 B2
7081701 Yoon et al. Jul 2006 B2
7091948 Chang et al. Aug 2006 B2
7121147 Okada Oct 2006 B2
7123948 Nielsen Oct 2006 B2
7130664 Williams Oct 2006 B1
7136045 Rosenberg et al. Nov 2006 B2
7158122 Roberts Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7162928 Shank et al. Jan 2007 B2
7170498 Huang Jan 2007 B2
7176906 Williams et al. Feb 2007 B2
7180500 Marvit et al. Feb 2007 B2
7182691 Schena Feb 2007 B1
7194645 Bieswanger et al. Mar 2007 B2
7217891 Fischer et al. May 2007 B2
7218310 Tierling et al. May 2007 B2
7219561 Okada May 2007 B2
7253350 Noro et al. Aug 2007 B2
7269484 Hein Sep 2007 B2
7333604 Zernovizky et al. Feb 2008 B2
7334350 Ellis Feb 2008 B2
7348968 Dawson Mar 2008 B2
7388741 Konuma et al. Jun 2008 B2
7392066 Hapamas Jun 2008 B2
7423631 Shahoian et al. Sep 2008 B2
7446752 Goldenberg et al. Nov 2008 B2
7469155 Chu Dec 2008 B2
7469595 Kessler et al. Dec 2008 B2
7471033 Thiesen et al. Dec 2008 B2
7495358 Kobayashi et al. Feb 2009 B2
7508382 Denoue et al. Mar 2009 B2
7561142 Shahoian et al. Jul 2009 B2
7562468 Ellis Jul 2009 B2
7569086 Chandran Aug 2009 B2
7575368 Guillaume Aug 2009 B2
7586220 Roberts Sep 2009 B2
7619498 Miura Nov 2009 B2
7639232 Grant et al. Dec 2009 B2
7641618 Noda et al. Jan 2010 B2
7649305 Priya et al. Jan 2010 B2
7675253 Dorel Mar 2010 B2
7675414 Ray Mar 2010 B2
7679611 Schena Mar 2010 B2
7707742 Ellis May 2010 B2
7710399 Bruneau et al. May 2010 B2
7732951 Mukaide Jun 2010 B2
7737828 Yang et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7788032 Moloney Aug 2010 B2
7793429 Ellis Sep 2010 B2
7793430 Ellis Sep 2010 B2
7798982 Zets et al. Sep 2010 B2
7868489 Amemiya et al. Jan 2011 B2
7886621 Smith et al. Feb 2011 B2
7888892 McReynolds et al. Feb 2011 B2
7893922 Klinghult et al. Feb 2011 B2
7919945 Houston et al. Apr 2011 B2
7929382 Yamazaki Apr 2011 B2
7946483 Miller et al. May 2011 B2
7952261 Lipton et al. May 2011 B2
7952566 Poupyrev et al. May 2011 B2
7956770 Klinghult et al. Jun 2011 B2
7961909 Mandella et al. Jun 2011 B2
8018105 Erixon et al. Sep 2011 B2
8031172 Kruse et al. Oct 2011 B2
8044940 Narusawa Oct 2011 B2
8069881 Cunha Dec 2011 B1
8072418 Crawford et al. Dec 2011 B2
8077145 Rosenberg et al. Dec 2011 B2
8081156 Ruettiger Dec 2011 B2
8082640 Takeda Dec 2011 B2
8084968 Murray et al. Dec 2011 B2
8098234 Lacroix et al. Jan 2012 B2
8123660 Kruse et al. Feb 2012 B2
8125453 Shahoian et al. Feb 2012 B2
8141276 Ellis Mar 2012 B2
8156809 Tierling et al. Apr 2012 B2
8169401 Hardwick May 2012 B2
8174344 Yakima et al. May 2012 B2
8174372 da Costa May 2012 B2
8179202 Cruz-Hernandez et al. May 2012 B2
8188623 Park May 2012 B2
8205356 Ellis Jun 2012 B2
8210942 Shimabukuro et al. Jul 2012 B2
8232494 Purcocks Jul 2012 B2
8242641 Bae Aug 2012 B2
8248277 Peterson et al. Aug 2012 B2
8248278 Schlosser et al. Aug 2012 B2
8253686 Kyung et al. Aug 2012 B2
8255004 Huang et al. Aug 2012 B2
8261468 Ellis Sep 2012 B2
8264465 Grant et al. Sep 2012 B2
8270114 Argumedo et al. Sep 2012 B2
8270148 Griffith et al. Sep 2012 B2
8288899 Park et al. Oct 2012 B2
8291614 Ellis Oct 2012 B2
8294600 Peterson et al. Oct 2012 B2
8315746 Cox et al. Nov 2012 B2
8344834 Niiyama Jan 2013 B2
8378797 Pance et al. Feb 2013 B2
8378798 Bells et al. Feb 2013 B2
8378965 Gregorio et al. Feb 2013 B2
8384316 Houston et al. Feb 2013 B2
8384679 Paleczny et al. Feb 2013 B2
8390594 Modarres et al. Mar 2013 B2
8395587 Cauwels et al. Mar 2013 B2
8398570 Mortimer et al. Mar 2013 B2
8411058 Wong et al. Apr 2013 B2
8446264 Tanase May 2013 B2
8451255 Weber et al. May 2013 B2
8461951 Gassmann et al. Jun 2013 B2
8466889 Tong et al. Jun 2013 B2
8471690 Hennig et al. Jun 2013 B2
8487759 Hill Jul 2013 B2
8515398 Song et al. Aug 2013 B2
8542134 Peterson et al. Sep 2013 B2
8545322 George et al. Oct 2013 B2
8547341 Takashima et al. Oct 2013 B2
8547350 Anglin et al. Oct 2013 B2
8552859 Pakula et al. Oct 2013 B2
8570291 Motomura Oct 2013 B2
8575794 Lee et al. Nov 2013 B2
8587955 DiFonzo et al. Nov 2013 B2
8598893 Camus Dec 2013 B2
8599047 Schlosser et al. Dec 2013 B2
8599152 Wurtenberger et al. Dec 2013 B1
8600354 Esaki Dec 2013 B2
8614431 Huppi et al. Dec 2013 B2
8621348 Ramsay et al. Dec 2013 B2
8629843 Steeves et al. Jan 2014 B2
8633916 Bernstein et al. Jan 2014 B2
8674941 Casparian et al. Mar 2014 B2
8680723 Subramanian Mar 2014 B2
8681092 Harada et al. Mar 2014 B2
8682396 Yang et al. Mar 2014 B2
8686952 Burrough et al. Apr 2014 B2
8710966 Hill Apr 2014 B2
8717309 Almalki May 2014 B2
8723813 Park et al. May 2014 B2
8735755 Peterson et al. May 2014 B2
8760273 Casparian et al. Jun 2014 B2
8780060 Maschmeyer et al. Jul 2014 B2
8787006 Golko et al. Jul 2014 B2
8797152 Henderson et al. Aug 2014 B2
8798534 Rodriguez et al. Aug 2014 B2
8803842 Wakasugi et al. Aug 2014 B2
8836502 Culbert et al. Sep 2014 B2
8857248 Shih et al. Oct 2014 B2
8860562 Hill Oct 2014 B2
8861776 Lastrucci Oct 2014 B2
8866600 Yang et al. Oct 2014 B2
8890668 Pance et al. Nov 2014 B2
8918215 Bosscher et al. Dec 2014 B2
8928621 Ciesla et al. Jan 2015 B2
8947383 Ciesla et al. Feb 2015 B2
8948821 Newham et al. Feb 2015 B2
8952937 Shih et al. Feb 2015 B2
8970534 Adachi et al. Mar 2015 B2
8976141 Myers et al. Mar 2015 B2
9008730 Kim et al. Apr 2015 B2
9012795 Niu Apr 2015 B2
9013426 Cole et al. Apr 2015 B2
9019088 Zawacki et al. Apr 2015 B2
9024738 Van Schyndel et al. May 2015 B2
9035887 Prud'Hommeaux et al. May 2015 B1
9072576 Nishiura Jul 2015 B2
9083821 Hughes Jul 2015 B2
9092129 Abdo et al. Jul 2015 B2
9098991 Park et al. Aug 2015 B2
9117347 Matthews Aug 2015 B2
9122325 Peshkin et al. Sep 2015 B2
9131039 Behles Sep 2015 B2
9134834 Reshef Sep 2015 B2
9141225 Cok et al. Sep 2015 B2
9158379 Cruz-Hernandez et al. Oct 2015 B2
9178509 Bernstein Nov 2015 B2
9189932 Kerdemelidis et al. Nov 2015 B2
9201458 Hunt et al. Dec 2015 B2
9202355 Hill Dec 2015 B2
9235267 Pope et al. Jan 2016 B2
9274601 Faubert et al. Mar 2016 B2
9274602 Garg et al. Mar 2016 B2
9274603 Modarres et al. Mar 2016 B2
9275815 Hoffmann Mar 2016 B2
9285923 Liao et al. Mar 2016 B2
9293054 Bruni et al. Mar 2016 B2
9300181 Maeda et al. Mar 2016 B2
9310906 Yumiki et al. Apr 2016 B2
9310950 Takano et al. Apr 2016 B2
9317116 Ullrich et al. Apr 2016 B2
9317118 Puskarich Apr 2016 B2
9317154 Perlin et al. Apr 2016 B2
9318942 Sugita et al. Apr 2016 B2
9325230 Yamada et al. Apr 2016 B2
9357052 Ullrich May 2016 B2
9360944 Pinault Jun 2016 B2
9367238 Tanada Jun 2016 B2
9380145 Tartz et al. Jun 2016 B2
9390599 Weinberg Jul 2016 B2
9396434 Rothkopf Jul 2016 B2
9405369 Modarres et al. Aug 2016 B2
9411423 Heubel Aug 2016 B2
9417695 Griffin et al. Aug 2016 B2
9430042 Levin Aug 2016 B2
9448713 Cruz-Hernandez et al. Sep 2016 B2
9449476 Lynn Sep 2016 B2
9454239 Elias et al. Sep 2016 B2
9467033 Jun et al. Oct 2016 B2
9468846 Terrell et al. Oct 2016 B2
9471172 Sirois Oct 2016 B2
9477342 Daverman et al. Oct 2016 B2
9480947 Jiang et al. Nov 2016 B2
9501912 Havskjold et al. Nov 2016 B1
9542028 Filiz et al. Jan 2017 B2
9544694 Abe et al. Jan 2017 B2
9564029 Morrell et al. Feb 2017 B2
9576445 Cruz-Hernandez Feb 2017 B2
9608506 Degner et al. Mar 2017 B2
9622214 Ryu Apr 2017 B2
9640048 Hill May 2017 B2
9652040 Martinez et al. May 2017 B2
9659482 Yang et al. May 2017 B2
9665198 Kies et al. May 2017 B2
9692286 Endo et al. Jun 2017 B2
9594450 Lynn et al. Jul 2017 B2
9696803 Curz-Hernandez et al. Jul 2017 B2
9710061 Pance et al. Jul 2017 B2
9727157 Ham et al. Aug 2017 B2
9733704 Cruz-Hernandez et al. Aug 2017 B2
9746945 Sheynblat et al. Aug 2017 B2
9778743 Grant et al. Oct 2017 B2
9779592 Hoen Oct 2017 B1
9785251 Martisauskas Oct 2017 B2
9823833 Grant et al. Nov 2017 B2
9830782 Morrell et al. Nov 2017 B2
9831871 Lee et al. Nov 2017 B2
9836123 Gipson et al. Dec 2017 B2
9846484 Shah Dec 2017 B2
9857872 Terlizzi et al. Jan 2018 B2
9870053 Modarres et al. Jan 2018 B2
9886093 Moussette et al. Feb 2018 B2
9891708 Cruz-Hernandez et al. Feb 2018 B2
9904393 Frey et al. Feb 2018 B2
9911553 Bernstein Mar 2018 B2
9928950 Lubinski et al. Mar 2018 B2
9934661 Hill Apr 2018 B2
9970757 Das et al. May 2018 B2
9990099 Ham et al. Jun 2018 B2
9997306 Bernstein Jun 2018 B2
10013058 Puskarich et al. Jul 2018 B2
10038361 Hajati et al. Jul 2018 B2
10039080 Miller et al. Jul 2018 B2
10067585 Kim Sep 2018 B2
10069392 Degner et al. Sep 2018 B2
10120446 Pance et al. Nov 2018 B2
10126817 Morrell et al. Nov 2018 B2
10127778 Hajati et al. Nov 2018 B2
10133352 Lee et al. Nov 2018 B2
10139907 Billington Nov 2018 B2
10139959 Butler et al. Nov 2018 B2
10146309 Tissot et al. Dec 2018 B2
10152116 Wang et al. Dec 2018 B2
10198097 Lynn et al. Feb 2019 B2
10236760 Moussette et al. Mar 2019 B2
10268272 Chen Apr 2019 B2
10276001 Smith et al. Apr 2019 B2
20020194284 Haynes Dec 2002 A1
20030210259 Liu Nov 2003 A1
20040021663 Suzuki et al. Feb 2004 A1
20040127198 Roskind et al. Jul 2004 A1
20050057528 Kleen Mar 2005 A1
20050107129 Kaewell et al. May 2005 A1
20050110778 Ben Ayed May 2005 A1
20050118922 Endo Jun 2005 A1
20050217142 Ellis Oct 2005 A1
20050237306 Klein et al. Oct 2005 A1
20050248549 Dietz et al. Nov 2005 A1
20050258715 Schlabach Nov 2005 A1
20060014569 DelGiorno Jan 2006 A1
20060154674 Landschaft et al. Jul 2006 A1
20060209037 Wang et al. Sep 2006 A1
20060239746 Grant Oct 2006 A1
20060252463 Liao Nov 2006 A1
20070043725 Hotelling et al. Feb 2007 A1
20070099574 Wang May 2007 A1
20070152974 Kim et al. Jul 2007 A1
20070168430 Brun et al. Jul 2007 A1
20070178942 Sadler et al. Aug 2007 A1
20070188450 Hernandez et al. Aug 2007 A1
20080084384 Gregorio et al. Apr 2008 A1
20080165148 Williamson Jul 2008 A1
20080181501 Faraboschi Jul 2008 A1
20080181706 Jackson Jul 2008 A1
20080192014 Kent et al. Aug 2008 A1
20080204428 Pierce et al. Aug 2008 A1
20080255794 Levine Oct 2008 A1
20090002328 Ullrich et al. Jan 2009 A1
20090115734 Fredriksson et al. May 2009 A1
20090120105 Ramsay et al. May 2009 A1
20090128503 Grant et al. May 2009 A1
20090135142 Fu et al. May 2009 A1
20090167702 Nurmi Jul 2009 A1
20090218148 Hugeback et al. Sep 2009 A1
20090225046 Kim et al. Sep 2009 A1
20090236210 Clark et al. Sep 2009 A1
20090267892 Faubert Oct 2009 A1
20090291670 Sennett et al. Nov 2009 A1
20100020036 Hui et al. Jan 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100079264 Hoellwarth Apr 2010 A1
20100089735 Takeda et al. Apr 2010 A1
20100141408 Doy et al. Jun 2010 A1
20100141606 Bae et al. Jun 2010 A1
20100148944 Kim et al. Jun 2010 A1
20100152620 Ramsay et al. Jun 2010 A1
20100164894 Kim et al. Jul 2010 A1
20100188422 Shingai et al. Jul 2010 A1
20100231508 Cruz-Hernandez et al. Sep 2010 A1
20100265197 Purdy Oct 2010 A1
20100328229 Weber et al. Dec 2010 A1
20110007023 Abrahamsson et al. Jan 2011 A1
20110053577 Lee et al. Mar 2011 A1
20110107958 Pance et al. May 2011 A1
20110121765 Anderson et al. May 2011 A1
20110128239 Polyakov et al. Jun 2011 A1
20110148608 Grant et al. Jun 2011 A1
20110157052 Lee et al. Jun 2011 A1
20110163985 Bae et al. Jul 2011 A1
20110248948 Griffin et al. Oct 2011 A1
20110260988 Colgate et al. Oct 2011 A1
20110263200 Thornton et al. Oct 2011 A1
20110291950 Tong Dec 2011 A1
20110304559 Pasquero Dec 2011 A1
20120075198 Sulem et al. Mar 2012 A1
20120092263 Peterson et al. Apr 2012 A1
20120126959 Zarrabi et al. May 2012 A1
20120133494 Cruz-Hernandez et al. May 2012 A1
20120139844 Ramstein et al. Jun 2012 A1
20120206248 Biggs Aug 2012 A1
20120256848 Madabusi Srinivasan Oct 2012 A1
20120274578 Snow et al. Nov 2012 A1
20120280927 Ludwig Nov 2012 A1
20120319987 Woo Dec 2012 A1
20120327006 Israr et al. Dec 2012 A1
20130027345 Binzel Jan 2013 A1
20130033967 Chuang et al. Feb 2013 A1
20130058816 Kim Mar 2013 A1
20130106699 Babatunde May 2013 A1
20130191741 Dickinson et al. Jul 2013 A1
20130207793 Weaber et al. Aug 2013 A1
20130217491 Hilbert et al. Aug 2013 A1
20130228023 Drasnin et al. Sep 2013 A1
20130261811 Yagi et al. Oct 2013 A1
20130300590 Dietz et al. Nov 2013 A1
20140082490 Jung et al. Mar 2014 A1
20140085065 Biggs et al. Mar 2014 A1
20140143785 Mistry et al. May 2014 A1
20140168153 Deichmann et al. Jun 2014 A1
20140197936 Biggs et al. Jul 2014 A1
20140232534 Birnbaum et al. Aug 2014 A1
20140267076 Birnbaum et al. Sep 2014 A1
20150005039 Liu et al. Jan 2015 A1
20150040005 Faaborg Feb 2015 A1
20150098309 Adams et al. Apr 2015 A1
20150145783 Redelsheimer May 2015 A1
20150169059 Behles et al. Jun 2015 A1
20150194165 Faaborg et al. Jul 2015 A1
20150296480 Kinsey et al. Oct 2015 A1
20160103544 Filiz et al. Apr 2016 A1
20160206921 Szabados et al. Jul 2016 A1
20160216766 Puskarich Jul 2016 A1
20160233012 Lubinski Aug 2016 A1
20160241119 Keeler Aug 2016 A1
20160259480 Augenbergs et al. Sep 2016 A1
20160306423 Uttermann et al. Oct 2016 A1
20170038905 Bijamov et al. Feb 2017 A1
20170070131 Degner et al. Mar 2017 A1
20170090667 Abdollahian et al. Mar 2017 A1
20170192508 Lim et al. Jul 2017 A1
20170242541 Iuchi et al. Aug 2017 A1
20170255295 Tanemura et al. Sep 2017 A1
20170311282 Miller et al. Oct 2017 A1
20170357325 Yang et al. Dec 2017 A1
20170364158 Wen et al. Dec 2017 A1
20180052550 Zhang et al. Feb 2018 A1
20180060941 Yang et al. Mar 2018 A1
20180075715 Morrell et al. Mar 2018 A1
20180081441 Pedder et al. Mar 2018 A1
20180174409 Hill Jun 2018 A1
20180194229 Wachinger Jul 2018 A1
20180203513 Rihn Jul 2018 A1
20180302881 Miller et al. Oct 2018 A1
20180365466 Shim et al. Dec 2018 A1
20180369865 Shoji et al. Dec 2018 A1
20190094967 Bisbee Mar 2019 A1
20190159170 Miller et al. May 2019 A1
Foreign Referenced Citations (112)
Number Date Country
2015100710 Jul 2015 AU
2016100399 May 2016 AU
2355434 Feb 2002 CA
1324030 Nov 2001 CN
1692371 Nov 2005 CN
1817321 Aug 2006 CN
101120290 Feb 2008 CN
101409164 Apr 2009 CN
101763192 Jun 2010 CN
101903848 Dec 2010 CN
101938207 Jan 2011 CN
102025257 Apr 2011 CN
201829004 May 2011 CN
102163076 Aug 2011 CN
102246122 Nov 2011 CN
102315747 Jan 2012 CN
102576252 Jul 2012 CN
102591512 Jul 2012 CN
102667681 Sep 2012 CN
102713805 Oct 2012 CN
102768593 Nov 2012 CN
102844972 Dec 2012 CN
102859618 Jan 2013 CN
102915111 Feb 2013 CN
103019569 Apr 2013 CN
103154867 Jun 2013 CN
103181090 Jun 2013 CN
103218104 Jul 2013 CN
103278173 Sep 2013 CN
103416043 Nov 2013 CN
103440076 Dec 2013 CN
103567135 Feb 2014 CN
103970339 Aug 2014 CN
104220963 Dec 2014 CN
104508596 Apr 2015 CN
104956244 Sep 2015 CN
205004230 Jan 2016 CN
105556268 May 2016 CN
107810123 Mar 2018 CN
108227937 Jun 2018 CN
19517630 Nov 1996 DE
10330024 Jan 2005 DE
102009038103 Feb 2011 DE
102011115762 Apr 2013 DE
0483955 May 1992 EP
1047258 Oct 2000 EP
1686776 Aug 2006 EP
2060967 May 2009 EP
2073099 Jun 2009 EP
2194444 Jun 2010 EP
2264562 Dec 2010 EP
2315186 Apr 2011 EP
2374430 Oct 2011 EP
2395414 Dec 2011 EP
2461228 Jun 2012 EP
2631746 Aug 2013 EP
2434555 Oct 2013 EP
H05301342 Nov 1993 JP
2002199689 Jul 2002 JP
2002102799 Sep 2002 JP
200362525 Mar 2003 JP
2003527046 Sep 2003 JP
200494389 Mar 2004 JP
2004236202 Aug 2004 JP
2006150865 Jun 2006 JP
2007519099 Jul 2007 JP
2010272903 Dec 2010 JP
2012135755 Jul 2012 JP
2014002729 Jan 2014 JP
2014509028 Apr 2014 JP
2014235133 Dec 2014 JP
2015502456 Jul 2015 JP
2016095552 May 2016 JP
20050033909 Apr 2005 KR
1020100046602 May 2010 KR
1020110101516 Sep 2011 KR
20130024420 Mar 2013 KR
200518000 Nov 2007 TW
200951944 Dec 2009 TW
201145336 Dec 2011 TW
201218039 May 2012 TW
201425180 Jul 2014 TW
WO 97016932 May 1997 WO
WO 00051190 Aug 2000 WO
WO 01059558 Aug 2001 WO
WO 01089003 Nov 2001 WO
WO 02073587 Sep 2002 WO
WO 03038800 May 2003 WO
WO 03100550 Dec 2003 WO
WO 06057770 Jun 2006 WO
WO 07114631 Oct 2007 WO
WO 08075082 Jun 2008 WO
WO 09038862 Mar 2009 WO
WO 09068986 Jun 2009 WO
WO 09097866 Aug 2009 WO
WO 09122331 Oct 2009 WO
WO 09150287 Dec 2009 WO
WO 10085575 Jul 2010 WO
WO 10087925 Aug 2010 WO
WO 11007263 Jan 2011 WO
WO 12052635 Apr 2012 WO
WO 12129247 Sep 2012 WO
WO 13069148 May 2013 WO
WO 13150667 Oct 2013 WO
WO 13169299 Nov 2013 WO
WO 13169302 Nov 2013 WO
WO 13173838 Nov 2013 WO
WO 13186846 Dec 2013 WO
WO 13186847 Dec 2013 WO
WO 14018086 Jan 2014 WO
WO 14098077 Jun 2014 WO
WO 15023670 Feb 2015 WO
Non-Patent Literature Citations (8)
Entry
U.S. Appl. No. 16/146,384, filed Sep. 28, 2018, Shahidi et al.
Actuator definition downloaded from http://www.thefreedictionary.com/actuator on May 3, 2018, 2 pages.
Astronomer's Toolbox, “The Electromagnetic Spectrum,” http://imagine.gsfc.nasa.gov/science/toolbox/emspectrum1.html, updated Mar. 2013, 4 pages.
Nasser et al., “Preliminary Evaluation of a Shape-Memory Alloy Tactile Feedback Display,” Advances in Robotics, Mechantronics, and Haptic Interfaces, ASME, DSC—vol. 49, pp. 73-80, 1993.
Hill et al., “Real-time Estimation of Human Impedance for Haptic Interfaces,” Stanford Telerobotics Laboratory, Department of Mechanical Engineering, Stanford University, Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, Utah, Mar. 18-20, 2009, pp. 440-445.
Kim et al., “Tactile Rendering of 3D Features on Touch Surfaces,” UIST '13, Oct. 8-11, 2013, St. Andrews, United Kingdom, 8 pages.
Lee et al, “Haptic Pen: Tactile Feedback Stylus for Touch Screens,” Mitsubishi Electric Research Laboratories, http://wwwlmerl.com, 6 pages, Oct. 2004.
Nakamura, “A Torso Haptic Display Based on Shape Memory Alloy Actuators,” Massachusetts Institute of Technology, 2003, pp. 1-123.
Related Publications (1)
Number Date Country
20200103968 A1 Apr 2020 US