This invention relates to water pumps, and, more particularly, to a water pump having a bypass channel that leads from a pump inlet to a pump outlet and allows fluid entering the water pump to bypass a main impeller chamber.
Conventional water pumps are widely known and used, for example, in vehicles to circulate coolant through an engine cooling system. Typical pumps include a central chamber having an actuator-driven impeller in fluid communication with a pump inlet and a pump outlet. The impeller pushes fluid received through the pump inlet out through the pump outlet.
During operation of the pump, there is often a pressure differential between the pump inlet and the pump outlet caused by the presence, rotation and operation of the impeller. In the off state, reduction in flow equals greater pressure differential, which results in lowered operational efficiency. In the on state, the lack of gain in flow equals greater pressure differential resulting in a lowered operational efficiency. If the pressure differential becomes too large, the operation of the engine cooling system, for example, and various components within the engine cooling system may not function as desired.
Conventional pumps can be designed with a spacing or gap between the impeller and an inner surface of the central chamber to alleviate some of the pressure differential. Undesirably, the spacing causes turbulence in fluid flow within the central chamber, which interferes with operation of the impeller and reduces pumping efficiency.
Accordingly, a fluid pump that minimizes the pressure differential without significantly negatively effecting impeller operation is needed.
An example fluid pump includes a pumping chamber, an inlet and an outlet fluidly connected with the pumping chamber, and a passage fluidly connected between the inlet and the outlet. Fluid flowing through the passage bypasses the pumping chamber. In one example, the fluid pump is pumps coolant within a vehicle cooling system between a heater core and a vehicle engine. a pumping chamber;
In another aspect, the fluid pump includes a pumping chamber and an actuator-driven impeller at least partially within the pumping chamber. An inlet and an outlet are fluidly connected with the pumping chamber, and a tapered passage fluidly connects the inlet and the outlet. Fluid flowing through the passage bypasses the pumping chamber.
An example method of controlling a fluid pump having an inlet and an outlet fluidly connected with a pumping chamber includes the steps of producing a fluid pressure difference between the inlet and the outlet. The fluid is then bled through the passage connected between the inlet and the outlet to bypass fluid flow through the pumping chamber and thereby reduce the fluid pressure difference.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows.
Referring to
During operation of the pump 10, a portion of the incoming fluid in the inlet 16 flows through the bypass channel 24 into the outlet 18 without flowing into and through the central chamber 14. Fluid that does not flow into the bypass channel 24 flows into the central chamber 14 and is propelled out of the outlet 18 by the impeller 20 as described above. It is to be understood that although the bypass channel 24 is shown as having a certain size, shape and location, that alternate sizes, shapes, and locations can also be used.
In the illustrated example, the bypass channel 24 provides the benefit of stabilizing the fluid flow through the pump 10 and reduces a pressure differential between the inlet 16 and the outlet 18. In one example, when the pump 10 is inactive, the bypass channel 24 allows fluid to bleed through the bypass channel 24 from the inlet 16 to the outlet 18 or from the outlet 18 to the inlet 16 without resistive rotation of the impeller 20. This feature reduces the pressure differential between inlet 16 and the outlet 18 when the pump 10 is inactive because the fluid can freely flow between the inlet 16 and the outlet 18 without interference from the impeller 20.
In another example, when the pump is active, the bypass channel 24 allows a portion of the fluid to bleed through the bypass channel 24 without entering the central chamber 14. This allows the fluid to avoid a pressure build-up in the central chamber 14 due to the impeller 20 and tends to equalize the pressure between inlet 16 and outlet 18.
The size, shape, and location of the bypass channel 24 can be tailored to meet the needs of a particular design or application. Is can be appreciated from the illustrated examples, the bypass channel 24 is generally smaller in cross-sectional area than the inlet 16 and the outlet 18. In another example, the bypass channel 24 is made larger than illustrated in
In the illustrated examples, the housing 12 is molded from a plastic material. In one example, the plastic material is a plastic composite of polyamide and 35% glass fibers. This provides a combination of relatively high strength and low weight. Alternatively, the housing 12 may be cast from a metal material or formed in other known manufacturing methods.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/30874 | 8/8/2006 | WO | 00 | 7/16/2008 |
Number | Date | Country | |
---|---|---|---|
60706309 | Aug 2005 | US |