Buttress and surgical stapling apparatus

Information

  • Patent Grant
  • 8496683
  • Patent Number
    8,496,683
  • Date Filed
    Monday, October 17, 2011
    13 years ago
  • Date Issued
    Tuesday, July 30, 2013
    11 years ago
Abstract
Multilayer structures including a porous layer and a non-porous layer are useful as buttresses when associated with a surgical stapling apparatus.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to surgical buttresses which can be releasably attached to a surgical stapling apparatus. The buttresses contain a porous layer and a non-porous layer.


2. Background of Related Art


Surgical stapling devices have found widespread application in surgical operations where body tissue must be joined or removed. When operating on certain tissue, such as lung, esophageal, intestinal, duodenal, and vascular tissue, it is important to effectively seal the tissue which can be particularly prone to air or fluid leakage. Preventing or reducing air or fluid leakage can significantly decrease post operative recovery time. Thus, it would be advantageous to provide a material for use with a surgical stapling device which enhances sealing at the surgical wound site.


SUMMARY

Buttresses having a porous layer and a non-porous layer are described herein. The multilayer buttresses are suitable for use in connection with a surgical stapling apparatus and assist in the sealing of tissue to prevent the leakage of fluids and gases. The surgical stapling apparatus includes a staple cartridge having a surface with at least one opening through which a staple may be ejected. The surgical stapling apparatus further includes an anvil having a surface against which an ejected staple may be deformed. A buttress in accordance with the present disclosure may be associated with either the staple cartridge, the anvil, or both.


In embodiments, the porous layer possesses haemostatic properties. In embodiments, the non-porous layer has anti-adhesion properties.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of one illustrative embodiment of a linear surgical stapling apparatus.



FIG. 2A is a perspective view of a staple cartridge that includes a multilayer buttress in accordance with the present disclosure.



FIG. 2B is a perspective view of a staple anvil that includes a multilayer buttress in accordance with the present disclosure.



FIG. 3A is a side view of a multilayer buttress as described in one embodiment herein.



FIG. 3B is a side view of a multilayer buttress as described in one embodiment herein.



FIG. 3C shows an illustrative embodiment wherein fibers present in more than one layer are used as the reinforcement member, with the fibers in one layer being oriented in a first common direction and the fibers in the other layer being oriented in a second common direction that is substantially perpendicular to the first common direction.



FIG. 3D shows an illustrative embodiment wherein chopped fibers are used as the reinforcement member.



FIG. 4 is a perspective view of a staple cartridge that includes a multilayer buttress releasably attached thereto.



FIG. 5A schematically shows a porous layer wherein the pores or openings extend across the entire thickness thereof in accordance with embodiments of the present disclosure.



FIG. 5B schematically shows a porous layer wherein the pores or openings do not extend across the entire thickness thereof in accordance with embodiments of the present disclosure.



FIG. 5C schematically shows a porous layer wherein the pores or openings are present on only a portion of the surface thereof in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Embodiments of the presently disclosed multilayer buttress and surgical stapling apparatus will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements.


The multilayer surgical buttress described herein may be used in sealing a wound by approximating the edges of wound tissue between the staple cartridge and the staple anvil of a stapling apparatus which contains at least one multilayer surgical buttress having a non-porous layer and a porous layer and firing the stapling apparatus to force at least one staple to pass through the openings on the staple cartridge, at least one multilayer buttress, the tissue and the openings on the staple anvil to seal the tissue. Once stapled in place the porous layer advantageously reduces bleeding, assists in sealing the wound and allowing tissue ingrowth, if desired, while the non-porous layer provides support for the porous layer and may assist in preventing the formation of adhesions. In addition, the multilayer buttress may optionally include an additional reinforcement member (which, as described in more detailed below, may be absorbable or non-absorbable) to provide additional support to the multilayer buttress and assist in preventing tears during stapling.


It should be understood that buttresses need not be associated with both the staple cartridge and the anvil. Rather, a buttress may be associated with only the staple cartridge and not the anvil or with the anvil and not the staple cartridge. In addition, the multilayer surgical buttress described herein may be configured into any shape, size or dimension suitable to fit any surgical stapling, fastening or firing apparatus. Other examples of stapling apparatus which may utilize the multilayer buttress material described herein includes laparoscopic staplers (see, e.g., U.S. Pat. Nos. 6,330,965 and 6,241,139, the entire contents of which are incorporated herein by this reference), alternative stapling apparatus of the transverse anastomosis type for stapling a patient's mesentery (see, e.g., U.S. Pat. No. 5,964,394, the entire content of which is incorporated herein by this reference), and end-to-end anastomosis types for performing surgical anastomotic stapling with a circular cartridge and anvil mesentery (see, e.g., U.S. Pat. No. 5,915,616, the entire content of which is incorporated herein by this reference). The present buttresses may also be used in conjunction with instruments that apply two-part fasteners wherein a first part of the two-part fastener is stored in a cartridge or like member and can be fired and properly joined to a second part of the two-part fastener disposed in an anvil or like member. Those skilled in the art having read the present disclosure will readily envision how to adapt the present buttresses for use in connection with such apparatus and also envision other surgical apparatus with which the buttresses described herein may be used.


Now turning to FIGS. 3A and 3B, buttress 350 is shown having a non-porous layer 360 and a porous layer 370. It is envisioned that buttress 350 may contain a plurality of layers in which any combination of non-porous and porous layers may be configured. For example, a multilayer buttress may be formed in which multiple non-porous layers and porous layers are stacked in an alternating manner. In another example, the multilayer buttress may be formed in a “sandwich-like” manner wherein the outer layers of the multilayer buttress include porous layers and the inner layers are non-porous layers. It is further envisioned that the non-porous layer and porous layer may be positioned in any order relative to the surfaces of staple cartridge and staple anvil.


The non-porous layer of the buttress may be made from any biocompatible material. Thus, the non-porous layer of the multilayer buttress described herein may be formed from a natural material or a synthetic material. The material from which the non-porous layer is formed may be bioabsorbable or non-bioabsorbable. It should of course be understood that any combination of natural, synthetic, bioabsorbable and non-bioabsorbable materials may be used to form the non-porous layer. Some non-limiting examples of materials from which the non-porous layer may be made include but are not limited to poly(lactic acid), poly (glycolic acid), poly (hydroxybutyrate), poly (phosphazine), polyesters, polyethylene glycols, polyethylene oxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly (ether-esters), polyalkylene oxalates, polyamides, poly (iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and copolymers, block copolymers, homopolymers, blends and combinations thereof.


In embodiments, natural biological polymers are used in forming the non-porous layer of the buttress. Suitable natural biological polymers include, but are not limited to, collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, chitan, chitosan, and combinations thereof. In addition, the natural biological polymers may be combined with any of the other polymeric materials described herein to produce the support layer of the buttress.


In embodiments, collagen of human and/or animal origin, e.g., type I porcine or bovine collagen, type I human collagen or type III human collagen, may be used to form the non-porous layer.


Native collagen may advantageously be used in acid solution or after processing, to eliminate the telopetpides, notably by pepsin digestion. The collagen, e.g., atellocollagen, can also be modified by oxidative cleavage by the use of periodic acid or one of its salts. The oxidative cleavage of the collagen allows for future moderate crosslinking in the collagenic material with other polymeric materials, macromolecular additives or the haemostatic agents contained in the haemostatic layer of the buttress.


In embodiments, the non-porous layer according to the present disclosure is made of collagen which is oxidized or a mixture in any proportions of non-oxidized and oxidized collagens.


In embodiments, at least one macromolecular additive may be combined with the collagen to provide a composition from which the non-porous layer is formed. Some examples of suitable macromolecular additives include, polyethylene glycol, glycerin, polysaccharides, dextran, maltodextrin, mucopolysaccharides, cellulose, alginate and combinations thereof. When used, the macromolecular additive may have a molecular weight of at least 3,000 Daltons and may represent a concentration from about 2 to 10 times less than the collagenic material present in the composition from which the non-porous layer is formed.


The non-porous layer may enhance the ability of the buttress to resist tears and perforations during the manufacturing, shipping, handling and stapling processes. Also, the non-porous layer may also retard or prevent tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and preventing the formation of unwanted scar tissue. Thus, in embodiments, the non-porous layer possesses anti-adhesion properties.


It is envisioned that the buttress may be releasably attached to the cartridge and/or the anvil in any manner capable of retaining the buttress in contact with the cartridge and/or the anvil prior to and during the stapling process, while allowing the buttress to be removed or released from the cartridge and/or the anvil following the penetration of the buttress by a surgical staple or other fastening device. For example, the buttress may be attached to the cartridge and/or the anvil using adhesives, sealants, glues, pins, tacks, tabs, clamps, channels, straps, protrusions and combinations thereof.


The non-porous layer may be formed using techniques within the purview of those skilled in the art, such as casting, molding and the like.


The porous layer of the buttress has openings or pores over at least a portion of a surface thereof. As described in more detail below, suitable materials for forming the porous layer include, but are not limited to fibrous structures (e.g., knitted structures, woven structures, non-woven structures, etc.) and/or foams (e.g., open or closed cell foams). In embodiments, the pores may be in sufficient number and size so as to interconnect across the entire thickness of the porous layer. Woven fabrics, knitted fabrics and open cell foam are illustrative examples of structures in which the pores can be in sufficient number and size so as to interconnect across the entire thickness of the porous layer. In embodiments, the pores do not interconnect across the entire thickness of the porous layer. Closed cell foam or fused non-woven materials are illustrative examples of structures in which the pores may not interconnect across the entire thickness of the porous layer. FIG. 5A schematically illustrates a foam porous layer wherein the pores span across the entire thickness of porous layer. In yet other embodiments, the pores do not extend across the entire thickness of the porous layer, but rather are present at a portion of the surface thereof. FIG. 5B schematically illustrates a porous layer wherein the pores do not span across the entire thickness thereof. In embodiments, the openings or pores are located on a portion of the surface of the porous layer, with other portions of the porous layer having a non-porous texture. FIG. 5C schematically illustrates a porous layer wherein the pores do not cover the entire surface of the porous layer, but rather are present on a central portion thereof. Those skilled in the art reading the present disclosure will envision other pore distribution patterns and configurations for the porous layer.


Where the porous layer is fibrous, the fibers may be filaments or threads suitable for knitting or weaving or may be staple fibers, such as those frequently used for preparing non-woven materials. The fibers may be made from any biocompatible material. Thus, the fibers may be formed from a natural material or a synthetic material. The material from which the fibers are formed may be bioabsorbable or non-bioabsorbable. It should of course be understood that any combination of natural, synthetic, bioabsorbable and non-bioabsorbable materials may be used to form the fibers. Some non-limiting examples of materials from which the fibers may be made include, but are not limited to poly(lactic acid), poly (glycolic acid), poly (hydroxybutyrate), poly (phosphazine), polyesters, polyethylene glycols, polyethylene oxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly (ether-esters), polyalkylene oxalates, polyamides, poly (iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and copolymers, block copolymers, homopolymers, blends and combinations thereof.


Where the porous layer is fibrous, the porous layer may be formed using any method suitable to forming fibrous structures, including but not limited to knitting, weaving, non-woven techniques and the like. Suitable techniques for making fibrous structures are within the purview of those skilled in the art.


Where the porous layer is a foam, the porous layer may be formed using any method suitable to forming a foam or sponge including, but not limited to the lyophilization or freeze-drying of a composition. Suitable techniques for making foams are within the purview of those skilled in the art.


In embodiments, the porous layer possesses haemostatic properties. Illustrative examples of materials which may be used in providing the porous layer with the capacity to assist in stopping bleeding or hemorrhage include, but are not limited to, poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly(caprolactone), poly(dioxanone), polyalkyleneoxides, copoly(ether-esters), collagen, gelatin, thrombin, fibrin, fibrinogen, fibronectin, elastin, albumin, hemoglobin, ovalbumin, polysaccharides, hyaluronic acid, chondroitin sulfate, hydroxyethyl starch, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, chitan, chitosan, agarose, maltose, maltodextrin, alginate, clotting factors, methacrylate, polyurethanes, cyanoacrylates, platelet agonists, vasoconstrictors, alum, calcium, RGD peptides, proteins, protamine sulfate, epsilon amino caproic acid, ferric sulfate, ferric subsulfates, ferric chloride, zinc, zinc chloride, aluminum chloride, aluminum sulfates, aluminum acetates, permanganates, tannins, bone wax, polyethylene glycols, fucans and combinations thereof.


Generally, the use of natural biological polymers, and in particular proteins, is particularly useful in forming porous layers having haemostatic properties. Suitable natural biological polymers include, but are not limited to, collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin and combinations thereof. In such embodiments, the natural biological polymers may be combined with any other haemostatic agent to produce the porous layer of the buttress. The origin and types of collagens that may be used to form the porous layer are the same as those indicated above for the non-porous layer. However, the oxidized or non-oxidized collagen may be lyophilized, freeze-dried, or emulsified in the presence of a volume of air to create a foam and then freeze-dried, to form a porous compress.


In embodiments, the porous layer may be made from denatured collagen or collagen which has at least partially lost its helical structure through heating or any other method, consisting mainly of non-hydrated a chains, of molecular weight close to 100 kDa. The term “denatured collagen” means collagen which has lost its helical structure. The collagen used for the porous layer as described herein may be native collagen or atellocollagen, notably as obtained through pepsin digestion and/or after moderate heating as defined previously. The collagen may have been previously chemically modified by oxidation, methylation, succinylation, ethylation or any other known process.


In embodiments, the porous layer can be obtained by freeze-drying an aqueous acid solution or suspension of collagen at a concentration of about 2 to about 50 g/l and at an initial temperature of about 4 to about 25° C. The concentration of collagen in the solution can be from about 1 g/l to about 30 g/l and in embodiments about 10 g/l. This solution is advantageously neutralized to a pH of about 6 to about 8.


In embodiments, the porous layer can be at least 0.1 cm thick. In embodiments the thickness of the porous layer can range from about 0.2 to about 1.5 cm thick. The porous layer can have a density of not more than about 75 mg collagen/cm2 and in embodiments below about 7 mg collagen/cm2. The size of the pores in the porous layer can be from about 20 μm to about 200 μm, in embodiments from about 100 μm to about 200 μm.


The haemostatic agents from which the porous layer can be made or which can be included in the porous layer can be in the form of foams, fibers, filaments, meshes, woven and non-woven webs, compresses, pads, powders, flakes, particles and combinations thereof. In embodiments, the porous layer having haemostatic properties provides to the multilayer buttress when hydrated characteristics similar to that of the tissue to which the buttress is applied.


The multilayer buttress material described herein may be formed using any method known to those skilled in the art capable of connecting a non-porous layer to a porous layer. It is envisioned that the non-porous layer and the porous layer may be adhered to one another using chemical bonding, surgical adhesives, surgical sealants, and surgical glues. In addition, the layers may be bound together using mechanic means such as pins, rods, screws, clips, etc. Still further, the layers may naturally or through chemical or photoinitiation may interact and crosslink or provide covalent bonding between the layers.


In embodiments, the multilayer buttress described herein is prepared by attaching the individual layers of materials together to form a multiple layer buttress. The porous layer may be formed separate and apart from the non-porous layer. Alternatively, the porous and non-porous layers may be formed together.


In some embodiments, the porous layer may be attached to the non-porous layer, in a manner which allows the two layers to crosslink and form a chemical bond creating a multilayer buttress material capable of sealing tissue. One such example includes pouring a solution of the material from which the non-porous layer is to be made into a mold and applying the porous layer to the poured solution during the gelification process. As described in U.S. Pat. No. 6,596,304, which the entire content of which is incorporated herein by reference, the porous layer may contain a porous compress made from collagen. The non-porous layer may be made from a biopolymer film containing collagen, polyethylene and glycerol. The porous layer may be added to the non-porous film and allowed to crosslink to form multilayer material suitable for reinforcing a staple or suture line.


As further shown in FIGS. 3A and 3B, buttress 350 may also include a reinforcement member 380. In FIG. 3A, reinforcement member 380 is shown being positioned between non-porous layer 360 and porous layer 370 of buttress 350 and in FIG. 3B, reinforcement member 380 is shown being positioned solely within an individual layer, supporting in this case non-porous layer 360 of buttress 350. It is envisioned that reinforcement member 380 may also be positioned within the porous layer. The reinforcement member may also be positioned at the surface of one of the layers making up the multilayer buttress and, in embodiments, may be positioned at an exterior surface of the multilayer buttress.


Some suitable non-limiting examples of the reinforcement member include meshes, monofilaments, multifilament braids, chopped fibers (sometimes referred to in the art as staple fibers) and combinations thereof.


Where the reinforcement member is a mesh, it may be prepared using any technique known to those skilled in the art, such as knitting, weaving, tatting, knipling or the like.


Where monofilaments or multifilament braids are used as the reinforcement member, the monofilaments or multifilament braids may be oriented in any desired manner. For example, the monofilaments or multifilament braids may be randomly positioned with respect to each other within the buttress structure. As another example, the monofilaments or multifilament braids may be oriented in a common direction within the buttress. In embodiments, monofilaments or multifilament braids are associated with both the porous layer and with the non-porous layer. In an illustrative embodiment of this type shown in FIG. 3C, buttress 350 includes a first reinforcement member 381 having a plurality of reinforcement members oriented in a first direction within the non-porous layer 360 and a second reinforcement layer 382 having a plurality of reinforcement members oriented in a second direction within the porous layer 370. In embodiments, the first and second directions may be substantially perpendicular to each other as seen in FIG. 3C.


Where chopped fibers are used as the reinforcement member, the chopped fibers may be oriented in any desired manner. For example, the chopped fibers may be randomly oriented or may be oriented in a common direction. The chopped fibers can thus form a non-woven material, such as a mat or a felt. The chopped fibers may be joined together (e.g., by heat fusing) or they may be unattached to each other. The chopped fibers may be of any suitable length. For example, the chopped may be from 0.1 mm to 100 mm in length, in embodiments, 0.4 mm to 50 mm in length. FIG. 3D shows an illustrative embodiment wherein buttress 350 has chopped fibers 380 incorporated in non-porous layer 360 which can be applied to porous layer 370.


It is envisioned that the reinforcement member may be formed from any bioabsorbable, non-bioabsorbable, natural, and synthetic material previously described herein including derivatives, salts and combinations thereof. In particularly useful embodiments, the reinforcement member may be made from a non-bioabsorbable material to provide long term flexible tissue support. In embodiments, the reinforcement member is a surgical mesh made from polypropylene or polylactic acid. In addition polyethylene materials may also be incorporated into the buttress described herein to add stiffness. Where monofilaments or multifilament braids are used as the reinforcement member, any commercially available suture material may advantageously be employed as the reinforcement member.


Turning now to FIG. 4, one embodiment is shown in which multilayer buttress 350 includes at least one hole 390 which is shaped and designed to frictionally fit onto at least one pin 400 located on staple cartridge 104 and/or staple anvil 204. Hole 390 and pin 400 are designed to releasably attach multilayer buttress 350 to staple cartridge 104 and/or staple anvil 204 and both can be of any size, shape or dimension.


In some embodiments, at least one bioactive agent may be combined with the buttress material and/or any of the individual components (the porous layer, the non-porous layer and/or the reinforcement member) used to construct the buttress material. In these embodiments, the buttress material can also serve as a vehicle for delivery of the bioactive agent. The term “bioactive agent”, as used herein, is used in its broadest sense and includes any substance or mixture of substances that have clinical use. Consequently, bioactive agents may or may not have pharmacological activity per se, e.g., a dye, or fragrance. Alternatively a bioactive agent could be any agent which provides a therapeutic or prophylactic effect, a compound that affects or participates in tissue growth, cell growth, cell differentiation, an anti-adhesive compound, a compound that may be able to invoke a biological action such as an immune response, or could play any other role in one or more biological processes. It is envisioned that the bioactive agent may be applied to the medial device in any suitable form of matter, e.g., films, powders, liquids, gels and the like.


Examples of classes of bioactive agents which may be utilized in accordance with the present disclosure include anti-adhesives, antimicrobials, analgesics, antipyretics, anesthetics, antiepileptics, antihistamines, anti-inflammatories, cardiovascular drugs, diagnostic agents, sympathomimetics, cholinomimetics, antimuscarinics, antispasmodics, hormones, growth factors, muscle relaxants, adrenergic neuron blockers, antineoplastics, immunogenic agents, immunosuppressants, gastrointestinal drugs, diuretics, steroids, lipids, lipopolysaccharides, polysaccharides, and enzymes. It is also intended that combinations of bioactive agents may be used.


Anti-adhesive agents can be used to prevent adhesions from forming between the implantable medical device and the surrounding tissues opposite the target tissue. In addition, anti-adhesive agents may be used to prevent adhesions from forming between the coated implantable medical device and the packaging material. Some examples of these agents include, but are not limited to poly(vinyl pyrrolidone), carboxymethyl cellulose, hyaluronic acid, polyethylene oxide, poly vinyl alcohols and combinations thereof.


Suitable antimicrobial agents which may be included as a bioactive agent in the bioactive coating of the present disclosure include triclosan, also known as 2,4,4′-trichloro-2′-hydroxydiphenyl ether, chlorhexidine and its salts, including chlorhexidine acetate, chlorhexidine gluconate, chlorhexidine hydrochloride, and chlorhexidine sulfate, silver and its salts, including silver acetate, silver benzoate, silver carbonate, silver citrate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine, polymyxin, tetracycline, aminoglycosides, such as tobramycin and gentamicin, rifampicin, bacitracin, neomycin, chloramphenicol, miconazole, quinolones such as oxolinic acid, norfloxacin, nalidixic acid, pefloxacin, enoxacin and ciprofloxacin, penicillins such as oxacillin and pipracil, nonoxynol 9, fusidic acid, cephalosporins, and combinations thereof. In addition, antimicrobial proteins and peptides such as bovine lactoferrin, lactoferricin B and antimicrobial polysaccharides such as fucans and derivatives may be included as a bioactive agent in the bioactive coating of the present disclosure.


Other bioactive agents which may be included as a bioactive agent in the coating composition applied in accordance with the present disclosure include: local anesthetics; non-steroidal antifertility agents; parasympathomimetic agents; psychotherapeutic agents; tranquilizers; decongestants; sedative hypnotics; steroids; sulfonamides; sympathomimetic agents; vaccines; vitamins; antimalarials; anti-migraine agents; anti-parkinson agents such as L-dopa; anti-spasmodics; anticholinergic agents (e.g. oxybutynin); antitussives; bronchodilators; cardiovascular agents such as coronary vasodilators and nitroglycerin; alkaloids; analgesics; narcotics such as codeine, dihydrocodeinone, meperidine, morphine and the like; non-narcotics such as salicylates, aspirin, acetaminophen, d-propoxyphene and the like; opioid receptor antagonists, such as naltrexone and naloxone; anti-cancer agents; anti-convulsants; anti-emetics; antihistamines; anti-inflammatory agents such as hormonal agents, hydrocortisone, prednisolone, prednisone, non-hormonal agents, allopurinol, indomethacin, phenylbutazone and the like; prostaglandins and cytotoxic drugs; estrogens; antibacterials; antibiotics; anti-fungals; anti-virals; anticoagulants; anticonvulsants; antidepressants; antihistamines; and immunological agents.


Other examples of suitable bioactive agents which may be included in the coating composition include viruses and cells, peptides, polypeptides and proteins, analogs, muteins, and active fragments thereof, such as immunoglobulins, antibodies, cytokines (e.g. lymphokines, monokines, chemokines), blood clotting factors, hemopoietic factors, interleukins (IL-2, IL-3, IL-4, IL-6), interferons (β-IFN, (α-IFN and γ-IFN), erythropoietin, nucleases, tumor necrosis factor, colony stimulating factors (e.g., GCSF, GM-CSF, MCSF), insulin, anti-tumor agents and tumor suppressors, blood proteins, gonadotropins (e.g., FSH, LH, CG, etc.), hormones and hormone analogs (e.g., growth hormone), vaccines (e.g., tumoral, bacterial and viral antigens); somatostatin; antigens; blood coagulation factors; growth factors (e.g., nerve growth factor, insulin-like growth factor); protein inhibitors, protein antagonists, and protein agonists; nucleic acids, such as antisense molecules, DNA and RNA; oligonucleotides; polynucleotides; and ribozymes.


EXAMPLE 1
Preparation of Porous Layer

Type I porcine collagen is extracted from pig dermis and rendered soluble through pepsin digestion and purified by saline precipitation.


A 10 g/l solution of the collagen is prepared by dissolving 23 g of damp collagen (12% humidity) in 2070 g of ultrafiltered water, at an ambient temperature below 25° C. It is neutralized using sodium hydroxide to a neutral pH, which leads to precipitation of the collagen.


A porous layer suitable for use in making a multilayer buttress is prepared by poring the suspension onto freeze-dry plates, with 0.5 to 1 g/cm2 and freeze-drying, using one cycle lasting about 24 hours.


Optionally, in a variant, the freeze-dried porous layer so produced can be heated to 60° C. for several hours (4 to 15), which provides it with better cohesion and mechanical resistance in certain applications.


Preparation of a Solution of Oxidized Collagen Used to Form a Non-Porous Film


Type I porcine collagen is extracted from pig dermis and rendered soluble through pepsin digestion and purified by saline precipitation.


A 30 g/l solution of oxidized collagen used for this example, is prepared according to patent FR-A-2 715 309.


Dry collagen fibres are used for preference, obtained by precipitation of an acid solution of collagen by adding NaCl, then washing and drying the precipitate obtained using aqueous solutions of acetone in concentrations increasing from 80% to 100%.


A 30 g/l solution of collagen is prepared by dissolving it in 0.01 N HCl. Its volume is 49 liters. Periodic acid is added to it at a final concentration of 8 mM, i.e. 1.83 g/l. Oxidation takes place at an ambient temperature close to 22° C. for 3 hours away from light.


Then an equal volume of a solution of sodium chloride is added to the solution to obtain a final concentration of 41 g/l NaCl.


After waiting for 30 minutes, the precipitate is collected by decantation through a fabric filter, with a porosity close to 100 microns, then washed 4 times with a 41 g/l solution of NaCl in 0.01 N HCl. This produces 19 kg of acid saline precipitate. This washing process eliminates all traces of periodic acid or iodine derivatives during oxidation of the collagen.


Then, several washes in an aqueous solution of 80% acetone are used to concentrate the collagen precipitate and eliminate the salts present.


A final wash in 100% acetone is used to prepare 3.6 kg of a very dense acetone precipitate of acid, oxidized, non-reticulated collagen, with no trace of undesirable chemical products.


The acetone paste is diluted with apyrogenic distilled water at 40° C., to obtain a 3% concentration of collagen, for a volume of 44 liters. The collagen suspension of a volume of 44 liters is heated for 30 minutes at 50° C., then filtered under sterile conditions through a membrane of 0.45 micron porosity in a drying oven at 40° C.


As soon as this solution is homogeneous and at 35° C., a sterile concentrated solution of PEG 4000 (polyethylene glycol with a molecular weight of 4000 Daltons) and glycerine is added to it to produce a final concentration of 0.9% PEG, 0.54% glycerine and 2.7% oxidized collagen.


As soon as these additions have been made, the pH of the solution is adjusted to 7.0 by adding a concentrated solution of sodium hydroxide.


Preparation of a Multilayer Buttress Material


The collagen solution destined to form the non-porous layer, as described in above, is poured in a thin layer on a flat hydrophobic support such as PVC or polystyrene, at an ambient temperature close to 22° C. A continuous pocket, or channel, or a plurality of longitudinally spaced pockets, or channels, are machined into the surface of the hydrophobic support. The pockets, or channels, in the support correspond to slots or openings in the anvil and/or staple cartridge. The number, dimension and spatial relationship of the pockets, or channels, are determined so as to provide a molded buttress which in turn provides a releasable pressure fit with the slots or openings provided in the anvil or staple cartridge when placed in cooperation therewith.


The porous layer, prepared as described above, is applied uniformly to the solution of heated collagen, 5 to 20 minutes after it was poured onto the support. This waiting time is the collagen solution gelling time, required for application of the porous layer, to prevent it dissolving or becoming partially hydrated in the liquid collagen.


Penetration of the porous layer into the gelled collagen solution can be less than 0.5 mm.


The buttress material is then dehydrated in a jet of sterile air, at ambient temperature, which leads to evaporation in about 18 hours.


The multilayer buttress material obtained is easy to remove from the support and can be cut to the dimensions required for the application concerned, without weakening it.


The multilayer buttress material is then put into an airtight double polyethylene bag.


The unit is sterilized by gamma irradiation or electron beam (beta) irradiation at a dose of between 25 and 35 KGy.


The material is stable at ambient temperature.


EXAMPLE 2
Preparation of a Multilayer Buttress Material

The collagen solution destined to form the non-porous layer, as described above in EXAMPLE 1, is poured in a thin layer equal to about 0.106 g/cm2 on a flat hydrophobic support such as PVC or polystyrene, at an ambient temperature close to 22° C. Several protrusions are machined onto the surface of the mold. The protrusions on the mold correspond to the pins located on the anvil and/or staple cartridge. The number, dimension and spatial relationship of the protrusions, are determined so as to provide a molded buttress which in turn provides a releasable pressure fit with the pins provided on the anvil or staple cartridge when placed in cooperation therewith.


The remaining collagen solution is diluted with ethyl alcohol and water to produce a final concentration of 1.75% of oxidized collagen.


Using the diluted solution of 1.75% oxidized collagen, a second layer equal to about 0.041 g/cm2 is poured over the first layer, 1 hour or more after the spreading of the first layer.


Immediately, a surgical mesh reinforcement member is applied on the second layer of the diluted oxidized collagen. The reinforcement member is a knitted isoelastic, multifilament polyglycolic acid mesh which may be completely encapsulated by the second layer of oxidized collagen.


After 1 hour or more, the porous layer, prepared as described above in EXAMPLE 1, is applied to the mesh.


The multilayer, reinforced buttress material is dried in a drying cabinet at about 20° C. and about 40% humidity with a horizontal air flow velocity of 1.2 m2/s. The air is blown from the right side of the cabinet to the left side of the cabinet and the incoming air is 0.2 μm filtered and adjusted to 40% humidity. The duration of the drying cycle is between 12 and 24 hours.


EXAMPLE 3
Preparation of a Multilayer Buttress Material

The collagen solution destined to form the non-porous, as described above in EXAMPLE 1, is poured in a thin layer equal to about 0.106 g/cm2 on a flat hydrophobic support such as PVC or polystyrene, at an ambient temperature close to 22° C. The remaining collagen solution is diluted with ethyl alcohol and water to produce a final concentration of 1.75% of oxidized collagen.


Using the diluted solution of 1.75% oxidized collagen, a second layer equal to about 0.041 g/cm2 is poured over the first layer, 1 hour or more after the spreading of the first layer.


Immediately, a surgical mesh reinforcement member, is applied on the second layer of the diluted oxidized collagen. The reinforcement member is a knitted isoelastic, multifilament polyglycolic acid mesh which may be positioned on top of the second layer of oxidized collagen.


After 1 hour or more, the porous layer, prepared as described above in EXAMPLE 1, is applied to the mesh.


The multilayer, reinforced buttress material is dried in a drying cabinet at about 20° C. and about 40% humidity with a horizontal air flow velocity of 1.2 m2/s. The air is blown from the right side of the cabinet to the left side of the cabinet and the incoming air is 0.2 μm filtered and adjusted to 40% humidity. The duration of the drying cycle is between 12 and 24 hours.


The multilayer buttress of EXAMPLES 1-3 are applied to the staple cartridge and/or anvil of a surgical stapler, with the non-porous side in contact with the surface of the cartridge and/or anvil. The edges of a wound are approximated between the staple cartridge and the staple anvil of the stapling apparatus. By firing the stapling apparatus staples are forced out of the staple cartridge and through both the multilayer buttress and, the tissue. The staples are formed by contact with the staple anvil. Once stapled in place the porous layer advantageously reduces bleeding, assists in sealing the wound and allowing tissue ingrowth, if desired, while the non-porous layer provides support for the porous layer and may assist in preventing the formation of adhesions. When present, as in EXAMPLES 2 and 3, the reinforcement member provides additional support to the multilayer buttress and assist in preventing tears during stapling.


It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as an exemplification of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure. Such modifications and variations are intended to come within the scope of the following claims.

Claims
  • 1. A surgical stapling apparatus comprising: a staple cartridge containing at least one staple;an anvil having a staple forming surface; anda buttress positioned adjacent the anvil or the cartridge, the buttress comprising a non-porous layer, a porous layer, a first reinforcement member encapsulated within the non-porous layer and a second reinforcement layer associated with the porous layer, wherein the first reinforcement member comprises a plurality of reinforcement members oriented in a first direction and the second reinforcement layer comprises a plurality of reinforcement members oriented in a second direction that is different from the first direction.
  • 2. The surgical stapling apparatus of claim 1, wherein the non-porous layer comprises at least one material selected from the group consisting of collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethylcellulose, chitan, chitosan, alginate, poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly (phosphazine), polyesters, polyethylene glycols, polyalkyleneoxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, poly(caprolactone), poly(dioxanone), polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly(ether-esters), polyalkylene oxalates, polyamides, poly(iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and combinations thereof.
  • 3. The surgical stapling apparatus of claim 1, wherein the porous layer comprises at least one material selected from the group consisting of poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly(caprolactone), poly(dioxanone), polyalkyleneoxides, copoly(ether-esters), collagen, gelatin, thrombin, fibrin, fibrinogen, fibronectin, elastin, albumin, hemoglobin, ovalbumin, polysaccharides, hyaluronic acid, chondroitin sulfate, hydroxyethyl starch, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, chitan, chitosan, agarose, maltose, maltodextrin, alginate, clotting factors, methacrylate, polyurethanes, cyanoacrylates, platelet agonists, vasoconstrictors, alum, calcium, RGD peptides, proteins, protamine sulfate, epsilon amino caproic acid, ferric sulfate, ferric subsulfates, ferric chloride, zinc, zinc chloride, aluminum chloride, aluminum sulfates, aluminum acetates, permanganates, tannins, bone wax, polyethylene glycols, fucans and combinations thereof.
  • 4. The surgical stapling apparatus of claim 1, wherein the first reinforcement member, the second reinforcement layer, or both, comprise chopped fibers.
  • 5. The surgical stapling apparatus of claim 1, wherein the first reinforcement member, the second reinforcement layer, or both, comprise sutures.
  • 6. The surgical stapling apparatus of claim 1, wherein the second reinforcement layer is encapsulated within the porous layer.
  • 7. A surgical stapling apparatus comprising: a staple cartridge containing at least one staple;an anvil having a staple forming surface; anda buttress positioned adjacent the anvil or the cartridge, the buttress comprising a fiber-reinforced foam composite and a non-porous layer disposed within the fiber-reinforced foam composite.
  • 8. The surgical stapling apparatus of claim 7, wherein the non-porous layer comprises at least one material selected from the group consisting of collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethylcellulose, chitan, chitosan, alginate, poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly (phosphazine), polyesters, polyethylene glycols, polyalkyleneoxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, poly(caprolactone), poly(dioxanone), polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly(ether-esters), polyalkylene oxalates, polyamides, poly(iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and combinations thereof.
  • 9. The surgical stapling apparatus of claim 7, wherein the foam of the fiber-reinforced foam comprises at least one material selected from the group consisting of poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly(caprolactone), poly(dioxanone), polyalkyleneoxides, copoly(ether-esters), collagen, gelatin, thrombin, fibrin, fibrinogen, fibronectin, elastin, albumin, hemoglobin, ovalbumin, polysaccharides, hyaluronic acid, chondroitin sulfate, hydroxyethyl starch, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, chitan, chitosan, agarose, maltose, maltodextrin, alginate, clotting factors, methacrylate, polyurethanes, cyanoacrylates, platelet agonists, vasoconstrictors, alum, calcium, RGD peptides, proteins, protamine sulfate, epsilon amino caproic acid, ferric sulfate, ferric subsulfates, ferric chloride, zinc, zinc chloride, aluminum chloride, aluminum sulfates, aluminum acetates, permanganates, tannins, bone wax, polyethylene glycols, fucans and combinations thereof.
  • 10. The surgical stapling apparatus of claim 7, wherein the fibers of the fiber-reinforced foam comprise a mesh.
  • 11. The surgical stapling apparatus of claim 7, wherein the fibers of the fiber-reinforced foam comprise a suture.
  • 12. The surgical stapling apparatus of claim 7, wherein the fibers of the fiber-reinforced foam are encapsulated within the non-porous layer.
  • 13. A method of sealing a wound comprising: enclosing tissue between a cartridge and an anvil of a surgical stapling apparatus, one of the cartridge or anvil having a buttress positioned adjacent thereto, wherein the buttress comprises a fiber-reinforced foam composite and a non-porous layer disposed within the fiber-reinforced foam composite; andejecting staples from said cartridge to secure the buttress to the tissue.
  • 14. The method of claim 13, wherein the non-porous layer comprises at least one material selected from the group consisting of collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethylcellulose, chitan, chitosan, alginate, poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly (phosphazine), polyesters, polyethylene glycols, polyalkyleneoxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, poly(caprolactone), poly(dioxanone), polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly(ether-esters), polyalkylene oxalates, polyamides, poly(iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and combinations thereof.
  • 15. The method of claim 13, wherein the foam of the fiber-reinforced foam comprises at least one material selected from the group consisting of poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly(caprolactone), poly(dioxanone), polyalkyleneoxides, copoly(ether-esters), collagen, gelatin, thrombin, fibrin, fibrinogen, fibronectin, elastin, albumin, hemoglobin, ovalbumin, polysaccharides, hyaluronic acid, chondroitin sulfate, hydroxyethyl starch, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, chitan, chitosan, agarose, maltose, maltodextrin, alginate, clotting factors, methacrylate, polyurethanes, cyanoacrylates, platelet agonists, vasoconstrictors, alum, calcium, RGD peptides, proteins, protamine sulfate, epsilon amino caproic acid, ferric sulfate, ferric subsulfates, ferric chloride, zinc, zinc chloride, aluminum chloride, aluminum sulfates, aluminum acetates, permanganates, tannins, bone wax, polyethylene glycols, fucans and combinations thereof.
  • 16. The method of claim 13, wherein the fibers of the fiber-reinforced foam comprise a mesh.
  • 17. The method of claim 13, wherein the fibers of the fiber-reinforced foam comprise a suture.
  • 18. The method of claim 13, wherein the fibers of the fiber-reinforced foam are encapsulated within the non-porous layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 11/823,340 filed Jun. 27, 2007 now U.S. Pat. No. 8,062,330, and the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.

US Referenced Citations (215)
Number Name Date Kind
3054406 Usher Sep 1962 A
3124136 Usher Mar 1964 A
3825007 Rand Jul 1974 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4452245 Usher Jun 1984 A
4605730 Shalaby et al. Aug 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5104400 Berguer et al. Apr 1992 A
5201745 Tayot et al. Apr 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5314471 Brauker et al. May 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5503638 Cooper et al. Apr 1996 A
5542594 McKean et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis et al. May 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Raybum et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5964394 Robertson Oct 1999 A
5964774 Mckean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6099551 Gabbay Aug 2000 A
6149667 Hovland et al. Nov 2000 A
6155265 Hammerslag Dec 2000 A
6210439 Firmin et al. Apr 2001 B1
6214020 Muthauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6436030 Rehil Aug 2002 B2
6451032 Ory et al. Sep 2002 B1
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6592597 Grant et al. Jul 2003 B2
6596304 Bayon et al. Jul 2003 B1
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6704210 Myers Mar 2004 B1
6706684 Bayon et al. Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6773458 Brauker et al. Aug 2004 B1
6927315 Heinecke et al. Aug 2005 B1
RE39172 Bayon et al. Jul 2006 E
7128748 Mooradian et al. Oct 2006 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7604151 Hess et al. Oct 2009 B2
7665646 Prommersberger Feb 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7793813 Bettuchi Sep 2010 B2
7823592 Betutchi et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
20020016626 DiMatteo et al. Feb 2002 A1
20020019187 Carroll et al. Feb 2002 A1
20020028243 Masters Mar 2002 A1
20020052622 Rousseau May 2002 A1
20020091397 Chen Jul 2002 A1
20020133236 Rousseau Sep 2002 A1
20020138152 Francis et al. Sep 2002 A1
20020151911 Gabbay Oct 2002 A1
20020165559 Grant et al. Nov 2002 A1
20020165562 Grant et al. Nov 2002 A1
20020165563 Grant et al. Nov 2002 A1
20030023316 Brown et al. Jan 2003 A1
20030065345 Weadock Apr 2003 A1
20030065346 Evens et al. Apr 2003 A1
20030083676 Wallace May 2003 A1
20030105510 DiMatteo et al. Jun 2003 A1
20030114866 Ulmsten et al. Jun 2003 A1
20030120284 Palacios Jun 2003 A1
20030167064 Whayne Sep 2003 A1
20030181927 Wallace Sep 2003 A1
20030183671 Mooradian et al. Oct 2003 A1
20030208231 Williamson, IV et al. Nov 2003 A1
20040034377 Sharkawy et al. Feb 2004 A1
20040092960 Abrams et al. May 2004 A1
20040093029 Zubik et al. May 2004 A1
20040107006 Francis et al. Jun 2004 A1
20040116945 Sharkawy et al. Jun 2004 A1
20040132365 Therin et al. Jul 2004 A1
20040138762 Therin et al. Jul 2004 A1
20040142621 Carroll et al. Jul 2004 A1
20040172048 Browning Sep 2004 A1
20040175408 Chun et al. Sep 2004 A1
20040209059 Foss Oct 2004 A1
20040215214 Crews et al. Oct 2004 A1
20040215219 Eldridge et al. Oct 2004 A1
20040215221 Suyker et al. Oct 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021053 Heinrich Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 Delucia et al. Jun 2005 A1
20050143756 Jankowski Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050228446 Mooradian et al. Oct 2005 A1
20050245965 Orban et al. Nov 2005 A1
20060004407 Hiles et al. Jan 2006 A1
20060085034 Bettuchi Apr 2006 A1
20060135992 Bettuchi et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060212050 D'Agostino et al. Sep 2006 A1
20060271104 Viola et al. Nov 2006 A1
20070026031 Bauman et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070123839 Rousseau et al. May 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080125812 Zubik et al. May 2008 A1
20080140115 Stopek Jun 2008 A1
20080161831 Bauman et al. Jul 2008 A1
20080161832 Bauman et al. Jul 2008 A1
20080169327 Shelton et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001123 Morgan et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001125 Hess et al. Jan 2009 A1
20090001126 Hess et al. Jan 2009 A1
20090001128 Weisenburgh, II et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090030452 Bauman et al. Jan 2009 A1
20090043334 Bauman et al. Feb 2009 A1
20090076510 Bell et al. Mar 2009 A1
20090076528 Sgro Mar 2009 A1
20090078739 Viola Mar 2009 A1
20090095791 Eskaros et al. Apr 2009 A1
20090134200 Tarinelli et al. May 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090277947 Viola Nov 2009 A1
20110087279 Shah et al. Apr 2011 A1
Foreign Referenced Citations (27)
Number Date Country
199 24 311 Nov 2000 DE
199 24 311 Nov 2000 DE
0594148 Apr 1994 EP
1 520 525 Apr 2005 EP
1 702 570 Sep 2006 EP
1702570 Sep 2006 EP
1 815 804 Aug 2007 EP
2 005 895 Dec 2008 EP
2 008 595 Dec 2008 EP
2 198 787 Jun 2010 EP
2 236 098 Oct 2010 EP
2000-166933 Jun 2000 JP
07-124166 May 2007 JP
WO 9005489 May 1990 WO
WO9607356 Mar 1996 WO
WO 9817180 Apr 1998 WO
WO 9945849 Sep 1999 WO
WO 03082126 Oct 2003 WO
WO 03105698 Dec 2003 WO
WO 03105698 Dec 2003 WO
WO2005079675 Sep 2005 WO
WO 2006023578 Mar 2006 WO
WO 2006044490 Apr 2006 WO
WO 2006083748 Aug 2006 WO
WO 2010075298 Jul 2010 WO
WO 2011143183 Nov 2011 WO
WO 2012044848 Apr 2012 WO
Non-Patent Literature Citations (12)
Entry
International Search Report from application EP 06016962.0 dated Jan. 3, 2007.
International Search Report from application PCT/US05/36740 mailed Mar. 23, 2007.
International Search Report from Application No. PCT/US2008/002981 dated Jun. 26, 2008.
International Search Report from Application No. EP 08 25 1779 dated Jul. 23, 2008.
European Search Report for EP 08251990.1-2310 date of completion is Mar. 11, 2010 (5 pages).
International Search Report corresponding to European Application No. EP 12 15 2229.6, completed on Feb. 23, 2012 and mailed on Mar. 1, 2012; 4 pages.
International Search Report corresponding to European Application No. EP 12 15 0511.9, completed on Apr. 16, 2012 and mailed on Apr. 24, 2012; 7 pages.
International Search Report corresponding to European Application No. EP 12 15 2541.4, completed on Apr. 23, 2012 and mailed on May 3, 2012; 10 pages.
International Search Report corresponding to European Application No. EP 12 16 5609.4, completed on Jul. 5, 2012 and mailed on Jul. 13, 2012; 8 pages.
International Search Report corresponding to European Application No. EP 12 15 8861.0, completed on Jul. 17, 2012 and mailed on Jul. 24, 2012; 9 pages.
International Search Report corresponding to European Application No. EP 12 16 5878.5, completed on Jul. 24, 2012 and mailed on Aug. 6, 2012; 8 pages.
European Search Report for EP 12194784.0 date of completion is Jan. 22, 2013 (12 pages).
Related Publications (1)
Number Date Country
20120031950 A1 Feb 2012 US
Divisions (1)
Number Date Country
Parent 11823340 Jun 2007 US
Child 13274521 US