Annuloplasty rings are well known as prostheses for heart valves that are not functioning properly. See, for example, Alfieri et al. U.S. patent application publication U.S. 2002/0173844 A1 and Bolling et al. U.S. patent application publication U.S. 2003/0093148 A1. Prostheses that are less than complete rings are also known for this purpose. See, for example, Carpentier U.S. Pat. No. 3,656,185. The less-than-complete rings that are known tend to be flat. This may not be the best shape for providing the most effective and beneficial prosthesis. This invention aims at providing less-than-complete-ring prostheses having more effective shapes and other beneficial features.
A heart valve prosthesis in accordance with the invention is generally C-shaped in plan view. Points at the top and bottom of the C lie in a plan view plane. The back of the C rises above the plan view plane between the top and bottom points. Free end portions of the C (remote from the back, beyond the top and bottom points) may also rise above the plan view plane. The prosthesis is accordingly preferably saddle-shaped. The back of the C may also have an indentation or pinch that extends inwardly toward the open side of the C. In use as a mitral valve prosthesis, for example, the top and bottom of the C are respectively adjacent the commissures of the valve, and the back of the C is adjacent the posterior section of the valve. The prosthesis may be rigid or semi-rigid.
Further features of the invention, its nature and various advantages, will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
An illustrative embodiment of a heart valve prosthesis 10 in accordance with the invention is shown in
Prosthesis 10 is generally C shaped in plan view (see
The back 30 of the C is deflected upwardly out of the above-mentioned plan view plane (defined by lines 20 and 22 as described above). This upward deflection is clearly visible in
The free end portions 42 and 44 of prosthesis 10 are also preferably deflected upwardly out of the above-mentioned plan view plane (defined by lines 20 and 22 as described above). Free end portion 42 is remote from back 30 beyond point 12 (i.e., free end portion 42 is on the opposite or far side of point 12 from back 30). Free end portion 44 is similarly remote from back 30 beyond point 14. Note that as is typical for a classic C shape, free end portions are synclinal (in plan view) in the direction of their free ends (see again
Points 12 and 14 are preferably at endpoints of a greatest height (or width) dimension 50 of prosthesis 10 (see
The maximum upward deflection of back 30 is dimension 60 in
As shown in
A prosthesis 10 or 10′ in accordance with this invention can be used for mitral valve repair by supporting the posterior section of the mitral annulus. The prosthesis is implanted, using techniques that can be conventional, with back 30 adjacent that posterior valve annulus section. The prosthesis aids in returning the posterior section of the mitral valve back to its natural saddle shape (commissures low and posterior and anterior sections arching upwardly between the commissures), and also provides support for a valve with functional mitral regurgitation.
Prosthesis 10 or 10′ is preferably fully rigid or at least semi-rigid to retain its saddle shape. As noted above, the saddle shape preferably has a 5% to 25% height-to-commissure-width ratio, or an absolute height from lowest point of the prosthesis to highest point of 3 mm to 8 mm.
To create a semi-rigid prosthesis 10 or 10′, the core material of the prosthesis can be made from a polymer such as ultra-high-molecular-weight polyethylene, polyurethane, ABS, or the like that will allow it to flex to some degree but that will also hold the saddle shape. Shape-memory alloys such as Nitinol can also be used to create such a semi-rigid prosthesis that flexes. A three-dimensional, semi-rigid prosthesis not only flexes in the X and Y directions (see (
A rigid prosthesis 10 or 10′ can be created using stronger material such as elgiloy, titanium, stainless steel, cobalt chrome, or ceramic. However, such a rigid prosthesis will not move with the heart in the same way as a semi-rigid prosthesis will.
Prosthesis 10 can have an anterior-posterior (“AP”) to commissure-commissure (“CC”) ratio in the range from about 0.75 to about 0.4 to treat most mitral valve diseases. (Again, dimensions 50 and 52 in
By having a pinch 34 in the posterior section of prosthesis 10′ as shown in
It will be understood that the foregoing is only illustrative of the principles of the invention and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the principles of the invention may be applicable to prostheses for valves other than the mitral valve (e.g., the tricuspid valve). As another example of possible modifications within the scope of the invention, the illustrative embodiments shown herein are at least substantially symmetrical about a plane that (1) is perpendicular to the plan view plane, (2) passes through the high point 32 of back 30, and (3) passes midway between the free ends of the C. (This plane of symmetry can also be described as a plane perpendicular to a line between points 12 and 14, and which plane is midway between points 12 and 14.) However, such symmetry may not be desired in all cases, and it will be understood that various kinds of asymmetry can be employed to meet various needs.
This application claims the benefit of U.S. provisional patent application No. 60/571,087, filed May 14, 2004, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60571087 | May 2004 | US |