This application claims the benefit of Taiwan application Serial No. 100144045, filed Nov. 30, 2011, the subject matter of which is incorporated herein by reference.
1. Field of the Invention
The invention relates in general to an input device, and more particularly to a button structure and a keyboard structure using the button structure.
2. Description of the Related Art
Applications of input devices prevail along with research and development of input devices. A most common input device is, e.g., a keyboard, a touch panel or a mouse. Taking a keyboard for example, a keyboard includes several button structures corresponding to different characters or symbols. When the buttons are pressed by a user, signals of the corresponding characters or symbols are then inputted to an electronic device. A current keyboard button generally includes a key cap, a scissor structure and a base plate. The scissor structure is disposed between the base plate and the key cap to support the cap key and allow the key cap to vertically move relative to the base plate. A conventional scissor structure is a plastic material that is first formed by a mold opening process, followed by manually assembling two stands of the scissor structure to allow the two stands to be pivotally connected and slide against each other. However, the convention scissor structure suffers from several drawbacks. First of all, the convention scissor structure has a high mold cost and its assembly process is quite timing consuming. Also, the two stands of the convention scissor structure are pivotally connected via a short axis that easily breaks during the assembly process. Further, the plastic material offers inadequate strength and is necessarily increased in thickness in order to provide reinforced strength. The increased thickness undesirably affects an overall height of the button structure and thus fails to meet requirements for a compact design.
Therefore, there is a need for a solution that overcomes structural and assembly issues of a conventional button structure.
The invention is directed to a button structure and a keyboard structure using the button structure for overcoming structural and assembly issues of a conventional button structure.
According to an aspect of the present invention, a button structure is provided. The button structure includes a key cap, a first supporting member, a second supporting member, an elastomer and a base plate. The first supporting member connects to a bottom of the key cap. The first supporting member has a first bending portion and a second bending portion. The second supporting member connects to the bottom of the key cap and cross-connects with the first supporting member. The second supporting member has a third bending portion and a fourth bending portion. The third bending portion passes through the first bending portion and abuts an inside of the first bending portion. The second bending portion passes through the fourth bending portion and abuts an inside of the fourth bending portion. The elastomer is located below the key cap and supports the key cap. The base plate is for supporting the first supporting member, the second supporting member and the elastomer. The key cap is able to move up and down through operations of the first supporting member, the second supporting member and the elastomer.
According to another aspect of the present invention, a keyboard structure is provided. The keyboard structure includes a flexible printed circuit board and a plurality of button structures. The button structures are for touching the flexible printed circuit board. Each of the button structures includes a key cap, a first supporting member, a second supporting member, an elastomer and a base plate. The first supporting member connects to a bottom of the key cap. The first supporting member has a first bending portion and a second bending portion. The second supporting member connects to the bottom of the key cap and cross-connects with the first supporting member. The second supporting member has a third bending portion and a fourth bending portion. The third bending portion passes through the first bending portion and abuts an inside of the first bending portion. The second bending portion passes through the fourth bending portion and abuts an inside of the fourth bending portion. The elastomer is located below the key cap and supports the key cap. The base plate is for supporting the first supporting member, the second supporting member and the elastomer. The key cap is able to move up and down through operations of the first supporting member, the second supporting member and the elastomer.
The above and other aspects of the invention will become better understood with regard to the following detailed description of the preferred but non-limiting embodiment(s). The following description is made with reference to the accompanying drawings.
According to an embodiment of a button structure and a keyboard structure using the button structure, a first supporting member and a second supporting member are manufactured from a metal (or a bendable and flexible material). The first and second supporting members abut each other through respective bending portions, and are capable of cross-connected movements. Accordingly, when a key cap is moved up and down, the first and second supporting members steadily support a bottom of a key cap such that the key cap is not horizontally wavered or bears uneven stress.
Various embodiments shall be described below to better understand details and spirit of the present invention. It should be noted that the embodiments are for illustrating the present invention rather than limiting the present invention therein.
For example, the second bending portion 124 and the third bending portion 132 are bent as a slanted step. That is, one side of the second bending portion 124 and the third bending portion 132 is higher and the other side is lower, with a slanted middle part connecting the two sides, to appear as a shape of a slide. Referring to an enlarged view at the left of
Referring to
Similarly, the second supporting member 130 includes a third arm 131, a fourth arm 133 and a second connecting rod 135. The second connecting rod 135 is for supporting the key cap 110, and connects between the third arm 131 and the fourth arm 133. The third bending portion 132 is located at the third arm 131 to form a slanted-step third arm 131. The fourth bending portion 134 is located at the fourth arm 133 to form a horseshoe fourth arm 133. Thus, the third arm 131 and the fourth arm 133 are differently shaped. The third arm 131, the fourth arm 133 and the second connecting rod 135 are integrally formed by bending a metal wire. Directions of movements at ends of the third arm 131 and the fourth arm 133 are limited by a limiting element 155b, such that the ends are only capable of horizontal movements on the surface of the base plate 150. After bending the metal wire, the first supporting member 120 and the second supporting member 130 may form two supporting members having a same shape but arranged in opposite directions.
In the embodiment, the first arm 121 may be located at one side of the third arm 131 (e.g., an outer side of the third arm 131), and the first arm 121 and the third arm 131 are overlapped at an abutting point. The second arm 123 is located at one side of the fourth arm 133 (e.g., an inner side of the fourth arm 133), and the second arm 123 and the fourth arm 133 are overlapped at an abutting point. In another embodiment, the first arm 121 may be located at an inner side of the third arm 131, and the second arm 123 may be located at an outer side of the fourth arm 133. In an alternative embodiment, the first arm 121 and the second arm 123 may both be located at the inner sides, or both located at the outer sides. The relative positions above are not to be construed as limiting the present invention.
Since the first supporting member 120 and the second supporting member 130 are made of a wire that needs no additionally dedicated mold and the wires are cross-connected instead of being connecting by axle holes, an assembly process is kept simple while cost for molding is eliminated. Further, the wires, advantaged by being small in size, light in weight and high in strength, are capable of reducing overall weight and height of the keyboard structure 10 to fulfill requirements for a compact design.
While the invention has been described by way of example and in terms of the preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
100144045 A | Nov 2011 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4349286 | Blaser et al. | Sep 1982 | A |
4729679 | Hou | Mar 1988 | A |
6268578 | Nakai | Jul 2001 | B1 |
6733196 | Lee et al. | May 2004 | B2 |
20100231423 | Yang | Sep 2010 | A1 |
20100243419 | Lee | Sep 2010 | A1 |
Entry |
---|
TW Office Action dated Dec. 11, 2013. |
Number | Date | Country | |
---|---|---|---|
20130134022 A1 | May 2013 | US |