C-TERMINAL PEPTIDE EXTENSIONS WITH INCREASED ACTIVITY

Information

  • Patent Application
  • 20230272356
  • Publication Number
    20230272356
  • Date Filed
    February 28, 2023
    a year ago
  • Date Published
    August 31, 2023
    a year ago
Abstract
The disclosure provides Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutants with C-terminal peptide and/or N-terminal peptide extensions that improve the performance of the MMLV RTase mutants. The disclosure also provides suitable amino acid positions in MMLV RTases for mutagenesis and methods and kits for using MMLV RTase mutants to synthesize cDNA from RNA templates.
Description
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically as a text file in .XML format and is hereby incorporated by reference in its entirety. The name of the .XML file is “22-0291-WO_ST26_FINAL.xml”, the file was created on Feb. 28, 2023 and 1,026,058 bytes in size.


FIELD OF THE DISCLOSURE

The disclosure relates to Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutants with C-terminal and/or N-terminal peptide extensions that improve the performance of the MMLV RTase mutants. The disclosure also relates to suitable amino acid positions in MMLV RTases for mutagenesis and methods and kits for using MMLV RTase mutants to synthesize cDNA from RNA templates.


BACKGROUND

Reverse transcriptase (RTase) enzymes have revolutionized molecular biology. RTase is a critical component of the reverse transcription polymerase chain reaction (RT-PCR) allowing the production of complementary DNA (cDNA) from RNA. The cDNA produced in reverse transcription reactions can be used in a wide range of downstream applications, including quantitative PCR, gene expression analysis, isolated RNA sequencing, gene cloning, and cDNA library creation.


RTases, first derived from retroviruses, facilitate the reverse transcription of RNA into cDNA by utilizing RNA-dependent polymerase and RNase H, a non-sequence-specific endonuclease enzyme that catalyzes cleavage of RNA in an RNA/DNA duplex. This results in virus replication and integration of the viral sequence into host DNA thereby allowing for the proliferation of the virus along with host DNA. Within the laboratory setting, RTases from Moloney murine leukemia virus (MMLV), avian myeloblastosis virus (AMV), and human immunodeficiency virus type 1 (HIV-1) are the most commonly used RTase for cDNA synthesis.


RTases for research applications are often mutated multi-generational MMLV and AMV RTases that have been optimized for laboratory procedures. Mutations in the RTases alter properties of the enzymes, including thermostability, RTase activity, 5′ mRNA coverage, and RNase H activity.


AMV RTases are thermostable and less sensitive to thermal degradation than MMLV RTase and are preferred for RNA having a strong secondary structure. In addition, AMV RTases are often suitable for use with RNA molecules that are five kilobases or longer because of the heat stability of AMV RTases. However, the high temperatures required to resolve strong secondary structures or long RNA strands can negatively impact RNA integrity and fidelity of transcription. AMV also possess an intrinsic RNase activity that degrades RNA in an RNA/DNA hybrid, which can result in reduced total cDNA and reduced full-length cDNA yield.


MMLV RTase is characterized by low RNase H activity and a higher fidelity as compared to AMV RTase. The reduced RNase H activity allows MMLV RTases to be used for the reverse transcription of long RNAs (>5 kb). However, the RNase H activity of MMLV RTase limits the efficiency of synthesizing long cDNA in vitro. Mutations in MMLV RTase have been introduced to reduce RNase H activity. In addition, because the optimal temperature for MMLV RTase activity is −37° C., the enzyme lacks the ability to effectively reverse transcribe RNAs with strong secondary structures. The use of MMLV RTase at elevated temperatures can compromise cDNA length and yield as a result of lower enzyme activity. MMLV RTase mutants that substitute Mn2+ for Mg2+ in the reaction mixture attempt to overcome these limitations, but are characterized by inefficiency and error.


Thus, despite the unique properties of AMV and MMLV RTases, there exists a need for an RTase that combines the beneficial attributes of AMV and MMLV RTases. Consistent with this, the present application discloses MMLV RTase mutants containing an unnatural peptide tag on the C-terminal and/or N-terminal end of MMLV RTase that confers increased RTase activity and thermostability as compared to RTases without a C-terminal and/or N-terminal peptide extension.


SUMMARY

The disclosure provides Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutants with C-terminal and/or N-terminal extensions that improve the performance of the MMLV RTase mutants. The disclosure also provides suitable amino acid positions in MMLV RTases for mutagenesis and methods and kits for using MMLV RTase mutants to synthesize cDNA from RNA templates.


One aspect of the disclosure provides an isolated Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutant comprising a C-terminal peptide extension, an N-terminal peptide extension, or both a C-terminal and an N-terminal peptide extension.


In another aspect, the disclosure provides an isolated Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutant comprising the amino acid sequence of SEQ ID NO: 674 (MMLV-II), wherein the amino acid sequence of the MMLV RTase mutant further comprises a C-terminal peptide extension or N-terminal peptide extension and at least two amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68 (Q68R); (b) a glutamine to arginine substitution at position 79 (Q79R); (c) a leucine to tyrosine at position 82 (L82Y); (d) a leucine to arginine substitution at position 99 (L99R); (e) a leucine to isoluecine at position 280 (L280I); (f) a glutamic acid to aspartic acid substitution at position 282 (E282D); (g) a glutamine to glutamic acid substitution at position 299 (Q299E); (h) threonine to lysine at position 306 (T306K); (i) a valine to asparagine at position 433 (V433N); or (j) an isoleucine to tryptophan at position 593 (I593W).


In yet a further aspect, the disclosure provides a method for synthesizing complementary deoxyribonucleic acid (cDNA) comprising: (a) providing the isolated MMLV RTase mutant of any one of claims 1 to 10; and (b) contacting the isolated MMLV RTase mutant with a nucleic acid template to permit synthesis of cDNA.


In a further aspect, the disclosure provides a method for performing reverse transcription-polymerase chain reaction (RT-PCR) comprising: providing the isolated MMLV RTase mutant of any one of claims 1 to 10; and contacting the isolated MMLV RTase mutant with a nucleic acid template to replicate and amplify the nucleic acid template.


Specific embodiments of the disclosure will become evident from the following more detailed description and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C are schematics showing reverse transcriptase mutagenesis selection by rational design. Amino acid positions for mutagenesis were chosen at the substrate binding site (FIGS. 1A and 1B) or near the substrate binding site (FIG. 1C).



FIG. 2 shows Western blot analysis of test induction results in in BL21(DE3) cells for MMLV RT in TB medium. Lane 1—Precision Plus Protein Unstained Standards (Bio Rad, Cat #161-0363), Lane 2—Time=0 hour, Lane 3—Time=3 hours after induction at 37° C., Lane 4—Time=0 hour, Lane 5—Time=21 hours after induction at 18° C.





DETAILED DESCRIPTION

The disclosure relates to C-terminal and/or N-terminal extensions that improve the performance of Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutants. The C-terminal and/or N-terminal peptide extensions of MMLV RTase mutants of the disclosure display increased RTase activity and thermostability as compared with commercially available RTases.


Reference will now be made in detail to exemplary embodiments of the claimed invention. While the claimed invention will be described in conjunction with the exemplary embodiments, it will be understood that it is not intended to limit the claimed invention to those embodiments. To the contrary, it is intended to cover alternatives, modifications, and equivalents, as may be included within the spirit and scope of the claimed invention, as defined by the appended claims.


Those of ordinary skill in the art may make modifications and variations to the embodiments described herein without departing from the spirit or scope of the claimed invention. In addition, although certain methods and materials are described herein, other methods and materials that are similar or equivalent to those described herein can also be used to practice the claimed invention.


In addition, any of the compositions or methods provided, disclosed, or described herein can be combined with one or more of any of the other compositions and methods provided, disclosed, or described herein.


1. DEFINITIONS

Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which the claimed invention belongs. The terminology used herein is for describing particular embodiments only and is not intended to be limiting of the claimed invention. All technical and scientific terms used herein have the same meaning.


The following references provide those of skill in the art with a general understanding of many of the terms used herein (unless defined otherwise herein): Singleton et al., Dictionary of Microbiology and Molecular Biology, 3rd ed. (Wiley, 2006); Walker, The Cambridge Dictionary of Science and Technology (Cambridge University Press, 1990); Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed. (Springer Verlag, 1991); and Hale et al., Harper Collins Dictionary of Biology (HarperCollins Publishers, 1991). Generally, the procedures or methods described herein and the like are common methods used in the art. Such standard techniques can be found in reference manuals such as, for example, Green et al., Molecular Cloning: A Laboratory Manual, 4th ed. (Cold Spring Harbor Laboratory Press, 2012), and Ausubel, Current Protocols in Molecular Biology (John Wiley & Sons Inc., 2004).


The following terms may have meanings ascribed to them below, unless specified otherwise. However, it should be understood that other meanings known or understood by those having ordinary skill in the art are also possible, and within the scope of the claimed invention. All publications, patent applications, patents, and other references mentioned or discussed herein are expressly incorporated by reference in their entireties. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


As used herein, the singular forms “a,” “and,” and “the” include plural references, unless the context clearly dictates otherwise.


As used herein, the term “or” means, and is used interchangeably with, the term “and/or,” unless context clearly indicates otherwise.


As used herein, the term “including” means, and is used interchangeably with, the phrase “including but not limited to.”


As used herein, the term “such as” means, and is used interchangeably with, the phrase “such as, for example” or “such as but not limited.”


Unless specifically stated or obvious from context, as used herein, the term “about” is understood as within a range of normal tolerance in the art, for example, within two standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein can be modified by the term about.


Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or sub-range from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50.


As used herein, the terms “nucleic acid molecule” and “polynucleotide” refer to a polymer or large biomolecule comprised of nucleotides. The term “nucleic acid” includes deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and analogs thereof. Non-limiting examples of nucleic acid molecules include DNA (e.g., genomic DNA, cDNA), RNA molecules (e.g., mRNA, rRNA, cRNA, tRNA), and chimeras thereof. A nucleic acid molecule can be obtained by cloning techniques or synthesized, using techniques that are known to those of skill in the art. DNA can be double-stranded or single-stranded (coding strand or non-coding strand, i.e., antisense). A nucleic acid backbone may comprise a variety of linkages known in the art, including one or more of sugar-phosphodiester linkages, peptide-nucleic acid bonds (referred to as “peptide nucleic acids” (PNA)), phosphorothioate linkages, methylphosphonate linkages, or combinations thereof. Sugar moieties of the nucleic acid may be ribose or deoxyribose, or similar compounds having known substitutions, for example, 2′ methoxy substitutions (containing a 2′-O-methylribofuranosyl moiety) and/or 2′ halide substitutions. Nitrogenous bases may be conventional bases (adenine (A), guanine (G), thymine (T), cytosine (C), and uracil (U)), known analogs thereof (e.g., inosine), known derivatives of purine or pyrimidine bases, or “abasic” residues in which the backbone includes no nitrogenous base for one or more residues. A nucleic acid may comprise only conventional sugars, bases, and linkages, as found in RNA and DNA, or may include both conventional components and substitutions (e.g., conventional bases linked via a methoxy backbone, or a nucleic acid including conventional bases and one or more base analogs). An “isolated nucleic acid molecule,” as is generally understood by those of skill in the art and as used herein, refers to a polymer of nucleotides, and includes but is not limited to DNA and RNA.


As used herein, the term “probe” refers to a nucleic acid oligonucleotide that hybridizes specifically to a target sequence in a nucleic acid or its complement, under conditions that promote hybridization, thereby allowing detection of the target sequence or its amplified nucleic acid. Detection may either be direct (i.e., resulting from a probe hybridizing directly to the target or amplified sequence) or indirect (i.e., resulting from a probe hybridizing to an intermediate molecular structure that links the probe to the target or amplified sequence). A probe's “target” generally refers to a sequence within an amplified nucleic acid sequence (i.e., a subset of the amplified sequence) that hybridizes specifically to at least a portion of the probe sequence by standard hydrogen bonding or “base pairing.” Sequences that are “sufficiently complementary” allow stable hybridization of a probe sequence to a target sequence, even if the two sequences are not completely complementary. A probe may be labeled or unlabeled. A probe can be produced by molecular cloning of a specific DNA sequence or it can be synthesized. Probes for use in the methods disclosed herein can be readily designed and used by those of skill in the art.


As used herein, the term “primer” refers to a nucleic acid oligonucleotide that hybridizes specifically to a target sequence in a nucleic acid or its complement, and which is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process. Primers may be provided in double-stranded or single-stranded form. Primers for use in the methods disclosed herein can be readily designed and used by those of skill in the art.


Probes or primers for use in the methods disclosed herein may be of any suitable length, depending on the particular assay format and the particular needs and targeted sequences employed. For example, the probes or primers for use in the methods disclosed herein are at least 10 nucleotides in length, or at least 15, 20, 25, 30, or more than 30 nucleotides in length, and they may be adapted to be especially suited for a chosen nucleic acid amplification system and/or hybridization system used. Longer probes and primers are also within the scope of the disclosure.


A “transcribed polynucleotide” or “nucleotide transcript” is a polynucleotide (e.g., mRNA, hnRNA, cDNA, or analog of such RNA or cDNA) that is complementary to or having a high percentage of identity (e.g., at least 80% identity) with all or a portion of a mature mRNA made by transcription of a marker of the disclosure and normal post-transcriptional processing (e.g., splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.


As used herein, the terms “reverse transcriptase,” “RTase,” or “RT” refer to an enzyme that is used to generate complementary (cDNA) from an RNA template in a process known as “reverse transcription.” The term reverse transcriptase, as used herein, also refers to any enzyme that exhibits reverse transcription activity. Reverse transcriptases can be derived from a variety of sources including but not limited to viruses including retroviruses and DNA polymerases exhibiting transcriptase activity. Such retroviruses include but are not limited to Moloney murine leukemia virus (MMLV), avian myeloblastosis virus (AMV), and human immunodeficiency virus (HIV).


Reverse transcriptase activity can be measured by incubating an RTase in a buffer containing an RNA template and deoxynucleotides. One of skill in the art will recognize that a wide range of conditions can be used to perform reverse transcription reactions and multiple methods exist for measuring the quantity of cDNA produced during reverse transcription.


Reverse transcriptases of the disclosure include reverse transcriptases having one or a combination of the properties described herein. Such properties include but are not limited to increased activity, enhanced DNA synthesis, enhanced stability or enhanced thermostability, reduced or eliminated RNase H activity, reduced terminal deoxynucleotidyl transferase activity, increased accuracy or increased fidelity, increased specificity, or altered half-life, for example when compared to a base construct. As used herein, the term “base construct” refers to the initial RTase from which the RTase mutants of the disclosure are prepared (e.g. for example a wild-type RTase or a modified wild-type RTase).


As used herein, the terms “accuracy” and “fidelity” are used interchangeably and refer to ability of an RTase to accurately replicate a desired template; i.e., the ability of the RTase to accurately perform cDNA synthesis in a reverse transcription reaction. The “fidelity” or “accuracy” of a reverse transcriptase can be assessed by determining the frequency of incorrect nucleotide incorporation into the synthesized cDNA molecule, which may be referred to as the enzyme's error rate. As used herein, the term “increased fidelity” refers to RTase mutants of the disclosure that exhibit an error rate lower than that of the base construct. For example, the RTase mutants as disclosed herein can exhibit an error rate that is 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, or 200% lower than, or at least 2-fold, 3-fold, 4-fold, 5-fold, or 10-fold, or more than 10-fold lower than the error rate of the RTase base construct . . . .


As used herein, the term “specificity” refers to a decrease in mis-priming by an RTase during cDNA synthesis. An RTase mutant's specificity can be assessed by performing a reverse transcription reaction at a particular temperature, including higher temperatures, and comparing the amount of mis-priming in that reaction with the amount of mis-priming in a reaction performed with the wild-type RTase (or the RTase base construct) under identical conditions.


As used herein with respect to the RTase molecules of the disclosure, the terms “stable” and “thermostable” are used interchangeably and refer to an enzyme that is resistant to heat inactivation and remains active at temperatures in excess of 37° C. (e.g., 38° C., 39° C., 40° C., 41° C., 42° C., 43° C., 44° C., 45° C., 46° C., 47° C., 48° C., 49° C., 50° C., 51° C., 52° C., 53° C., 54° C., 55° C., 56° C., 57° C., 58° C., 59° C., 60° C., 61° C., 62° C., 63° C., 64° C., 65° C., 70° C., or higher temperatures). For example, in one embodiment the disclosure provides an RTase mutant having activity with a longer half-life than that of the base construct RTase at an elevated temperature. Thus, RTase mutants with “enhanced thermostability” can refer to RTase mutants of the disclosure that exhibit an increase in thermostability at temperatures of about 50° C. up to about 90° C. as compared to the base construct RTase. In some embodiments, the thermostability of the RTase mutant is at least 1.5 fold or greater as compared to the thermostability of the base construct RTase. Comparisons of cDNA produced by a base construct and RTase mutant are compared using identical reaction conditions for the base construct and RTase mutant reactions. Reaction conditions can include but are not limited to salt concentration, buffer concentration, pH, divalent metal ion concentration, temperature, nucleoside triphosphate concentration, template concentration, RTase concentration, primer concentration, time, and in one-step PCR, the quantitative PCR primer and probe concentrations.


As used herein, the term “enhanced DNA synthesis” refers to an RTase enzyme that produces more DNA (e.g. cDNA) than the base RTase construct. In some embodiments, DNA synthesis can be measured by quantitative PCR at standard reaction conditions, as compared to the base construct RTase. Consistent with assessments of thermostability, quantitative comparisons are made under similar or the same reaction conditions and the amount of cDNA synthesized using the base construct RTase is compared to the amount of cDNA produced using the RTase mutant (see Tables 4-7). In some embodiments, the RTase mutant of the disclosure with enhanced DNA synthesis may produce about 5% to about 200% more cDNA than the base construct RTase. In some embodiments, the RTase mutant of the disclosure with enhanced DNA synthesis has at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, or 200% more than, or at least 2-fold, 3-fold, 4-fold, 5-fold, or 10-fold, or more than 10-fold more DNA synthesis than the RTase base construct DNA synthesis.


Reverse transcriptase activity, as described herein, was evaluated in a one-step or two-step procedure. The one-step procedure combines reverse transcription and quantitative PCR in a single reaction. The method is performed by including Gene Expression Master Mix, RTase, RNA, a fluorescent probe, and primers and probes as described in Example 3. The two-step procedure comprises reverse transcription followed by quantitative PCR. In the reverse transcription step, RTase is added to a mixture containing RNA, gene specific primers, first strand synthesis buffer, and RNase. The resultant cDNA is then quantified in a second step wherein the cDNA is combined with Gene Expression Master Mix, primers and probes, and a fluorescent marker. The cDNA produced in either the one-step and two-step procedures is quantified, and the mean and standard deviation reported as shown herein in Tables 4-7.


As used herein, “RNase H activity” refers to cleavage of RNA in DNA-RNA duplexes via a hydrolytic mechanism to produce 5′ phosphate terminated oligonucleotides. RNase H activity does not include degradation of single-stranded nucleic acids, duplex DNA, or double-stranded RNA. As used herein, the phrase “substantially lacks RNase H activity” means having less than 10%, 5%, 1%, 0.5%, or 0.1% of the activity of a wild type enzyme. As used herein, the phrase “lacks RNase H activity” means having undetectable RNase H activity or having less than about 1%, 0.5%, or 0.1% of the RNase H activity of a wild type enzyme.


As used herein, the term “mutation” refers to a change introduced into the nucleic acid sequence encoding a protein that changes the amino acid sequence of the protein, including but not limited to substitutions, insertions, deletions, point mutations, transpositions, inversions, frame shifts, nonsense mutations, truncations, or other forms of aberrations. A mutation may produce no discernible changes or result in a new property, function, or trait of the mutated protein. An RTase mutant of the disclosure may have one or more mutations in the nucleic acid sequence encoding the RTase mutant resulting in one or more mutations in the amino acid sequence of the RTase mutant. A mutation can result in one or more amino acids being substituted for an alternate amino acid residue, including Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and/or Val. The resulting amino acid mutations may impart altered functional and biological properties to the RTase mutant including but not limited to increased activity, enhanced DNA synthesis, enhanced stability or enhanced thermostability, reduced or eliminated RNase H activity, reduced terminal deoxynucleotidyl transferase activity, increased accuracy or increased fidelity, increased specificity, or altered half-life.


As used herein, the terms “detecting,” “detection,” “determining,” and the like refer to assays performed for identification of the quantity of cDNA synthesis as a marker of RTase activity. The amount of marker expression or activity detected in the sample can be the same as, decreased, or increased as compared to the amount of marker expression or activity detected using the RTase base construct. One of skill in the art will understand that amount of cDNA can be quantified using multiple techniques.


The term “increased,” as used herein with regard to RTase activity, refers to the level of RTase activity of an RTase mutant as compared to the RTase base construct. An RTase mutant has “increased” RTase activity if the level of its RTase activity, as measured by the quantity of cDNA synthesized or as measured by other methods known in the art, is more than the RTase base construct activity. For example, the RTase activity of the RTase mutant is increased if the RTase activity is at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% more than, or at least 2-fold, 3-fold, 4-fold, 5-fold, or 10-fold, or more than 10-fold more than the RTase base construct activity.


The term “decreased,” as used herein with regard to RTase activity, refers to the level of RTase activity of an RTase mutant as compared to the RTase base construct. An RTase mutant has “decreased” RTase activity if the level of its RTase activity, as measured by the quantity of cDNA synthesized or as measured by other methods known in the art is less than the RTase base construct activity. For example, the RTase activity of the RTase mutant is decreased if the RTase activity is at least 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% less than, or at least 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, or more than 10-fold less than the RTase base construct activity.


As used herein, the term “amplification” refers to any known in vitro procedure for obtaining multiple copies of a target nucleic acid sequence or its complement or fragments thereof. In vitro amplification refers to production of an amplified nucleic acid that may contain less than the complete target region sequence or its complement. Known in vitro amplification methods include, for example, transcription-mediated amplification, replicase-mediated amplification, polymerase chain reaction (PCR) amplification, ligase chain reaction (LCR) amplification, and strand-displacement amplification (SDA, including multiple strand-displacement amplification method (MSDA)). Replicase-mediated amplification uses self-replicating RNA molecules, and a replicase such as Q-β-replicase. PCR amplification uses DNA polymerase, primers, and thermal cycling to synthesize multiple copies of the two complementary strands of DNA or cDNA. PCR involves denaturation of a double-stranded DNA molecule, followed by annealing of DNA primers directed to the sequence of interest, and amplification/extension of the newly formed DNA strand. LCR amplification uses at least four separate oligonucleotides to amplify a target and its complementary strand by using multiple cycles of hybridization, ligation, and denaturation. SDA is a method in which a primer contains a recognition site for a restriction endonuclease that permits the endonuclease to nick one strand of a hemimodified DNA duplex that includes the target sequence, followed by amplification in a series of primer extension and strand displacement steps. Other strand-displacement amplification methods known in the art (e.g., MSDA) do not require endonuclease nicking. Those of skill in the art will understand that the oligonucleotide primer sequences of the disclosure may be readily used in any in vitro amplification method based on primer extension by a polymerase. As commonly known in the art, oligonucleotides are designed to bind to a complementary sequence under selected conditions.


As used herein, “real time PCR” or “quantitative PCR” refers to a PCR method wherein the amount of product being formed can be monitored using florescent probes and quantified by tracking the fluorescent signal produced, above a threshold level. Real time PCR can be performed in a one-step reaction that includes the reverse transcription step in a simultaneous reaction (i.e., real time PCR or RT-PCR) or in a two-step reaction in which the reverse transcription step and PCR steps are performed consecutively.


As used herein, the term “complementary” refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. A first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide of the first region is capable of base pairing with a nucleotide of the second region. In some embodiments, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% of the nucleotides of the first portion are capable of base pairing with nucleotides in the second portion. In another embodiment, all nucleotides of the first portion are capable of base pairing with nucleotides in the second portion.


Polypeptide and polynucleotide sequences may be aligned, and percentages of identical amino acids or nucleotides in a specified region may be determined against another polypeptide or polynucleotide sequence, using computer algorithms that are publicly available. The percent identity of a polynucleotide or polypeptide sequence is determined by aligning polynucleotide and polypeptide sequences using appropriate algorithms, such as BLASTN or BLASTP, respectively, set to default parameters; identifying the number of identical nucleic or amino acids over the aligned portions; dividing the number of identical nucleic or amino acids by the total number of nucleic or amino acids of the polynucleotide or polypeptide of the disclosure; and then multiplying by 100 to determine the percent identity.


As used herein, the terms “sample” and “biological sample” include a specimen or culture obtained from any source. Biological samples can be obtained from cerebrospinal fluid, lacrimal fluid, blood (including any blood product, such as whole blood, plasma, serum, or specific types of cells of the blood), urine, saliva, and the like. Biological samples also include tissue samples, such as biopsy tissues or pathological tissues that have previously been fixed (e.g., formaline snap frozen, cytological processing).


2. REVERSE TRANSCRIPTASES

The disclosure relates to novel C-terminal and/or N-terminal peptide extensions of Moloney murine leukemia virus (MMLV) and reverse transcriptase (RTase) mutants. MMLV RTases with C-terminal and/or N-terminal peptide extensions, as summarized in Tables 39 and 42 are prepared by enzyme overexpression in E. coli and purified by affinity, ion exchange, and mixed resin chromatography in order to purify the MMLV Rtase mutants. Purified MMLV RTases were then tested for their ability to synthesize cDNA from isolated total RNA.


The MMLV RTase mutants of the disclosure are prepared by modifying the sequence of an MMLV RTase base construct (SEQ ID NO: 637). In one embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least one amino acid substitution that is: (a) an isoleucine to arginine, lysine, or methionine substitution at position 61 (I61R, I61K, or I61M); (b) a glutamine to arginine, lysine, or isoleucine substitution at position 68 (Q68R, Q68K, or Q68I); (c) a glutamine to arginine, histidine, or isoleucine substitution at position 79 (Q79R, Q79H, or Q79I); (d) a leucine to arginine, lysine, or asparagine substitution at position 99 (L99R, L99K, or L99N); (e) a glutamic acid to aspartic acid, methionine, or tryptophan substitution at position 282 (E282D, E282M, or E282W); and/or (f) an arginine to alanine substitution at position 298 (R298A).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least two amino acid substitutions that are: (a) an isoleucine to arginine substitution at position 61 and a glutamic acid to aspartic acid substitution at position 282 (I61R/E282D); (b) a leucine to arginine at substitution position 99 and a glutamic acid to aspartic acid substitution at position 282 (L99R/E282D); (c) a glutamine to arginine substitution at position 68 and a glutamic acid to aspartic acid substitution at position 282 (Q68R/E282D); (d) a glutamine to arginine substitution at position 79 and a glutamic acid to aspartic acid substitution at position 282 (Q79R/E282D); (e) a glutamic acid to aspartic acid substitution at position 282 and an arginine to alanine substitution at position 298 (E282D/R298A); (f) an isoleucine to arginine substitution at position 61 and a leucine to arginine substitution at position 99 (I61R/L99R); (g) an isoleucine to arginine substitution at position 61 and a glutamine to arginine substitution at position 68 (I61R/Q68R); (h) an isoleucine to arginine substitution at position 61 and a glutamine to arginine substitution at position 79 (I61R/Q79R); (i) an isoleucine to arginine substitution at position 61 and an arginine to alanine substitution at position 298 (I61R/R298A); (j) a glutamine to arginine substitution at position 68 and a leucine to arginine substitution at position 99 (Q68R/L99R); (k) a glutamine to arginine substitution at position 79 and a leucine to arginine substitution at position 99 (Q79R/L99R); (1) a leucine to arginine at substitution position 99 and an arginine to alanine substitution at position 298 (L99R/R298A); (m) a glutamine to arginine substitution at position 68 and a glutamine to arginine substitution at position 79 (Q68R/Q79R); (n) a glutamine to arginine substitution at position 68 and an arginine to alanine substitution at position 298 (Q68R/R298A); or (o) a glutamine to arginine substitution at position 79 and an arginine to alanine substitution at position 298 (Q79R/R298A).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least three amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/L99R/E282D); (b) a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q79R/L99R/E282D); (c) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 68, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79R/E282D); or (d) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 68, and a leucine to arginine substitution at position 99 (Q68R/Q79R/L99R).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least four amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79R/L99R/E282D); (b) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to lysine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79R/L99K/E282D); (c) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to asparagine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79R/L99N/E282D); (d) a glutamine to isoleucine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68I/Q79R/L99R/E282D); (e) a glutamine to lysine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68K/Q79R/L99R/E282D); (f) a glutamine to arginine substitution at position 68, a glutamine to histidine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79H/L99R/E282D); (g) a glutamine to arginine substitution at position 68, a glutamine to isoleucine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (Q68R/Q79I/L99R/E282D); (h) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to methionine substitution at position 282 (Q68R/Q79R/L99R/E282M); (i) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to tryptophan substitution at position 282 (Q68R/Q79R/L99R/E282W); or (j) a glutamine to isoleucine substitution at position 68, a glutamine to histidine substitution at position 79, a leucine to lysine substitution at position 99, and a glutamic acid to methionine substitution at position 282 (Q68I/Q79H/L99K/E282M).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least five amino acid substitutions that are: (a) an isoleucine to lysine substitution at position 61, a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (I61K/Q68R/Q79R/L99R/E282D); (b) an isoleucine to methionine substitution at position 61, a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, and a glutamic acid to aspartic acid substitution at position 282 (I61M/Q68R/Q79R/L99R/E282D); or (c) an isoleucine to methionine substitution at position 61, a glutamine to isoleucine substitution at position 68, a glutamine to histidine substitution at position 79, a leucine to lysine substitution at position 99, and a glutamic acid to methionine substitution at position 282 (161M/Q68IR/Q79H/L99K/E282M).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 637, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least five or more amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to arginine substitution at position 99, a glutamic acid to aspartic acid substitution at position 282, a glutamine to glutamic acid substitution at position 299, a valine to arginine substitution at position 433, and a isoleucine to glutamic acid at position 593 (Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E): (b) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to argine substitution at position 82, a leucine to arginine substitution at position 99, a glutamic acid to aspartic acid substitution at position 282, a glutamine to glutamic acid substitution at position 299, a valine to arginine substitution at position 433, and a isoleucine to glutamic acid at position 593 (Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E); (c) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to argine substitution at position 82, a leucine to arginine substitution at position 99, a glutamic acid to aspartic acid substitution at position 282, a glutamine to glutamic acid substitution at position 299, a threonine to glutamic acid substitution at position 332, and a isoleucine to glutamic acid at position 593 (Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E); (d) a glutamine to arginine substitution at position 68, a glutamine to arginine substitution at position 79, a leucine to argine substitution at position 82, a leucine to arginine substitution at position 99, a glutamic acid to aspartic acid substitution at position 282, a glutamine to glutamic acid substitution at position 299, a threonine to glutamic acid substitution at position 332, a valine to arginine substitution at position 433, and a isoleucine to glutamic acid at position 593 (Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/I593E).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 717, wherein the amino acid sequence of the MMLV RTase mutant further comprises at least two amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68 (Q68R); (b) a glutamine to arginine substitution at position 79 (Q79R); (c) a leucine to tyrosine at position 82 (L82Y); (d) a leucine to arginine substitution at position 99 (L99R); (e) a leucine to isoluecine at position 280 (L280I); (f) a glutamic acid to aspartic acid substitution at position 282 (E282D); (g) a glutamine to glutamic acid substitution at position 299 (Q299E); (h) threonine to lysine at position 306 (T306K); (i) a valine to asparagine at position 433 (V433N); (j) a valine to arginine at position 433 (V433R); (k) an isoleucine to glutamic acid at position 593 (I593E); or (1) an isoleucine to tryptophan at position 593 (I593W).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 717, wherein the amino acid sequence of the MMLV RTase mutant further comprises the amino acid substitutions: (a) a glutamine to arginine substitution at position 68 (Q68R); (b) a glutamine to arginine substitution at position 79 (Q79R); (c) a leucine to tyrosine substitution at position 82 (L82Y); (d) a leucine to arginine substitution at position 99 (L99R); (e) a leucine to isoleucine substitution at position 280 (L280I); (f) a glutamic acid to aspartic acid substitution at position 282 (E282D); (g) a glutamine to glutamic acid substitution at position 299 (Q299E); (h) a threonine to lysine substitution at position 306 (T306K); (i) a valine to asparagine substitution at position 433 (V433N); and (j) an isoleucine to tryptophan substitution at position 593 (I593W).


In another embodiment, the MMLV RTase mutant of the disclosure comprises the amino acid sequence of SEQ ID NO: 717, wherein the amino acid sequence of the MMLV RTase mutant further comprises the amino acid substitutions: (a) a glutamine to arginine substitution at position 68 (Q68R); (b) a glutamine to arginine substitution at position 79 (Q79R); (c) a leucine to tyrosine substitution at position 82 (L82Y); (d) a leucine to arginine substitution at position 99 (L99R); (e) a leucine to isoleucine substitution at position 280 (L280I); (f) a glutamic acid to aspartic acid substitution at position 282 (E282D); (g) a glutamine to glutamic acid substitution at position 299 (Q299E); (h) a threonine to lysine substitution at position 306 (T306K); (i) a valine to arginine substitution at position 433 (V433R); and (j) an isoleucine to glutamic acid substitution at position 593 (I593E).


In one embodiment the RTase mutant amino acid sequence comprises a mutant selected from Tables 3, 8, 9, 12, 21, 22, or 38. In one aspect, the RTase mutant amino acid sequence comprises a mutant selected from the amino acid sequences of SEQ ID NO: 638, SEQ ID NO: 639, SEQ ID NO: 640, SEQ ID NO: 641, SEQ ID NO: 642, SEQ ID NO: 643, SEQ ID NO: 644, SEQ ID NO: 645, SEQ ID NO: 646, SEQ ID NO: 647, SEQ ID NO: 648, SEQ ID NO: 649, SEQ ID NO: 650, SEQ ID NO: 651, SEQ ID NO: 652, SEQ ID NO: 653, SEQ ID NO: 654, SEQ ID NO: 655, SEQ ID NO: 656, SEQ ID NO: 657, SEQ ID NO: 658, SEQ ID NO: 659, SEQ ID NO: 660, SEQ ID NO: 661, SEQ ID NO: 662, SEQ ID NO: 663, SEQ ID NO: 664, SEQ ID NO: 665, SEQ ID NO: 666, SEQ ID NO: 667, SEQ ID NO: 668, SEQ ID NO: 669, SEQ ID NO: 679, SEQ ID NO: 671, SEQ ID NO: 672, SEQ ID NO: 673, SEQ ID NO: 674, SEQ ID NO: 675, SEQ ID NO: 676, SEQ ID NO: 677, SEQ ID NO: 678, SEQ ID NO: 679, SEQ ID NO: 670, SEQ ID NO: 671, SEQ ID NO: 672, SEQ ID NO: 673, SEQ ID NO: 674, SEQ ID NO: 675, SEQ ID NO: 676, SEQ ID NO: 677, SEQ ID NO: 678, SEQ ID NO: 679, SEQ ID NO: 680, SEQ ID NO: 681, SEQ ID NO: 682, SEQ ID NO: 683, SEQ ID NO: 684, SEQ ID NO: 685, SEQ ID NO: 686, SEQ ID NO: 687, SEQ ID NO: 688, SEQ ID NO: 689, SEQ ID NO: 690, SEQ ID NO: 691, SEQ ID NO: 692, SEQ ID NO: 693, SEQ ID NO: 694, SEQ ID NO: 695, SEQ ID NO: 696, SEQ ID NO: 697, SEQ ID NO: 698, SEQ ID NO: 699, SEQ ID NO: 716, SEQ ID NO: 717, SEQ ID NO: 718, SEQ ID NO: 719, SEQ ID NO: 720, SEQ ID NO: 721, SEQ ID NO: 722, SEQ ID NO: 723, SEQ ID NO: 724, SEQ ID NO: 725, SEQ ID NO: 726, SEQ ID NO: 727, SEQ ID NO: 728, SEQ ID NO: 729, SEQ ID NO: 730, or SEQ ID NO: 731.


In one embodiment, the RTase mutant amino acid sequence comprises a C-terminal extension. In one aspect, the C-terminal extension comprises a peptide sequence. In another embodiment, an isolated polypeptide encodes a RTase mutant with a C-terminal extension.


In another embodiment, the RTase mutant amino acid sequence comprises an N-terminal extension. In one aspect, the N-terminal extension comprises a peptide sequence. In another embodiment, an isolated polypeptide encodes a RTase mutant with an N-terminal extension.


In another embodiment, the RTase mutant amino acid sequence comprises both a C-terminal extension and an N-terminal extension. In one aspect, the C-terminal extension and the N-terminal extension comprise a peptide sequence. In another embodiment, an isolated polypeptide encodes a RTase mutant with both a C-terminal extension and an N-terminal extension.


The claimed invention is based, at least in part, on the discovery that certain single and double amino acid mutations introduced into an MMLV RTase sequence, as disclosed herein, result in an MMLV RTase with increased or enhanced thermostability and/or RTase activity. Accordingly, methods for synthesizing the MMLV RTase mutants and methods for performing reverse transcription-polymerase chain reaction (RT-PCR) are also provided herein. Further provided are kits comprising the isolated MMLV RTase single, double, triple, or more mutations.


In certain embodiments, the mutated RTase is derived from the retrovirus Moloney murine leukemia virus (MMLV). In other embodiments, a mutated RTase of the disclosure could be derived from the RTase from a retrovirus other than MMLV, such as avian myeloblastosis virus (AMV) or human immunodeficiency virus type 1 (HIV-1), by introducing the same mutations into an RTase base construct obtained from the other retrovirus.


In certain embodiments, the RTase mutants of the disclosure are obtained by genetic engineering techniques that are well known in the art. For example, site-directed and random mutagenesis can be used to generate the RTase mutants of the disclosure.


In one embodiment of the disclosure, an RTase mutant of the disclosure is part of a composition.


3. MUTAGENESIS

The RTase mutants of the disclosure can be prepared by standard methods disclosed herein or known in the art. In one embodiment, the nucleic acid sequence of the RTase base construct (SEQ ID NO: 637) is modified to create a nucleic acid sequence encoding an RTase mutant. One of skill in the art will recognize that colonies with the appropriate strains can be used to grow and express an RTase mutant of interest, and following cell harvest and protein isolation, the RTase mutant can be used in cDNA synthesis techniques. Non-limiting examples of mutagenesis and cDNA synthesis are described herein in Examples 1-3.


As used herein, the term “mutagenesis” refers to the introduction of a genetic change in the nucleic acid sequence of a cell, wherein the alteration is then inherited by each cell. One of skill in the art will understand that mutations in a given nucleic acid sequence can be introduced using a variety of methods. One of skill in the art will further recognize that mutagenesis methods seek to mutate a target gene or target polynucleotide. The target gene may encode any one or more desired proteins. Mutagenesis methods commonly use a synthetic oligonucleotide that carries the desired sequence modification. The mutagenic oligonucleotide is incorporated into the DNA sequence using in vitro enzymatic DNA synthesis and is propagated in a mutant or wild-type bacterium.


Site directed mutagenesis, wherein targeted mutations are introduced into one or more desired positions of a template polynucleotide, may be achieved using primer extension mutagenesis. This technique requires the use of a specific primer that contains one or more desired mutations relative to the template polynucleotide. The mutagenesis primer can be a synthetic oligonucleotide or a PCR product. The mutated primer may include one or more substitutions, deletions, additions, or combinations thereof.


Mutated reverse transcriptases may also be generated using random mutagenesis, wherein mutations are introduced into the mutagenesis primer during synthesis. Randomly mutagenized oligonucleotides may also be used as mutagenesis primers.


In another embodiment, the mutated reverse transcriptases of the disclosure can be developed using error-prone rolling circle amplification (RCA). In this technique, the fidelity of a DNA polymerase is decreased by performing the RCA in the presence of MnCl2 or by decreasing the amount of input DNA.


4. CDNA SYNTHESIS

The disclosure also relates to the activity of MMLV RTases, as measured by the quantity of cDNA produced by the MMLV RTases disclosed herein. cDNA can be prepared using one-step or two-step procedures and can be obtained from a variety of template molecules. As used herein, the term “template molecule” refers to a biological molecule that carries the genetic code for use in making a new nucleic acid strand. For example, in DNA replication, the unwound double helix and each single-stranded DNA molecule is used as a template to synthesize a complementary strand. Reverse transcription generates cDNA from RNA. One of skill in the art will understand that cDNA molecules may be prepared from a variety of nucleic acid template molecules. In one embodiment, the nucleic acid template can be single-stranded or double-stranded DNA. In one embodiment, RNA can be used in cDNA synthesis. In certain embodiments, the MMLV RTase mutants of the disclosure exhibit increased or enhanced thermostability and/or RTase activity as compared to an RTase base construct. In other embodiments, the MMLV RTase mutants of the disclosure exhibit altered half-life, reduced or eliminated RNase H activity, reduced terminal deoxynucleotidyl transferase activity, increased accuracy or fidelity, or increased specificity.


The disclosure also provides methods for synthesizing cDNA using the MMLV RTase mutants of the disclosure that have single or double amino acid mutations. The MMLV RTase mutants of the disclosure may be used in methods that produce a first strand cDNA or a first and second strand cDNA. One of skill in the art will understand that first and second strand cDNA may form a double-stranded DNA molecule, which may include a full-length cDNA sequence and cDNA libraries.


The cDNA molecules that have been reverse transcribed by the MMLV RTase mutants of the disclosure may be isolated, or the reaction mixture containing the cDNA molecules may be directly used in downstream applications or for further analysis or manipulation. Amplification methods that may be used to practice the methods of the disclosure are described herein and are well known in the art. Reverse transcription reactions may be carried out using non-specific primers, such as an anchored oligo-dT primer, or random sequence primers, or using a target-specific primer complementary to the RNA for each genetic probe being monitored, or using thermostable DNA polymerases (such as AMV RTase or MMLV RTase).


Amplification methods utilize pairs of primers that selectively hybridize to nucleic acids corresponding to a specific nucleotide sequence of interest that are contacted with the isolated nucleic acid under conditions that permit selective hybridization. Once hybridized, the nucleic acid:primer complex is contacted with one or more enzymes that facilitate template-dependent nucleic acid synthesis. Multiple rounds of amplification, also referred to as “cycles,” are conducted until a sufficient amount of amplification product is produced. Next, the amplification product is detected. In certain methods, the detection may be performed by visual means. Alternatively, the detection may involve indirect identification of the product via chemiluminescence, radioactive scintigraphy of incorporated radiolabel or fluorescent label, or even via a system using electrical or thermal impulse signals.


Methods based on ligation of two (or more) oligonucleotides in the presence of a nucleic acid having the sequence of the resulting “di-oligonucleotide,” thereby amplifying the di-oligonucleotide, also may be used in the amplification step of the disclosure.


In some embodiments of the disclosure, the detection process can utilize a hybridization technique, for example, wherein a specific primer or probe is selected to anneal to a target biomarker of interest, and thereafter detection of selective hybridization is made. As commonly known in the art, the oligonucleotide probes and primers can be designed by taking into consideration the melting point of hybridization thereof with its targeted sequence.


One of skill in the art will recognize that cDNA molecules made using the MMLV RTase mutants of the disclosure can be used in a variety of additional downstream applications. For example, amplification methods may include one-step PCR, two-step PCR, real-time or quantitative PCR, hot-start PCR, nested PCR, touch down PCR, differential display PCR (DDRT-PCR), microarray technologies, inverse PCR, Rapid amplification of PCR ends (RACE or anchored PCR), multiplex PCR, and site directed PCR mutagenesis. Synthesized cDNA and cDNA libraries created with the MMLV RTase mutants of the disclosure can be used in cloning and/or sequencing for further characterization. One of skill in the art will recognize that nucleic acid amplification using cDNA prepared with the MMLV RTase mutants of the disclosure may include additional techniques not listed herein.


To enable hybridization to occur under the methods presented above, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identity to a portion of the sequence of interest.


5. C-TERMINAL AND N-TERMINAL EXTENSIONS

The disclosure also relates to C-terminal and/or N-terminal peptide extensions that improve the performance of an MMLV RTase. C-terminal and N-terminal extensions are peptide additions to the C-terminal or N-terminals ends of the MMLV RTase. The MMLV RTase of the current disclosure contains an unnatural peptide tag on the C-terminal end, the N-terminal end, or both the C-terminal and N-terminal ends of the enzyme that improves the performance of the MMLV RTase, including increased RTase activity and thermostability. More specifically, the C-terminal and N-terminal peptide extensions described herein are fusions of domains from known thermostable enzymes to that of the MMLV Rtase. Results disclosed herein were achieved by overexpresseing enzymes in E. coli followed by affinity purification, ion exchange, and mixed resin chromatography to prepare purified protein, and the purified MMLV RTases were tested for their ability to synthesize cDNA from isolated total RNA.


In one embodiment, the C-terminal and/or N-terminal peptide extensions comprise the amino acid sequences of SEQ ID NOs: 732-761. The peptide extensions can reside on either one or both of the C-terminal and N-terminal ends of the MMLV RTase. In other embodiments, the C-terminal or N-terminal peptide extension is the amino acid sequence of SEQ ID NO: 735, SEQ ID NO: 736, SEQ ID NO: 739, SEQ ID NO: 744, or SEQ ID NO: 747.


In one embodiment, the N-terminal or C-terminal peptide extension is added to an MMLV RTase mutant comprising the amino acid sequence of SEQ ID NO: 717, wherein the amino acid sequence of the MMLV RTase mutant further comprises the amino acid substitutions: (a) a glutamine to arginine substitution at position 68 (Q68R); (b) a glutamine to arginine substitution at position 79 (Q79R); (c) a leucine to tyrosine substitution at position 82 (L82Y); (d) a leucine to arginine substitution at position 99 (L99R); (e) a leucine to isoleucine substitution at position 280 (L280I); (f) a glutamic acid to aspartic acid substitution at position 282 (E282D); (g) a glutamine to glutamic acid substitution at position 299 (Q299E); (h) a threonine to lysine substitution at position 306 (T306K); (i) a valine to asparagine substitution at position 433 (V433N); and (j) an isoleucine to tryptophan substitution at position 593 (I593W).


In other embodiments, the C-terminal and N-terminal peptide extensions added to an MMLV TRase mutant are selected from the sequences set forth in Tables 3, 8, 9, 12, 21, 22, or 38. In one aspect, the N-terminal or C-terminal peptide extensions are selected from the amino acid sequences of SEQ ID NO: 732, SEQ ID NO: 733, SEQ ID NO: 734, SEQ ID NO: 735, SEQ ID NO: 736, SEQ ID NO: 737, SEQ ID NO: 738, SEQ ID NO: 739, SEQ ID NO: 740, SEQ ID NO: 741, SEQ ID NO: 742, SEQ ID NO: 743, SEQ ID NO: 744, SEQ ID NO: 745, SEQ ID NO: 746, SEQ ID NO: 747, SEQ ID NO: 748, SEQ ID NO: 749, SEQ ID NO: 750, SEQ ID NO: 751, SEQ ID NO: 752, SEQ ID NO: 753, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, or SEQ ID NO: 761.


6. BIOLOGICAL SAMPLES

The MMLV RTase mutants and associated methods of the disclosure may be practiced with any suitable biological sample from which RNA or DNA can be isolated. In one embodiment of the disclosure, the biological sample may be a bodily fluid or tissue obtained from either a diseased or a healthy subject. In some embodiments of the disclosure, the biological sample may be a bodily fluid, including but not limited to whole blood, plasma, serum, feces, or urine. In another embodiment, the methods of the disclosure may be practiced with any suitable samples that are freshly isolated or that have been frozen or stored after having been collected from a subject, for example, with a known diagnosis, treatment, and/or outcome history. Samples may be collected by any non-invasive means, such as, for example, fine needle aspiration or needle biopsy, or alternatively, by an invasive method, including, for example, surgical biopsy. In such embodiments, RNA or DNA can be extracted from a biological sample (e.g., blood serum) before analysis. Methods of RNA and DNA extraction are well known in the art.


A number of kits for use in extracting RNA (i.e., total RNA or mRNA) from bodily fluids or tissues (e.g., blood serum) and are known in the art and commercially available. One of ordinary skill in the art can easily select an appropriate kit for a particular situation.


In certain embodiments of the disclosure, after extraction, mRNA is amplified, and transcribed into cDNA, which can then serve as template for multiple rounds of transcription by the appropriate RNA polymerase. Amplification methods that may be used to practice the methods of the disclosure are described herein and are well known in the art. Reverse transcription reactions may be carried out using non-specific primers, such as an anchored oligo-dT primer, or random sequence primers, or using a target-specific primer complementary to the RNA for each genetic probe being monitored, or using thermostable DNA polymerases, such as MMLV RTase or the MMLV RTase mutants of the disclosure.


In certain embodiments, the RNA isolated from a biological sample (e.g., after amplification and/or conversion to cDNA or cRNA) is labeled with a detectable agent before being analyzed. The role of a detectable agent is to facilitate detection of RNA or to allow visualization of hybridized nucleic acid fragments (e.g., nucleic acid fragments hybridized to genetic probes in an array-based assay). In some embodiments, the detectable agent is selected such that it generates a signal which can be measured and whose intensity is related to the amount of labeled nucleic acids present in the sample being analyzed.


Methods for labeling nucleic acid molecules are well known in the art. A review of labeling protocols and label detection techniques can be found in Kricka, Ann. Clin. Biochem. 39: 114-29 (2002); van Gijlswijk et al., Expert Rev. Mol. Diagn. 1: 81-91 (2001); and Joos et al., J. Biotechnol. 35: 135-53 (1994). Standard nucleic acid labeling methods include incorporation of radioactive agents; direct attachment of fluorescent dyes or of enzymes; chemical modifications of nucleic acid fragments making them detectable immunochemically or by other affinity reactions; and enzyme-mediated labeling methods, such as random priming, nick translation, PCR, and tailing with terminal transferase.


Any of a wide variety of detectable agents can be used to practice the methods of the disclosure. Suitable detectable agents include but are not limited to various ligands, radionuclides, fluorescent dyes, chemiluminescent agents, microparticles (such as, for example, quantum dots, nanocrystals, and phosphors), enzymes (such as, for example, those used in an ELISA, i.e., horseradish peroxidase, beta-galactosidase, luciferase, and alkaline phosphatase), colorimetric labels, magnetic labels, biotin, dioxigenin, or other haptens and proteins for which antisera or monoclonal antibodies are available.


7. KITS

The disclosure also provides kits for use in reverse transcription or related technologies. These kits include one or more of the following: an MMLV RTase mutant enzyme, reagents and buffers for conducting a reverse transcriptase reaction, a box, vial tubes, ampules, and the like. Kits can also include instructions for use of the kit for practicing any of the methods disclosed herein or other methods known to those of skill in the art.


EXAMPLES

The claimed invention is further illustrated by the following Examples, which should not be construed as limiting. Those of skill in the art will recognize that the claimed invention may be practiced with variations of the disclosed structures, materials, compositions, and methods, and such variations are regarded as within the scope of the claimed invention.


The RTases described herein were overexpressed in E. coli, purified to homogeneity, and tested for their ability to enhance RNA detection in the context of reverse transcriptase quantitative PCR (RT-qPCR).


Example 1. Preparation of Reverse Transcriptase Mutants by Site Directed Mutagenesis

a. Cloning of MMLV RTase Mutants Created from Base Construct (RNase H Minus Construct)


MMLV RTase mutants were prepared by first introducing three mutations (D524G, E562Q, and D583N) into the amino acid sequence of the wild-type, or naturally occurring, MMLV RTase to prepare an MMLV RTase base construct (SEQ ID NO: 637). The three mutations, which are contained in the SuperScript II RTase (Invitrogen), have been shown to reduce RNase H activity (see U.S. Pat. No. 5,405,776). The MMLV RTase base construct was optimized for E. coli expression and obtained as gBlocks® Gene Fragments (Integrated DNA Technologies) or by custom gene synthesis with the appropriate purification tag. Subsequent genes were amplified using standard PCR conditions and primers (see Tables 1 and 21). Amplified DNA was subjected to purification using a QIAquick PCR Purification kit (Qiagen, Catalog #28104), followed by gene fragment assembly into a pET28b expression plasmid. Plasmid DNA was isolated and sequenced to verify the desired sequence following transformation into E. coli cells. MMLV RTase mutations were selected by rational design (FIGS. 1A-1C) and introduced by site-directed mutagenesis, using standard PCR conditions and primers (see Tables 1 and 21). Resulting plasmids were transformed into E. coli BL21(DE3) cells for expression.









TABLE 1







Sequences of primers used for cloning of MMLV RTase base constructs and


mutants into pET28b.









SEQ




ID NO:
Primer Name
Primer Sequence (5′-3′)












1
pET28b 5′ Reverse
GGTATATCTCCTTCTTAAAGTTAAACAAAATTATT




TCTAGAGGGGAAT





2
pET28b 3′ Forward
GATCCGGCTGCTAACAAAGCC





3
MMLV 5′ Primer
TTTTGTTTAACTTTAAGAAGGAGATATACCATGGG




CAGCAGCCATCATCATC





4
MMLV 3′ Primer
GCAGCCAACTCAGCTTCCTTTCGGGCTTTGTTAAA




AATGCTCGCTAGTGTAGGGAGAGC





5
MMLV K53A Top
AAGCACCGTTGATCATCCCGTTAGCGGCAACGTCT



SDM
ACACCTGTCTCTATCAAAC





6
MMLV K53R Top
AAGCACCGTTGATCATCCCGTTACGTGCAACGTCT



SDM
ACACCTGTCTCTATCAAAC





7
MMLV K53E Top
AAGCACCGTTGATCATCCCGTTAGAAGCAACGTCT



SDM
ACACCTGTCTCTATCAAAC





8
MMLV T55A Top
CCGTTGATCATCCCGTTAAAGGCAGCGTCTACACC



SDM
TGTCTCTATCAAACAGTACCCC





9
MMLV T55R Top
CCGTTGATCATCCCGTTAAAGGCACGTTCTACACC



SDM
TGTCTCTATCAAACAGTACCCC





10
MMLV T55E Top
CCGTTGATCATCCCGTTAAAGGCAGAATCTACACC



SDM
TGTCTCTATCAAACAGTACCCC





11
MMLV T57A Top
ATCATCCCGTTAAAGGCAACGTCTGCGCCTGTCTC



SDM
TATCAAACAGTACCCCATGAG





12
MMLV T57R Top
ATCATCCCGTTAAAGGCAACGTCTCGTCCTGTCTC



SDM
TATCAAACAGTACCCCATGAG





13
MMLV T57E Top
ATCATCCCGTTAAAGGCAACGTCTGAACCTGTCTC



SDM
TATCAAACAGTACCCCATGAG





14
MMLV V59A Top
CCGTTAAAGGCAACGTCTACACCTGCGTCTATCAA



SDM
ACAGTACCCCATGAGTCAAGAGG





15
MMLV V59R Top
CCGTTAAAGGCAACGTCTACACCTCGTTCTATCAA



SDM
ACAGTACCCCATGAGTCAAGAGG





16
MMLV V59E Top
CCGTTAAAGGCAACGTCTACACCTGAATCTATCAA



SDM
ACAGTACCCCATGAGTCAAGAGG





17
MMLV 161A Top
TAAAGGCAACGTCTACACCTGTCTCTGCGAAACAG



SDM
TACCCCATGAGTCAAGAGG





18
MMLV 161R Top
TAAAGGCAACGTCTACACCTGTCTCTCGTAAACAG



SDM
TACCCCATGAGTCAAGAGG





19
MMLV 161E Top
TAAAGGCAACGTCTACACCTGTCTCTGAAAAACAG



SDM
TACCCCATGAGTCAAGAGG





20
MMLV K62A Top
GGCAACGTCTACACCTGTCTCTATCGCGCAGTACC



SDM
CCATGAGTCAAGAGGC





21
MMLV K62R Top
GGCAACGTCTACACCTGTCTCTATCCGTCAGTACC



SDM
CCATGAGTCAAGAGGC





22
MMLV K62E Top
GGCAACGTCTACACCTGTCTCTATCGAACAGTACC



SDM
CCATGAGTCAAGAGGC





23
MMLV Q68A Top
CTGTCTCTATCAAACAGTACCCCATGAGTGCGGAG



SDM
GCCCGCCTGGG





24
MMLV Q68R Top
CTGTCTCTATCAAACAGTACCCCATGAGTCGTGAG



SDM
GCCCGCCTGGG





25
MMLV Q68E Top
CTGTCTCTATCAAACAGTACCCCATGAGTGAAGAG



SDM
GCCCGCCTGGG





26
MMLV K75A Top
GGCCCGCCTGGGGATTGCGCCACATATTCAGCGCT



SDM
TGCTGGACCA





27
MMLV K75R Top
GGCCCGCCTGGGGATTCGTCCACATATTCAGCGCT



SDM
TGCTGGACCA





28
MMLV K75E Top
GGCCCGCCTGGGGATTGAACCACATATTCAGCGCT



SDM
TGCTGGACCA





29
MMLV Q79A Top
CGCCTGGGGATTAAGCCACATATTGCGCGCTTGCT



SDM
GGACCAGGGG





30
MMLV Q79R Top
CGCCTGGGGATTAAGCCACATATTCGTCGCTTGCT



SDM
GGACCAGGGG





31
MMLV Q79E Top
CGCCTGGGGATTAAGCCACATATTGAACGCTTGCT



SDM
GGACCAGGGG





32
MMLV L99A Top
CCGTGGAACACCCCCCTTGCGCCCGTGAAAAAGCC



SDM
AGGTACAAAC





33
MMLV L99R Top
CCGTGGAACACCCCCCTTCGTCCCGTGAAAAAGCC



SDM
AGGTACAAAC





34
MMLV L99E Top
CCGTGGAACACCCCCCTTGAACCCGTGAAAAAGCC



SDM
AGGTACAAAC





35
MMLV V101A Top
CACCCCCCTTCTGCCCGCGAAAAAGCCAGGTACAA



SDM
ACGATTATCGTCC





36
MMLV V101R Top
CACCCCCCTTCTGCCCCGTAAAAAGCCAGGTACAA



SDM
ACGATTATCGTCC





37
MMLV V101E Top
CACCCCCCTTCTGCCCGAAAAAAAGCCAGGTACAA



SDM
ACGATTATCGTCC





38
MMLV K102A Top
CCCCCTTCTGCCCGTGGCGAAGCCAGGTACAAACG



SDM
ATTATCGTCC





39
MMLV K102R Top
CCCCCTTCTGCCCGTGCGTAAGCCAGGTACAAACG



SDM
ATTATCGTCC





40
MMLV K102E Top
CCCCCTTCTGCCCGTGGAAAAGCCAGGTACAAACG



SDM
ATTATCGTCC





41
MMLV K103A Top
CCCCCTTCTGCCCGTGAAAGCGCCAGGTACAAACG



SDM
ATTATCGTCCAGTT





42
MMLV K103R Top
CCCCCTTCTGCCCGTGAAACGTCCAGGTACAAACG



SDM
ATTATCGTCCAGTT





43
MMLV K103E Top
CCCCCTTCTGCCCGTGAAAGAACCAGGTACAAACG



SDM
ATTATCGTCCAGTT





44
MMLV T106A Top
GCCCGTGAAAAAGCCAGGTGCGAACGATTATCGTC



SDM
CAGTTCAAGATCTTCG





45
MMLV T106R Top
GCCCGTGAAAAAGCCAGGTCGTAACGATTATCGTC



SDM
CAGTTCAAGATCTTCG





46
MMLV T106E Top
GCCCGTGAAAAAGCCAGGTGAAAACGATTATCGTC



SDM
CAGTTCAAGATCTTCG





47
MMLV N107A Top
CCCGTGAAAAAGCCAGGTACAGCGGATTATCGTCC



SDM
AGTTCAAGATCTTCGCG





48
MMLV N107R Top
CCCGTGAAAAAGCCAGGTACACGTGATTATCGTCC



SDM
AGTTCAAGATCTTCGCG





49
MMLV N107E Top
CCCGTGAAAAAGCCAGGTACAGAAGATTATCGTCC



SDM
AGTTCAAGATCTTCGCG





50
MMLV Y109A Top
CGTGAAAAAGCCAGGTACAAACGATGCGCGTCCAG



SDM
TTCAAGATCTTCGCG





51
MMLV Y109R Top
CGTGAAAAAGCCAGGTACAAACGATCGTCGTCCAG



SDM
TTCAAGATCTTCGCG





52
MMLV Y109E Top
CGTGAAAAAGCCAGGTACAAACGATGAACGTCCAG



SDM
TTCAAGATCTTCGCG





53
MMLV R110A Top
CGTGAAAAAGCCAGGTACAAACGATTATGCGCCAG



SDM
TTCAAGATCTTCGCGAGG





54
MMLV R110K Top
CGTGAAAAAGCCAGGTACAAACGATTATAAACCAG



SDM
TTCAAGATCTTCGCGAGG





55
MMLV R110E Top
CGTGAAAAAGCCAGGTACAAACGATTATGAACCAG



SDM
TTCAAGATCTTCGCGAGG





56
MMLV V112A Top
GCCAGGTACAAACGATTATCGTCCAGCGCAAGATC



SDM
TTCGCGAGGTCAACAAAC





57
MMLV V112R Top
GCCAGGTACAAACGATTATCGTCCACGTCAAGATC



SDM
TTCGCGAGGTCAACAAAC





58
MMLV V112E Top
GCCAGGTACAAACGATTATCGTCCAGAACAAGATC



SDM
TTCGCGAGGTCAACAAAC





59
MMLV K120A Top
AGTTCAAGATCTTCGCGAGGTCAACGCGCGCGTAG



SDM
AAGACATCCATCCGAC





60
MMLV K120R Top
AGTTCAAGATCTTCGCGAGGTCAACCGTCGCGTAG



SDM
AAGACATCCATCCGAC





61
MMLV K120E Top
AGTTCAAGATCTTCGCGAGGTCAACGAACGCGTAG



SDM
AAGACATCCATCCGAC





62
MMLV E123A Top
GCGAGGTCAACAAACGCGTAGCGGACATCCATCCG



SDM
ACTGTACCTAATCC





63
MMLV E123R Top
GCGAGGTCAACAAACGCGTACGTGACATCCATCCG



SDM
ACTGTACCTAATCC





64
MMLV E123D Top
GCGAGGTCAACAAACGCGTAGATGACATCCATCCG



SDM
ACTGTACCTAATCC





65
MMLV T128V Top
ACGCGTAGAAGACATCCATCCGGTGGTACCTAATC



SDM
CTTATAATCTGTTATCAGGCCTGC





66
MMLV T128R Top
ACGCGTAGAAGACATCCATCCGCGTGTACCTAATC



SDM
CTTATAATCTGTTATCAGGCCTGC





57
MMLV T128E Top
ACGCGTAGAAGACATCCATCCGGAAGTACCTAATC



SDM
CTTATAATCTGTTATCAGGCCTGC





68
MMLV K193A Top
CGTCTGCCCCAGGGCTTTGCGAACAGCCCCACATT



SDM
GTTCGATGAA





69
MMLV K193R Top
CGTCTGCCCCAGGGCTTTCGTAACAGCCCCACATT



SDM
GTTCGATGAA





70
MMLV K193E Top
CGTCTGCCCCAGGGCTTTGAAAACAGCCCCACATT



SDM
GTTCGATGAA





71
MMLV E282A Top
AGAAGGTCAACGTTGGCTGACTGCGGCGCGTAAGG



SDM
AGACCGTAATG





72
MMLV E282R Top
AGAAGGTCAACGTTGGCTGACTCGTGCGCGTAAGG



SDM
AGACCGTAATG





73
MMLV E282D Top
AGAAGGTCAACGTTGGCTGACTGATGCGCGTAAGG



SDM
AGACCGTAATG





74
MMLV A283V Top
GAAGGTCAACGTTGGCTGACTGAAGTGCGTAAGGA



SDM
GACCGTAATGGGGC





75
MMLV A283R Top
GAAGGTCAACGTTGGCTGACTGAACGTCGTAAGGA



SDM
GACCGTAATGGGGC





76
MMLV A283E Top
GAAGGTCAACGTTGGCTGACTGAAGAACGTAAGGA



SDM
GACCGTAATGGGGC





77
MMLV Q291A Top
GCGTAAGGAGACCGTAATGGGGGCGCCTACGCCTA



SDM
AGACGCCACG





78
MMLV Q291R Top
GCGTAAGGAGACCGTAATGGGGCGTCCTACGCCTA



SDM
AGACGCCACG





79
MMLV Q291E Top
GCGTAAGGAGACCGTAATGGGGGAACCTACGCCTA



SDM
AGACGCCACG





80
MMLV T293A Top
GAGACCGTAATGGGGCAGCCTGCGCCTAAGACGCC



SDM
ACGCCAGTTG





81
MMLV T293R Top
GAGACCGTAATGGGGCAGCCTCGTCCTAAGACGCC



SDM
ACGCCAGTTG





82
MMLV T293E Top
GAGACCGTAATGGGGCAGCCTGAACCTAAGACGCC



SDM
ACGCCAGTTG





83
MMLV K295A Top
GTAATGGGGCAGCCTACGCCTGCGACGCCACGCCA



SDM
GTTGCGTGAA





84
MMLV K295R Top
GTAATGGGGCAGCCTACGCCTCGTACGCCACGCCA



SDM
GTTGCGTGAA





85
MMLV K295E Top
GTAATGGGGCAGCCTACGCCTGAAACGCCACGCCA



SDM
GTTGCGTGAA





86
MMLV T296A Top
TGGGGCAGCCTACGCCTAAGGCGCCACGCCAGTTG



SDM
CGTGAATTTT





87
MMLV T296R Top
TGGGGCAGCCTACGCCTAAGCGTCCACGCCAGTTG



SDM
CGTGAATTTT





88
MMLV T296E Top
TGGGGCAGCCTACGCCTAAGGAACCACGCCAGTTG



SDM
CGTGAATTTT





89
MMLV R298A Top
GCCTACGCCTAAGACGCCAGCGCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





90
MMLV R298K Top
GCCTACGCCTAAGACGCCAAAACAGTTGCGTGAAT



SDM
TTTTGGGCACAG





91
MMLV R298E Top
GCCTACGCCTAAGACGCCAGAACAGTTGCGTGAAT



SDM
TTTTGGGCACAG





92
MMLV R301A Top
CCTAAGACGCCACGCCAGTTGGCGGAATTTTTGGG



SDM
CACAGCGGGA





93
MMLV R301K Top
CCTAAGACGCCACGCCAGTTGAAAGAATTTTTGGG



SDM
CACAGCGGGA





94
MMLV R301E Top
CCTAAGACGCCACGCCAGTTGGAAGAATTTTTGGG



SDM
CACAGCGGGA





95
MMLV K329A Top
GCACCCCTGTACCCCTTAACAGCGACAGGGACGCT



SDM
TTTCAACTGG





96
MMLV K329R Top
GCACCCCTGTACCCCTTAACACGTACAGGGACGCT



SDM
TTTCAACTGG





97
MMLV K329E Top
GCACCCCTGTACCCCTTAACAGAAACAGGGACGCT



SDM
TTTCAACTGG





98
MMLV K53A Btm
GTTTGATAGAGACAGGTGTAGACGTTGCCGCTAAC



SDM
GGGATGATCAACGGTGCTT





99
MMLV K53R Btm
GTTTGATAGAGACAGGTGTAGACGTTGCACGTAAC



SDM
GGGATGATCAACGGTGCTT





100
MMLV K53E Btm
GTTTGATAGAGACAGGTGTAGACGTTGCTTCTAAC



SDM
GGGATGATCAACGGTGCTT





101
MMLV T55A Btm
GGGGTACTGTTTGATAGAGACAGGTGTAGACGCTG



SDM
CCTTTAACGGGATGATCAACGG





102
MMLV T55R Btm
GGGGTACTGTTTGATAGAGACAGGTGTAGAACGTG



SDM
CCTTTAACGGGATGATCAACGG





103
MMLV T55E Btm
GGGGTACTGTTTGATAGAGACAGGTGTAGATTCTG



SDM
CCTTTAACGGGATGATCAACGG





104
MMLV T57A Btm
CTCATGGGGTACTGTTTGATAGAGACAGGCGCAGA



SDM
CGTTGCCTTTAACGGGATGAT





105
MMLV T57R Btm
CTCATGGGGTACTGTTTGATAGAGACAGGACGAGA



SDM
CGTTGCCTTTAACGGGATGAT





106
MMLV T57E Btm
CTCATGGGGTACTGTTTGATAGAGACAGGTTCAGA



SDM
CGTTGCCTTTAACGGGATGAT





107
MMLV V59A Btm
CCTCTTGACTCATGGGGTACTGTTTGATAGACGCA



SDM
GGTGTAGACGTTGCCTTTAACGG





108
MMLV V59R Btm
CCTCTTGACTCATGGGGTACTGTTTGATAGAACGA



SDM
GGTGTAGACGTTGCCTTTAACGG





109
MMLV V59E Btm
CCTCTTGACTCATGGGGTACTGTTTGATAGATTCA



SDM
GGTGTAGACGTTGCCTTTAACGG





110
MMLV I61A Btm
CCTCTTGACTCATGGGGTACTGTTTCGCAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





111
MMLV 161R Btm
CCTCTTGACTCATGGGGTACTGTTTACGAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





112
MMLV 161E Btm
CCTCTTGACTCATGGGGTACTGTTTTTCAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





113
MMLV K62A Btm
GCCTCTTGACTCATGGGGTACTGCGCGATAGAGAC



SDM
AGGTGTAGACGTTGCC





114
MMLV K62R Btm
GCCTCTTGACTCATGGGGTACTGACGGATAGAGAC



SDM
AGGTGTAGACGTTGCC





115
MMLV K62E Btm
GCCTCTTGACTCATGGGGTACTGTTCGATAGAGAC



SDM
AGGTGTAGACGTTGCC





116
MMLV Q68A Btm
CTGTCTCTATCAAACAGTACCCCATGAGTGCGGAG



SDM
GCCCGCCTGGG





117
MMLV Q68R Btm
CTGTCTCTATCAAACAGTACCCCATGAGTCGTGAG



SDM
GCCCGCCTGGG





118
MMLV Q68E Btm
CTGTCTCTATCAAACAGTACCCCATGAGTGAAGAG



SDM
GCCCGCCTGGG





119
MMLV K75A Btm
TGGTCCAGCAAGCGCTGAATATGTGGCGCAATCCC



SDM
CAGGCGGGCC





120
MMLV K75R Btm
TGGTCCAGCAAGCGCTGAATATGTGGACGAATCCC



SDM
CAGGCGGGCC





121
MMLV K75E Btm
TGGTCCAGCAAGCGCTGAATATGTGGTTCAATCCC



SDM
CAGGCGGGCC





122
MMLV Q79A Btm
CCCCTGGTCCAGCAAGCGCGCAATATGTGGCTTAA



SDM
TCCCCAGGCG





123
MMLV Q79R Btm
CCCCTGGTCCAGCAAGCGACGAATATGTGGCTTAA



SDM
TCCCCAGGCG





124
MMLV Q79E Btm
CCCCTGGTCCAGCAAGCGTTCAATATGTGGCTTAA



SDM
TCCCCAGGCG





125
MMLV L99A Btm
GTTTGTACCTGGCTTTTTCACGGGCGCAAGGGGGG



SDM
TGTTCCACGG





126
MMLV L99R Btm
GTTTGTACCTGGCTTTTTCACGGGACGAAGGGGGG



SDM
TGTTCCACGG





127
MMLV L99E Btm
GTTTGTACCTGGCTTTTTCACGGGTTCAAGGGGGG



SDM
TGTTCCACGG





128
MMLV V101A Btm
GGACGATAATCGTTTGTACCTGGCTTTTTCGCGGG



SDM
CAGAAGGGGGGTG





129
MMLV V101R Btm
GGACGATAATCGTTTGTACCTGGCTTTTTACGGGG



SDM
CAGAAGGGGGGTG





130
MMLV V101E Btm
GGACGATAATCGTTTGTACCTGGCTTTTTTTCGGG



SDM
CAGAAGGGGGGTG





131
MMLV K102A Btm
GGACGATAATCGTTTGTACCTGGCTTCGCCACGGG



SDM
CAGAAGGGGG





132
MMLV K102R Btm
GGACGATAATCGTTTGTACCTGGCTTACGCACGGG



SDM
CAGAAGGGGG





133
MMLV K102E Btm
GGACGATAATCGTTTGTACCTGGCTTTTCCACGGG



SDM
CAGAAGGGGG





134
MMLV K103A Btm
AACTGGACGATAATCGTTTGTACCTGGCGCTTTCA



SDM
CGGGCAGAAGGGGG





135
MMLV K103R Btm
AACTGGACGATAATCGTTTGTACCTGGACGTTTCA



SDM
CGGGCAGAAGGGGG





136
MMLV K103E Btm
AACTGGACGATAATCGTTTGTACCTGGTTCTTTCA



SDM
CGGGCAGAAGGGGG





137
MMLV T106A Btm
CGAAGATCTTGAACTGGACGATAATCGTTCGCACC



SDM
TGGCTTTTTCACGGGC





138
MMLV T106R Btm
CGAAGATCTTGAACTGGACGATAATCGTTACGACC



SDM
TGGCTTTTTCACGGGC





139
MMLV T106E Btm
CGAAGATCTTGAACTGGACGATAATCGTTTTCACC



SDM
TGGCTTTTTCACGGGC





140
MMLV N107A Btm
CGCGAAGATCTTGAACTGGACGATAATCCGCTGTA



SDM
CCTGGCTTTTTCACGGG





141
MMLV N107R Btm
CGCGAAGATCTTGAACTGGACGATAATCACGTGTA



SDM
CCTGGCTTTTTCACGGG





142
MMLV N107E Btm
CGCGAAGATCTTGAACTGGACGATAATCTTCTGTA



SDM
CCTGGCTTTTTCACGGG





143
MMLV Y109A Btm
CGCGAAGATCTTGAACTGGACGCGCATCGTTTGTA



SDM
CCTGGCTTTTTCACG





144
MMLV Y109R Btm
CGCGAAGATCTTGAACTGGACGACGATCGTTTGTA



SDM
CCTGGCTTTTTCACG





145
MMLV Y109E Btm
CGCGAAGATCTTGAACTGGACGTTCATCGTTTGTA



SDM
CCTGGCTTTTTCACG





146
MMLV R110A Btm
CCTCGCGAAGATCTTGAACTGGCGCATAATCGTTT



SDM
GTACCTGGCTTTTTCACG





147
MMLV R110K Btm
CCTCGCGAAGATCTTGAACTGGTTTATAATCGTTT



SDM
GTACCTGGCTTTTTCACG





148
MMLV R110E Btm
CCTCGCGAAGATCTTGAACTGGTTCATAATCGTTT



SDM
GTACCTGGCTTTTTCACG





149
MMLV V112A Btm
GTTTGTTGACCTCGCGAAGATCTTGCGCTGGACGA



SDM
TAATCGTTTGTACCTGGC





150
MMLV V112R Btm
GTTTGTTGACCTCGCGAAGATCTTGACGTGGACGA



SDM
TAATCGTTTGTACCTGGC





151
MMLV V112E Btm
GTTTGTTGACCTCGCGAAGATCTTGTTCTGGACGA



SDM
TAATCGTTTGTACCTGGC





152
MMLV K120A Btm
GTCGGATGGATGTCTTCTACGCGCGCGTTGACCTC



SDM
GCGAAGATCTTGAACT





153
MMLV K120R Btm
GTCGGATGGATGTCTTCTACGCGACGGTTGACCTC



SDM
GCGAAGATCTTGAACT





154
MMLV K120E Btm
GTCGGATGGATGTCTTCTACGCGTTCGTTGACCTC



SDM
GCGAAGATCTTGAACT





155
MMLV E123A Btm
GGATTAGGTACAGTCGGATGGATGTCCGCTACGCG



SDM
TTTGTTGACCTCGC





156
MMLV E123R Btm
GGATTAGGTACAGTCGGATGGATGTCACGTACGCG



SDM
TTTGTTGACCTCGC





157
MMLV E123D Btm
GGATTAGGTACAGTCGGATGGATGTCATCTACGCG



SDM
TTTGTTGACCTCGC





158
MMLV T128V Btm
GCAGGCCTGATAACAGATTATAAGGATTAGGTACC



SDM
ACCGGATGGATGTCTTCTACGCGT





159
MMLV T128R Btm
GCAGGCCTGATAACAGATTATAAGGATTAGGTACA



SDM
CGCGGATGGATGTCTTCTACGCGT





160
MMLV T128E Btm
GCAGGCCTGATAACAGATTATAAGGATTAGGTACT



SDM
TCCGGATGGATGTCTTCTACGCGT





161
MMLV K193A Btm
TTCATCGAACAATGTGGGGCTGTTCGCAAAGCCCT



SDM
GGGGCAGACG





162
MMLV K193R Btm
TTCATCGAACAATGTGGGGCTGTTACGAAAGCCCT



SDM
GGGGCAGACG





163
MMLV K193E Btm
TTCATCGAACAATGTGGGGCTGTTTTCAAAGCCCT



SDM
GGGGCAGACG





164
MMLV E282A Btm
CATTACGGTCTCCTTACGCGCCGCAGTCAGCCAAC



SDM
GTTGACCTTCT





165
MMLV E282R Btm
CATTACGGTCTCCTTACGCGCACGAGTCAGCCAAC



SDM
GTTGACCTTCT





166
MMLV E282D Btm
CATTACGGTCTCCTTACGCGCATCAGTCAGCCAAC



SDM
GTTGACCTTCT





167
MMLV A283V Btm
GCCCCATTACGGTCTCCTTACGCACTTCAGTCAGC



SDM
CAACGTTGACCTTC





168
MMLV A 283R Btm
GCCCCATTACGGTCTCCTTACGACGTTCAGTCAGC



SDM
CAACGTTGACCTTC





169
MMLV A283E Btm
GCCCCATTACGGTCTCCTTACGTTCTTCAGTCAGC



SDM
CAACGTTGACCTTC





170
MMLV Q291A Btm
CGTGGCGTCTTAGGCGTAGGCGCCCCCATTACGGT



SDM
CTCCTTACGC





171
MMLV Q291R Btm
CGTGGCGTCTTAGGCGTAGGACGCCCCATTACGGT



SDM
CTCCTTACGC





172
MMLV Q291E Btm
CGTGGCGTCTTAGGCGTAGGTTCCCCCATTACGGT



SDM
CTCCTTACGC





173
MMLV T293A Btm
CAACTGGCGTGGCGTCTTAGGCGCAGGCTGCCCCA



SDM
TTACGGTCTC





174
MMLV T293R Btm
CAACTGGCGTGGCGTCTTAGGACGAGGCTGCCCCA



SDM
TTACGGTCTC





175
MMLV T293E Btm
CAACTGGCGTGGCGTCTTAGGTTCAGGCTGCCCCA



SDM
TTACGGTCTC





176
MMLV K295A Btm
TTCACGCAACTGGCGTGGCGTCGCAGGCGTAGGCT



SDM
GCCCCATTAC





177
MMLV K295R Btm
TTCACGCAACTGGCGTGGCGTACGAGGCGTAGGCT



SDM
GCCCCATTAC





178
MMLV K295E Btm
TTCACGCAACTGGCGTGGCGTTTCAGGCGTAGGCT



SDM
GCCCCATTAC





179
MMLV T296A Btm
AAAATTCACGCAACTGGCGTGGCGCCTTAGGCGTA



SDM
GGCTGCCCCA





180
MMLV T296R Btm
AAAATTCACGCAACTGGCGTGGACGCTTAGGCGTA



SDM
GGCTGCCCCA





181
MMLV T296E Btm
AAAATTCACGCAACTGGCGTGGTTCCTTAGGCGTA



SDM
GGCTGCCCCA





182
MMLV R298A Btm
CTGTGCCCAAAAATTCACGCAACTGCGCTGGCGTC



SDM
TTAGGCGTAGGC





183
MMLV R298K Btm
CTGTGCCCAAAAATTCACGCAACTGTTTTGGCGTC



SDM
TTAGGCGTAGGC





184
MMLV R298E Btm
CTGTGCCCAAAAATTCACGCAACTGTTCTGGCGTC



SDM
TTAGGCGTAGGC





185
MMLV R301A Btm
TCCCGCTGTGCCCAAAAATTCCGCCAACTGGCGTG



SDM
GCGTCTTAGG





186
MMLV R301K Btm
TCCCGCTGTGCCCAAAAATTCTTTCAACTGGCGTG



SDM
GCGTCTTAGG





187
MMLV R301E Btm
TCCCGCTGTGCCCAAAAATTCTTCCAACTGGCGTG



SDM
GCGTCTTAGG





188
MMLV K329A Btm
CCAGTTGAAAAGCGTCCCTGTCGCTGTTAAGGGGT



SDM
ACAGGGGTGC





189
MMLV K329R Btm
CCAGTTGAAAAGCGTCCCTGTACGTGTTAAGGGGT



SDM
ACAGGGGTGC





190
MMLV K329E Btm
CCAGTTGAAAAGCGTCCCTGTTTCTGTTAAGGGGT



SDM
ACAGGGGTGC





191
MMLV 161G Top
TAAAGGCAACGTCTACACCTGTCTCTGGCAAACAG



SDM
TACCCCATGAGTCAAGAGG





192
MMLV 161G Btm
CCTCTTGACTCATGGGGTACTGTTTGCCAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





193
MMLV 161L Top
TAAAGGCAACGTCTACACCTGTCTCTCTGAAACAG



SDM
TACCCCATGAGTCAAGAGG





194
MMLV I61L Btm
CCTCTTGACTCATGGGGTACTGTTTCAGAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





195
MMLV 161V Top
TAAAGGCAACGTCTACACCTGTCTCTGTGAAACAG



SDM
TACCCCATGAGTCAAGAGG





196
MMLV I61V Btm
CCTCTTGACTCATGGGGTACTGTTTCACAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





197
MMLV 161P Top
TAAAGGCAACGTCTACACCTGTCTCTCCGAAACAG



SDM
TACCCCATGAGTCAAGAGG





198
MMLV 161P Btm
CCTCTTGACTCATGGGGTACTGTTTCGGAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





199
MMLV 161M Top
TAAAGGCAACGTCTACACCTGTCTCTATGAAACAG



SDM
TACCCCATGAGTCAAGAGG





200
MMLV I61M Btm
CCTCTTGACTCATGGGGTACTGTTTCATAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





201
MMLV 161S Top
TAAAGGCAACGTCTACACCTGTCTCTAGCAAACAG



SDM
TACCCCATGAGTCAAGAGG





202
MMLV 161S Btm
CCTCTTGACTCATGGGGTACTGTTTGCTAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





203
MMLV 161T Top
TAAAGGCAACGTCTACACCTGTCTCTACCAAACAG



SDM
TACCCCATGAGTCAAGAGG





204
MMLV 161T Btm
CCTCTTGACTCATGGGGTACTGTTTGGTAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





205
MMLV 161C Top
TAAAGGCAACGTCTACACCTGTCTCTTGCAAACAG



SDM
TACCCCATGAGTCAAGAGG





206
MMLV I61C Btm
CCTCTTGACTCATGGGGTACTGTTTGCAAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





207
MMLV 161F Top
TAAAGGCAACGTCTACACCTGTCTCTTTTAAACAG



SDM
TACCCCATGAGTCAAGAGG





208
MMLV 161F Btm
CCTCTTGACTCATGGGGTACTGTTTAAAAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





209
MMLV 161Y Top
TAAAGGCAACGTCTACACCTGTCTCTTATAAACAG



SDM
TACCCCATGAGTCAAGAGG





210
MMLV I61Y Btm
CCTCTTGACTCATGGGGTACTGTTTATAAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





211
MMLV 161H Top
TAAAGGCAACGTCTACACCTGTCTCTCATAAACAG



SDM
TACCCCATGAGTCAAGAGG





212
MMLV I61H Btm
CCTCTTGACTCATGGGGTACTGTTTATGAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





213
MMLV 161W Top
TAAAGGCAACGTCTACACCTGTCTCTTGGAAACAG



SDM
TACCCCATGAGTCAAGAGG





214
MMLV I61W Btm
CCTCTTGACTCATGGGGTACTGTTTCCAAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





215
MMLV 161D Top
TAAAGGCAACGTCTACACCTGTCTCTGATAAACAG



SDM
TACCCCATGAGTCAAGAGG





216
MMLV I61D Btm
CCTCTTGACTCATGGGGTACTGTTTATCAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





217
MMLV 161N Top
TAAAGGCAACGTCTACACCTGTCTCTAACAAACAG



SDM
TACCCCATGAGTCAAGAGG





218
MMLV I61N Btm
CCTCTTGACTCATGGGGTACTGTTTGTTAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





219
MMLV 161Q Top
TAAAGGCAACGTCTACACCTGTCTCTCAGAAACAG



SDM
TACCCCATGAGTCAAGAGG





220
MMLV I61Q Btm
CCTCTTGACTCATGGGGTACTGTTTCTGAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





221
MMLV 161K Top
TAAAGGCAACGTCTACACCTGTCTCTAAAAAACAG



SDM
TACCCCATGAGTCAAGAGG





222
MMLV 161K Btm
CCTCTTGACTCATGGGGTACTGTTTTTTAGAGACA



SDM
GGTGTAGACGTTGCCTTTA





223
MMLV Q68G Top
CTGTCTCTATCAAACAGTACCCCATGAGTGGCGAG



SDM
GCCCGCCTGGG





224
MMLV Q68G Btm
CCCAGGCGGGCCTCGCCACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





225
MMLV Q68L Top
CTGTCTCTATCAAACAGTACCCCATGAGTCTGGAG



SDM
GCCCGCCTGGG





226
MMLV Q68L Btm
CCCAGGCGGGCCTCCAGACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





227
MMLV Q68I Top
CTGTCTCTATCAAACAGTACCCCATGAGTATTGAG



SDM
GCCCGCCTGGG





228
MMLV Q68I Btm
CCCAGGCGGGCCTCAATACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





229
MMLV Q68V Top
CTGTCTCTATCAAACAGTACCCCATGAGTGTGGAG



SDM
GCCCGCCTGGG





230
MMLV Q68V Btm
CCCAGGCGGGCCTCCACACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





231
MMLV Q68P Top
CTGTCTCTATCAAACAGTACCCCATGAGTCCGGAG



SDM
GCCCGCCTGGG





232
MMLV Q68P Btm
CCCAGGCGGGCCTCCGGACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





233
MMLV Q68M Top
CTGTCTCTATCAAACAGTACCCCATGAGTATGGAG



SDM
GCCCGCCTGGG





234
MMLV Q68M Btm
CCCAGGCGGGCCTCCATACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





235
MMLV Q68S Top
CTGTCTCTATCAAACAGTACCCCATGAGTAGCGAG



SDM
GCCCGCCTGGG





236
MMLV Q68S Btm
CCCAGGCGGGCCTCGCTACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





237
MMLV Q68T Top
CTGTCTCTATCAAACAGTACCCCATGAGTACCGAG



SDM
GCCCGCCTGGG





238
MMLV Q68T Btm
CCCAGGCGGGCCTCGGTACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





239
MMLV Q68C Top
CTGTCTCTATCAAACAGTACCCCATGAGTTGCGAG



SDM
GCCCGCCTGGG





240
MMLV Q68C Btm
CCCAGGCGGGCCTCGCAACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





241
MMLV Q68F Top
CTGTCTCTATCAAACAGTACCCCATGAGTTTTGAG



SDM
GCCCGCCTGGG





242
MMLV Q68F Btm
CCCAGGCGGGCCTCAAAACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





243
MMLV Q68Y Top
CTGTCTCTATCAAACAGTACCCCATGAGTTATGAG



SDM
GCCCGCCTGGG





244
MMLV Q68Y Btm
CCCAGGCGGGCCTCATAACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





245
MMLV Q68H Top
CTGTCTCTATCAAACAGTACCCCATGAGTCATGAG



SDM
GCCCGCCTGGG





246
MMLV Q68H Btm
CCCAGGCGGGCCTCATGACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





247
MMLV Q68W Top
CTGTCTCTATCAAACAGTACCCCATGAGTTGGGAG



SDM
GCCCGCCTGGG





248
MMLV Q68W Btm
CCCAGGCGGGCCTCCCAACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





249
MMLV Q68D Top
CTGTCTCTATCAAACAGTACCCCATGAGTGATGAG



SDM
GCCCGCCTGGG





250
MMLV Q68D Btm
CCCAGGCGGGCCTCATCACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





251
MMLV Q68N Top
CTGTCTCTATCAAACAGTACCCCATGAGTAACGAG



SDM
GCCCGCCTGGG





252
MMLV Q68N Btm
CCCAGGCGGGCCTCGTTACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





253
MMLV Q68K Top
CTGTCTCTATCAAACAGTACCCCATGAGTAAAGAG



SDM
GCCCGCCTGGG





254
MMLV Q68K Btm
CCCAGGCGGGCCTCTTTACTCATGGGGTACTGTTT



SDM
GATAGAGACAG





255
MMLV Q79G Top
CGCCTGGGGATTAAGCCACATATTGGCCGCTTGCT



SDM
GGACCAGGGG





256
MMLV Q79G Btm
CCCCTGGTCCAGCAAGCGGCCAATATGTGGCTTAA



SDM
TCCCCAGGCG





257
MMLV Q79L Top
CGCCTGGGGATTAAGCCACATATTCTGCGCTTGCT



SDM
GGACCAGGGG





258
MMLV Q79L Btm
CCCCTGGTCCAGCAAGCGCAGAATATGTGGCTTAA



SDM
TCCCCAGGCG





259
MMLV Q79I Top
CGCCTGGGGATTAAGCCACATATTATTCGCTTGCT



SDM
GGACCAGGGG





260
MMLV Q79I Btm
CCCCTGGTCCAGCAAGCGAATAATATGTGGCTTAA



SDM
TCCCCAGGCG





261
MMLV Q79V Top
CGCCTGGGGATTAAGCCACATATTGTGCGCTTGCT



SDM
GGACCAGGGG





262
MMLV Q79V Btm
CCCCTGGTCCAGCAAGCGCACAATATGTGGCTTAA



SDM
TCCCCAGGCG





263
MMLV Q79P Top
CGCCTGGGGATTAAGCCACATATTCCGCGCTTGCT



SDM
GGACCAGGGG





264
MMLV Q79P Btm
CCCCTGGTCCAGCAAGCGCGGAATATGTGGCTTAA



SDM
TCCCCAGGCG





265
MMLV Q79M Top
CGCCTGGGGATTAAGCCACATATTATGCGCTTGCT



SDM
GGACCAGGGG





266
MMLV Q79M Btm
CCCCTGGTCCAGCAAGCGCATAATATGTGGCTTAA



SDM
TCCCCAGGCG





267
MMLV Q79S Top
CGCCTGGGGATTAAGCCACATATTAGCCGCTTGCT



SDM
GGACCAGGGG





268
MMLV Q79S Btm
CCCCTGGTCCAGCAAGCGGCTAATATGTGGCTTAA



SDM
TCCCCAGGCG





269
MMLV Q79T Top
CGCCTGGGGATTAAGCCACATATTACCCGCTTGCT



SDM
GGACCAGGGG





270
MMLV Q79T Btm
CCCCTGGTCCAGCAAGCGGGTAATATGTGGCTTAA



SDM
TCCCCAGGCG





271
MMLV Q79C Top
CGCCTGGGGATTAAGCCACATATTTGCCGCTTGCT



SDM
GGACCAGGGG





272
MMLV Q79C Btm
CCCCTGGTCCAGCAAGCGGCAAATATGTGGCTTAA



SDM
TCCCCAGGCG





273
MMLV Q79F Top
CGCCTGGGGATTAAGCCACATATTTTTCGCTTGCT



SDM
GGACCAGGGG





274
MMLV Q79F Btm
CCCCTGGTCCAGCAAGCGAAAAATATGTGGCTTAA



SDM
TCCCCAGGCG





275
MMLV Q79Y Top
CGCCTGGGGATTAAGCCACATATTTATCGCTTGCT



SDM
GGACCAGGGG





276
MMLV Q79Y Btm
CCCCTGGTCCAGCAAGCGATAAATATGTGGCTTAA



SDM
TCCCCAGGCG





277
MMLV Q79H Top
CGCCTGGGGATTAAGCCACATATTCATCGCTTGCT



SDM
GGACCAGGGG





278
MMLV Q79H Btm
CCCCTGGTCCAGCAAGCGATGAATATGTGGCTTAA



SDM
TCCCCAGGCG





279
MMLV Q79W Top
CGCCTGGGGATTAAGCCACATATTTGGCGCTTGCT



SDM
GGACCAGGGG





280
MMLV Q79W Btm
CCCCTGGTCCAGCAAGCGCCAAATATGTGGCTTAA



SDM
TCCCCAGGCG





281
MMLV Q79D Top
CGCCTGGGGATTAAGCCACATATTGATCGCTTGCT



SDM
GGACCAGGGG





282
MMLV Q79D Btm
CCCCTGGTCCAGCAAGCGATCAATATGTGGCTTAA



SDM
TCCCCAGGCG





283
MMLV Q79N Top
CGCCTGGGGATTAAGCCACATATTAACCGCTTGCT



SDM
GGACCAGGGG





284
MMLV Q79N Btm
CCCCTGGTCCAGCAAGCGGTTAATATGTGGCTTAA



SDM
TCCCCAGGCG





285
MMLV Q79K Top
CGCCTGGGGATTAAGCCACATATTAAACGCTTGCT



SDM
GGACCAGGGG





286
MMLV Q79K Btm
CCCCTGGTCCAGCAAGCGTTTAATATGTGGCTTAA



SDM
TCCCCAGGCG





287
MMLV L99G Top
CCGTGGAACACCCCCCTTGGCCCCGTGAAAAAGCC



SDM
AGGTACAAAC





288
MMLV L99G Btm
GTTTGTACCTGGCTTTTTCACGGGGCCAAGGGGGG



SDM
TGTTCCACGG





289
MMLV L99I Top
CCGTGGAACACCCCCCTTATTCCCGTGAAAAAGCC



SDM
AGGTACAAAC





290
MMLV L99I Btm
GTTTGTACCTGGCTTTTTCACGGGAATAAGGGGGG



SDM
TGTTCCACGG





291
MMLV L99V Top
CCGTGGAACACCCCCCTTGTGCCCGTGAAAAAGCC



SDM
AGGTACAAAC





292
MMLV L99V Btm
GTTTGTACCTGGCTTTTTCACGGGCACAAGGGGGG



SDM
TGTTCCACGG





293
MMLV L99P Top
CCGTGGAACACCCCCCTTCCGCCCGTGAAAAAGCC



SDM
AGGTACAAAC





294
MMLV L99P Btm
GTTTGTACCTGGCTTTTTCACGGGCGGAAGGGGGG



SDM
TGTTCCACGG





295
MMLV L99M Top
CCGTGGAACACCCCCCTTATGCCCGTGAAAAAGCC



SDM
AGGTACAAAC





296
MMLV L99M Btm
GTTTGTACCTGGCTTTTTCACGGGCATAAGGGGGG



SDM
TGTTCCACGG





297
MMLV L99S Top
CCGTGGAACACCCCCCTTAGCCCCGTGAAAAAGCC



SDM
AGGTACAAAC





298
MMLV L99S Btm
GTTTGTACCTGGCTTTTTCACGGGGCTAAGGGGGG



SDM
TGTTCCACGG





299
MMLV L99T Top
CCGTGGAACACCCCCCTTACCCCCGTGAAAAAGCC



SDM
AGGTACAAAC





300
MMLV L99T Btm
GTTTGTACCTGGCTTTTTCACGGGGGTAAGGGGGG



SDM
TGTTCCACGG





301
MMLV L99C Top
CCGTGGAACACCCCCCTTTGCCCCGTGAAAAAGCC



SDM
AGGTACAAAC





302
MMLV L99C Btm
GTTTGTACCTGGCTTTTTCACGGGGCAAAGGGGGG



SDM
TGTTCCACGG





303
MMLV L99F Top
CCGTGGAACACCCCCCTTTTTCCCGTGAAAAAGCC



SDM
AGGTACAAAC





304
MMLV L99F Btm
GTTTGTACCTGGCTTTTTCACGGGAAAAAGGGGGG



SDM
TGTTCCACGG





305
MMLV L99Y Top
CCGTGGAACACCCCCCTTTATCCCGTGAAAAAGCC



SDM
AGGTACAAAC





306
MMLV L99Y Btm
GTTTGTACCTGGCTTTTTCACGGGATAAAGGGGGG



SDM
TGTTCCACGG





307
MMLV L99H Top
CCGTGGAACACCCCCCTTCATCCCGTGAAAAAGCC



SDM
AGGTACAAAC





308
MMLV L99H Btm
GTTTGTACCTGGCTTTTTCACGGGATGAAGGGGGG



SDM
TGTTCCACGG





309
MMLV L99W Top
CCGTGGAACACCCCCCTTTGGCCCGTGAAAAAGCC



SDM
AGGTACAAAC





310
MMLV L99W Btm
GTTTGTACCTGGCTTTTTCACGGGCCAAAGGGGGG



SDM
TGTTCCACGG





311
MMLV L99D Top
CCGTGGAACACCCCCCTTGATCCCGTGAAAAAGCC



SDM
AGGTACAAAC





312
MMLV L99D Btm
GTTTGTACCTGGCTTTTTCACGGGATCAAGGGGGG



SDM
TGTTCCACGG





313
MMLV L99N Top
CCGTGGAACACCCCCCTTAACCCCGTGAAAAAGCC



SDM
AGGTACAAAC





314
MMLV L99N Btm
GTTTGTACCTGGCTTTTTCACGGGGTTAAGGGGGG



SDM
TGTTCCACGG





315
MMLV L99Q Top
CCGTGGAACACCCCCCTTCAGCCCGTGAAAAAGCC



SDM
AGGTACAAAC





316
MMLV L99Q Btm
GTTTGTACCTGGCTTTTTCACGGGCTGAAGGGGGG



SDM
TGTTCCACGG





317
MMLV L99K Top
CCGTGGAACACCCCCCTTAAACCCGTGAAAAAGCC



SDM
AGGTACAAAC





318
MMLV L99K Btm
GTTTGTACCTGGCTTTTTCACGGGTTTAAGGGGGG



SDM
TGTTCCACGG





319
MMLV E282G Top
AGAAGGTCAACGTTGGCTGACTGGCGCGCGTAAGG



SDM
AGACCGTAATG





320
MMLV E282G Btm
CATTACGGTCTCCTTACGCGCGCCAGTCAGCCAAC



SDM
GTTGACCTTCT





321
MMLV E282L Top
AGAAGGTCAACGTTGGCTGACTCTGGCGCGTAAGG



SDM
AGACCGTAATG





322
MMLV E282L Btm
CATTACGGTCTCCTTACGCGCCAGAGTCAGCCAAC



SDM
GTTGACCTTCT





323
MMLV E282I Top
AGAAGGTCAACGTTGGCTGACTATTGCGCGTAAGG



SDM
AGACCGTAATG





324
MMLV E282I Btm
CATTACGGTCTCCTTACGCGCAATAGTCAGCCAAC



SDM
GTTGACCTTCT





325
MMLV E282V Top
AGAAGGTCAACGTTGGCTGACTGTGGCGCGTAAGG



SDM
AGACCGTAATG





326
MMLV E282V Btm
CATTACGGTCTCCTTACGCGCCACAGTCAGCCAAC



SDM
GTTGACCTTCT





327
MMLV E282P Top
AGAAGGTCAACGTTGGCTGACTCCGGCGCGTAAGG



SDM
AGACCGTAATG





328
MMLV E282P Btm
CATTACGGTCTCCTTACGCGCCGGAGTCAGCCAAC



SDM
GTTGACCTTCT





329
MMLV E282M Top
AGAAGGTCAACGTTGGCTGACTATGGCGCGTAAGG



SDM
AGACCGTAATG





330
MMLV E282M Btm
CATTACGGTCTCCTTACGCGCCATAGTCAGCCAAC



SDM
GTTGACCTTCT





331
MMLV E282S Top
AGAAGGTCAACGTTGGCTGACTAGCGCGCGTAAGG



SDM
AGACCGTAATG





332
MMLV E282S Btm
CATTACGGTCTCCTTACGCGCGCTAGTCAGCCAAC



SDM
GTTGACCTTCT





333
MMLV E282T Top
AGAAGGTCAACGTTGGCTGACTACCGCGCGTAAGG



SDM
AGACCGTAATG





334
MMLV E282T Btm
CATTACGGTCTCCTTACGCGCGGTAGTCAGCCAAC



SDM
GTTGACCTTCT





335
MMLV E282C Top
AGAAGGTCAACGTTGGCTGACTTGCGCGCGTAAGG



SDM
AGACCGTAATG





336
MMLV E282C Btm
CATTACGGTCTCCTTACGCGCGCAAGTCAGCCAAC



SDM
GTTGACCTTCT





337
MMLV E282F Top
AGAAGGTCAACGTTGGCTGACTTTTGCGCGTAAGG



SDM
AGACCGTAATG





338
MMLV E282F Btm
CATTACGGTCTCCTTACGCGCAAAAGTCAGCCAAC



SDM
GTTGACCTTCT





339
MMLV E282Y Top
AGAAGGTCAACGTTGGCTGACTTATGCGCGTAAGG



SDM
AGACCGTAATG





340
MMLV E282Y Btm
CATTACGGTCTCCTTACGCGCATAAGTCAGCCAAC



SDM
GTTGACCTTCT





341
MMLV E282H Top
AGAAGGTCAACGTTGGCTGACTCATGCGCGTAAGG



SDM
AGACCGTAATG





342
MMLV E282H Btm
CATTACGGTCTCCTTACGCGCATGAGTCAGCCAAC



SDM
GTTGACCTTCT





343
MMLV E282W Top
AGAAGGTCAACGTTGGCTGACTTGGGCGCGTAAGG



SDM
AGACCGTAATG





344
MMLV E282W Btm
CATTACGGTCTCCTTACGCGCCCAAGTCAGCCAAC



SDM
GTTGACCTTCT





345
MMLV E282N Top
AGAAGGTCAACGTTGGCTGACTAACGCGCGTAAGG



SDM
AGACCGTAATG





346
MMLV E282N Btm
CATTACGGTCTCCTTACGCGCGTTAGTCAGCCAAC



SDM
GTTGACCTTCT





347
MMLV E282Q Top
AGAAGGTCAACGTTGGCTGACTCAGGCGCGTAAGG



SDM
AGACCGTAATG





348
MMLV E282Q Btm
CATTACGGTCTCCTTACGCGCCTGAGTCAGCCAAC



SDM
GTTGACCTTCT





349
MMLV E282K Top
AGAAGGTCAACGTTGGCTGACTAAAGCGCGTAAGG



SDM
AGACCGTAATG





350
MMLV E282K Btm
CATTACGGTCTCCTTACGCGCTTTAGTCAGCCAAC



SDM
GTTGACCTTCT





351
MMLV R298G Top
GCCTACGCCTAAGACGCCAGGCCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





352
MMLV R298G Btm
CTGTGCCCAAAAATTCACGCAACTGGCCTGGCGTC



SDM
TTAGGCGTAGGC





353
MMLV R298L Top
GCCTACGCCTAAGACGCCACTGCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





354
MMLV R298L Btm
CTGTGCCCAAAAATTCACGCAACTGCAGTGGCGTC



SDM
TTAGGCGTAGGC





355
MMLV R298I Top
GCCTACGCCTAAGACGCCAATTCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





356
MMLV R298I Btm
CTGTGCCCAAAAATTCACGCAACTGAATTGGCGTC



SDM
TTAGGCGTAGGC





357
MMLV R298V Top
GCCTACGCCTAAGACGCCAGTGCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





358
MMLV R298V Btm
CTGTGCCCAAAAATTCACGCAACTGCACTGGCGTC



SDM
TTAGGCGTAGGC





359
MMLV R298P Top
GCCTACGCCTAAGACGCCACCGCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





360
MMLV R298P Btm
CTGTGCCCAAAAATTCACGCAACTGCGGTGGCGTC



SDM
TTAGGCGTAGGC





361
MMLV R298M Top
GCCTACGCCTAAGACGCCAATGCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





362
MMLV R298M Btm
CTGTGCCCAAAAATTCACGCAACTGCATTGGCGTC



SDM
TTAGGCGTAGGC





363
MMLV R298S Top
GCCTACGCCTAAGACGCCAAGCCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





364
MMLV R298S Btm
CTGTGCCCAAAAATTCACGCAACTGGCTTGGCGTC



SDM
TTAGGCGTAGGC





365
MMLV R298T Top
GCCTACGCCTAAGACGCCAACCCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





366
MMLV R298T Btm
CTGTGCCCAAAAATTCACGCAACTGGGTTGGCGTC



SDM
TTAGGCGTAGGC





367
MMLV R298C Top
GCCTACGCCTAAGACGCCATGCCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





368
MMLV R298C Btm
CTGTGCCCAAAAATTCACGCAACTGGCATGGCGTC



SDM
TTAGGCGTAGGC





369
MMLV R298F Top
GCCTACGCCTAAGACGCCATTTCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





370
MMLV R298F Btm
CTGTGCCCAAAAATTCACGCAACTGAAATGGCGTC



SDM
TTAGGCGTAGGC





371
MMLV R298Y Top
GCCTACGCCTAAGACGCCATATCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





372
MMLV R298Y Btm
CTGTGCCCAAAAATTCACGCAACTGATATGGCGTC



SDM
TTAGGCGTAGGC





373
MMLV R298H Top
GCCTACGCCTAAGACGCCACATCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





374
MMLV R298H Btm
CTGTGCCCAAAAATTCACGCAACTGATGTGGCGTC



SDM
TTAGGCGTAGGC





375
MMLV R298W Top
GCCTACGCCTAAGACGCCATGGCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





376
MMLV R298W Btm
CTGTGCCCAAAAATTCACGCAACTGCCATGGCGTC



SDM
TTAGGCGTAGGC





377
MMLV R298D Top
GCCTACGCCTAAGACGCCAGATCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





378
MMLV R298D Btm
CTGTGCCCAAAAATTCACGCAACTGATCTGGCGTC



SDM
TTAGGCGTAGGC





379
MMLV R298N Top
GCCTACGCCTAAGACGCCAAACCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





380
MMLV R298N Btm
CTGTGCCCAAAAATTCACGCAACTGGTTTGGCGTC



SDM
TTAGGCGTAGGC





381
MMLV R298Q Top
GCCTACGCCTAAGACGCCACAGCAGTTGCGTGAAT



SDM
TTTTGGGCACAG





382
MMLV R298Q Btm
CTGTGCCCAAAAATTCACGCAACTGCTGTGGCGTC



SDM
TTAGGCGTAGGC





383
MMLV I61R/Q68R
AGGCAACGTCTACACCTGTCTCTCGTAAACAGTAC



Top SDM
CCCATGAGTCGTGAGGCCCGCCTGGGG





384
MMLV I61R/Q68R
CCCCAGGCGGGCCTCACGACTCATGGGGTACTGTT



Btm SDM
TACGAGAGACAGGTGTAGACGTTGCCT





385
MMLV I61K/Q68R
AGGCAACGTCTACACCTGTCTCTAAAAAACAGTAC



Top SDM
CCCATGAGTCGTGAGG





386
MMLV I61K/Q68R
CCTCACGACTCATGGGGTACTGTTTTTTAGAGACA



Btm SDM
GGTGTAGACGTTGCCT





387
MMLV I61M/Q68R
AGGCAACGTCTACACCTGTCTCTATGAAACAGTAC



Top SDM
CCCATGAGTCGTGAGG





388
MMLV I61M/Q68R
CCTCACGACTCATGGGGTACTGTTTCATAGAGACA



Btm SDM
GGTGTAGACGTTGCCT





389
MMLV I61M/Q68I
AGGCAACGTCTACACCTGTCTCTATGAAACAGTAC



Top SDM
CCCATGAGTATTGAGGCC





390
MMLV I61M/Q68I
GGCCTCAATACTCATGGGGTACTGTTTCATAGAGA



Btm SDM
CAGGTGTAGACGTTGCCT





393
MMLV 5′ Primer
GTCTCTATCAAACAGTACCCCATGGCGCAAGAGGC




CCGCCTGGG





394
MMLV 3′ Primer
GTCTCTATCAAACAGTACCCCATGCGTCAAGAGGC




CCGCCTGGG





395
MMLV G73A Top
CATGAGTCAAGAGGCCCGCGAGGGGATTAAGCCAC



SDM
ATATTCAGCG





396
MMLV G73R Top
GAGTCAAGAGGCCCGCCTGGCGATTAAGCCACATA



SDM
TTCAGCGCTTGC





397
MMLV G73E Top
GAGTCAAGAGGCCCGCCTGCGTATTAAGCCACATA



SDM
TTCAGCGCTTGC





398
MMLV P76A Top
GAGTCAAGAGGCCCGCCTGGAGATTAAGCCACATA



SDM
TTCAGCGCTTGC





399
MMLV P76R Top
GGCCCGCCTGGGGATTAAGGCGCATATTCAGCGCT



SDM
TGCTGGACC





400
MMLV P76E Top
GGCCCGCCTGGGGATTAAGCGTCATATTCAGCGCT



SDM
TGCTGGACC





401
MMLV H77A Top
GGCCCGCCTGGGGATTAAGGAGCATATTCAGCGCT



SDM
TGCTGGACC





402
MMLV H77R Top
CCGCCTGGGGATTAAGCCAGCGATTCAGCGCTTGC



SDM
TGGACCAG





403
MMLV H77E Top
CCGCCTGGGGATTAAGCCACGTATTCAGCGCTTGC



SDM
TGGACCAG





404
MMLV L82A Top
CCGCCTGGGGATTAAGCCAGAGATTCAGCGCTTGC



SDM
TGGACCAG





405
MMLV L82R Top
GATTAAGCCACATATTCAGCGCTTGGCGGACCAGG



SDM
GGATCTTGGTCC





406
MMLV L82E Top
GATTAAGCCACATATTCAGCGCTTGCGTGACCAGG



SDM
GGATCTTGGTCC





407
MMLV D83A Top
GATTAAGCCACATATTCAGCGCTTGGAGGACCAGG



SDM
GGATCTTGGTCC





408
MMLV D83R Top
GCCACATATTCAGCGCTTGCTGGCGCAGGGGATCT



SDM
TGGTCCCATG





409
MMLV D83E Top
GCCACATATTCAGCGCTTGCTGCGTCAGGGGATCT



SDM
TGGTCCCATG





410
MMLV I125A Top
GCCACATATTCAGCGCTTGCTGGAGCAGGGGATCT



SDM
TGGTCCCATG





411
MMLV I125R Top
AGGTCAACAAACGCGTAGAAGACGCGCATCCGACT



SDM
GTACCTAATCCTTATAAT





412
MMLV I125E Top
AGGTCAACAAACGCGTAGAAGACCGTCATCCGACT



SDM
GTACCTAATCCTTATAAT





413
MMLV V129A Top
AGGTCAACAAACGCGTAGAAGACGAGCATCCGACT



SDM
GTACCTAATCCTTATAAT





414
MMLV V129R Top
GCGTAGAAGACATCCATCCGACTGCGCCTAATCCT



SDM
TATAATCTGTTATCAGGC





415
MMLV V129E Top
GCGTAGAAGACATCCATCCGACTCGTCCTAATCCT



SDM
TATAATCTGTTATCAGGC





416
MMLV L198A Top
GCGTAGAAGACATCCATCCGACTGAGCCTAATCCT



SDM
TATAATCTGTTATCAGGC





417
MMLV L198R Top
AGGGCTTTAAAAACAGCCCCACAGCGTTCGATGAA



SDM
GCACTTCACCGTGA





418
MMLV L198E Top
AGGGCTTTAAAAACAGCCCCACACGTTTCGATGAA



SDM
GCACTTCACCGTGA





419
MMLV E201A Top
AGGGCTTTAAAAACAGCCCCACAGAGTTCGATGAA



SDM
GCACTTCACCGTGA





420
MMLV E201R Top
TTTAAAAACAGCCCCACATTGTTCGATGCGGCACT



SDM
TCACCGTGACTTAGCAG





421
MMLV E201D Top
TTTAAAAACAGCCCCACATTGTTCGATCGTGCACT



SDM
TCACCGTGACTTAGCAG





422
MMLV R205A Top
TTTAAAAACAGCCCCACATTGTTCGATGATGCACT



SDM
TCACCGTGACTTAGCAG





423
MMLV R205K
CACATTGTTCGATGAAGCACTTCACGCGGACTTAG



Top SDM
CAGACTTCCGTATCCA





424
MMLV R205E Top
CACATTGTTCGATGAAGCACTTCACAAAGACTTAG



SDM
CAGACTTCCGTATCCA





425
MMLV D209A Top
GATGAAGCACTTCACCGTGACTTAGAGGACTTCCG



SDM
TATCCAACACCCAG





426
MMLV D209R Top
AAGCACTTCACCGTGACTTAGCAGCGTTCCGTATC



SDM
CAACACCCAGACTT





427
MMLV D209E Top
AAGCACTTCACCGTGACTTAGCACGTTTCCGTATC



SDM
CAACACCCAGACTT





428
MMLV F210A Top
AAGCACTTCACCGTGACTTAGCAGAGTTCCGTATC



SDM
CAACACCCAGACTT





429
MMLV F210R Top
CACTTCACCGTGACTTAGCAGACGCGCGTATCCAA



SDM
CACCCAGACTTAATTC





430
MMLV F210E Top
CACTTCACCGTGACTTAGCAGACCGTCGTATCCAA



SDM
CACCCAGACTTAATTC





431
MMLV R211A Top
CACTTCACCGTGACTTAGCAGACGAGCGTATCCAA



SDM
CACCCAGACTTAATTC





432
MMLV R211K
TTCACCGTGACTTAGCAGACTTCGCGATCCAACAC



Top SDM
CCAGACTTAATTCTGTTA





433
MMLV R211E Top
TTCACCGTGACTTAGCAGACTTCAAAATCCAACAC



SDM
CCAGACTTAATTCTGTTA





434
MMLV I212A Top
TTCACCGTGACTTAGCAGACTTCGAGATCCAACAC



SDM
CCAGACTTAATTCTGTTA





435
MMLV I212R Top
CCGTGACTTAGCAGACTTCCGTGCGCAACACCCAG



SDM
ACTTAATTCTGTTACAG





436
MMLV I212E Top
CCGTGACTTAGCAGACTTCCGTCGTCAACACCCAG



SDM
ACTTAATTCTGTTACAG





437
MMLV Q213A
CCGTGACTTAGCAGACTTCCGTGAGCAACACCCAG



Top SDM
ACTTAATTCTGTTACAG





438
MMLV Q213R
GTGACTTAGCAGACTTCCGTATCGCGCACCCAGAC



Top SDM
TTAATTCTGTTACAGTAT





439
MMLV Q213E Top
GTGACTTAGCAGACTTCCGTATCCGTCACCCAGAC



SDM
TTAATTCTGTTACAGTAT





440
MMLV K348A
GTGACTTAGCAGACTTCCGTATCGAGCACCCAGAC



Top SDM
TTAATTCTGTTACAGTAT





441
MMLV K348R
AGCAAAAGGCGTATCAGGAGATCGCGCAAGCTTTG



Top SDM
TTGACCGCACCC





442
MMLV K348E Top
AGCAAAAGGCGTATCAGGAGATCCGTCAAGCTTTG



SDM
TTGACCGCACCC





443
MMLV L352A Top
AGCAAAAGGCGTATCAGGAGATCGAGCAAGCTTTG



SDM
TTGACCGCACCC





444
MMLV L352R Top
CGTATCAGGAGATCAAACAAGCTTTGGCGACCGCA



SDM
CCCGCGTTGGG





445
MMLV L352E Top
CGTATCAGGAGATCAAACAAGCTTTGCGTACCGCA



SDM
CCCGCGTTGGG





446
MMLV K285A
CGTATCAGGAGATCAAACAAGCTTTGGAGACCGCA



Top SDM
CCCGCGTTGGG





447
MMLV K285R
GTTGGCTGACTGAAGCGCGTGCGGAGACCGTAATG



Top SDM
GGGCAGC





448
MMLV K285E Top
GTTGGCTGACTGAAGCGCGTCGTGAGACCGTAATG



SDM
GGGCAGC





449
MMLV Q299A
GTTGGCTGACTGAAGCGCGTGAGGAGACCGTAATG



Top SDM
GGGCAGC





450
MMLV Q299R
TACGCCTAAGACGCCACGCGCGTTGCGTGAATTTT



Top SDM
TGGGCACAGC





451
MMLV Q299E Top
TACGCCTAAGACGCCACGCCGTTTGCGTGAATTTT



SDM
TGGGCACAGC





452
MMLV G308A
TACGCCTAAGACGCCACGCGAGTTGCGTGAATTTT



Top SDM
TGGGCACAGC





453
MMLV G308R
GCGTGAATTTTTGGGCACAGCGGCGTTCTGTCGTT



Top SDM
TATGGATTCCTGGG





454
MMLV G308E Top
GCGTGAATTTTTGGGCACAGCGCGTTTCTGTCGTT



SDM
TATGGATTCCTGGG





455
MMLV R311A Top
GCGTGAATTTTTGGGCACAGCGGAGTTCTGTCGTT



SDM
TATGGATTCCTGGG





456
MMLV R311K
GGGCACAGCGGGATTCTGTGCGTTATGGATTCCTG



Top SDM
GGTTCGCTGA





457
MMLV R311E Top
GGGCACAGCGGGATTCTGTAAATTATGGATTCCTG



SDM
GGTTCGCTGA





458
MMLV Y271A Top
GGGCACAGCGGGATTCTGTGAGTTATGGATTCCTG



SDM
GGTTCGCTGA





459
MMLV Y271R Top
GTCAAAAACAGGTAAAGTACCTTGGGGCGTTGCTG



SDM
AAAGAAGGTCAACGTTGG





460
MMLV Y271E Top
GTCAAAAACAGGTAAAGTACCTTGGGCGTTTGCTG



SDM
AAAGAAGGTCAACGTTGG





461
MMLV L280A Top
GTCAAAAACAGGTAAAGTACCTTGGGGAGTTGCTG



SDM
AAAGAAGGTCAACGTTGG





462
MMLV L280R Top
TGCTGAAAGAAGGTCAACGTTGGGCGACTGAAGCG



SDM
CGTAAGGAGACC





463
MMLV L280E Top
TGCTGAAAGAAGGTCAACGTTGGCGTACTGAAGCG



SDM
CGTAAGGAGACC





464
MMLV L357A Top
TGCTGAAAGAAGGTCAACGTTGGGAGACTGAAGCG



SDM
CGTAAGGAGACC





465
MMLV L357R Top
TTTGTTGACCGCACCCGCGGCGGGTCTTCCGGATT



SDM
TAACCAAGCC





466
MMLV L357E Top
TTTGTTGACCGCACCCGCGCGTGGTCTTCCGGATT



SDM
TAACCAAGCC





467
MMLV T328A Top
TTTGTTGACCGCACCCGCGGAGGGTCTTCCGGATT



SDM
TAACCAAGCC





468
MMLV T328R Top
CTGCACCCCTGTACCCCTTAGCGAAAACAGGGACG



SDM
CTTTTCAACTGG





469
MMLV T328E Top
CTGCACCCCTGTACCCCTTACGTAAAACAGGGACG



SDM
CTTTTCAACTGG





470
MMLV G331A
CTGCACCCCTGTACCCCTTAGAGAAAACAGGGACG



Top SDM
CTTTTCAACTGG





471
MMLV G331R
CCCCTGTACCCCTTAACAAAAACAGCGACGCTTTT



Top SDM
CAACTGGGGGCC





472
MMLV G331E Top
CCCCTGTACCCCTTAACAAAAACACGTACGCTTTT



SDM
CAACTGGGGGCC





473
MMLV T332A Top
CCCCTGTACCCCTTAACAAAAACAGAGACGCTTTT



SDM
CAACTGGGGGCC





474
MMLV T332R Top
CTGTACCCCTTAACAAAAACAGGGGCGCTTTTCAA



SDM
CTGGGGGCCAGAC





475
MMLV T332E Top
CTGTACCCCTTAACAAAAACAGGGCGTCTTTTCAA



SDM
CTGGGGGCCAGAC





476
MMLV N335A Top
CTGTACCCCTTAACAAAAACAGGGGAGCTTTTCAA



SDM
CTGGGGGCCAGAC





477
MMLV N335R Top
CCTTAACAAAAACAGGGACGCTTTTCGCGTGGGGG



SDM
CCAGACCAGCAAA





478
MMLV N335E Top
CCTTAACAAAAACAGGGACGCTTTTCCGTTGGGGG



SDM
CCAGACCAGCAAA





479
MMLV E367A Top
CTTCCGGATTTAACCAAGCCCTTTGCGCTGTTCGT



SDM
TGATGAAAAACAGGGATAT





480
MMLV E367R Top
CTTCCGGATTTAACCAAGCCCTTTCGTCTGTTCGT



SDM
TGATGAAAAACAGGGATAT





481
MMLV E367D Top
CTTCCGGATTTAACCAAGCCCTTTGATCTGTTCGT



SDM
TGATGAAAAACAGGGATAT





482
MMLV F369A Top
GATTTAACCAAGCCCTTTGAGCTGGCGGTTGATGA



SDM
AAAACAGGGATATGCAAAAG





483
MMLV F369R Top
GATTTAACCAAGCCCTTTGAGCTGCGTGTTGATGA



SDM
AAAACAGGGATATGCAAAAG





484
MMLV F369E Top
GATTTAACCAAGCCCTTTGAGCTGGAGGTTGATGA



SDM
AAAACAGGGATATGCAAAAG





485
MMLV R389A Top
CCCAAAAGTTAGGCCCGTGGGCGCGCCCTGTTGCT



SDM
TACTTGAGTAA





486
MMLV R389K
CCCAAAAGTTAGGCCCGTGGAAACGCCCTGTTGCT



Top SDM
TACTTGAGTAA





487
MMLV R389E Top
CCCAAAAGTTAGGCCCGTGGGAGCGCCCTGTTGCT



SDM
TACTTGAGTAA





488
MMLV V433A Top
AGTTGACGATGGGTCAACCCTTAGCGATCTTGGCT



SDM
CCACATGCTGTAGA





489
MMLV V433R Top
AGTTGACGATGGGTCAACCCTTACGTATCTTGGCT



SDM
CCACATGCTGTAGA





490
MMLV V433E Top
AGTTGACGATGGGTCAACCCTTAGAGATCTTGGCT



SDM
CCACATGCTGTAGA





491
MMLV V476A Top
GGATCGTGTACAATTTGGACCAGTTGCGGCTTTGA



SDM
ATCCAGCTACTTTGCTTC





492
MMLV V476R Top
GGATCGTGTACAATTTGGACCAGTTCGTGCTTTGA



SDM
ATCCAGCTACTTTGCTTC





493
MMLV V476E Top
GGATCGTGTACAATTTGGACCAGTTGAGGCTTTGA



SDM
ATCCAGCTACTTTGCTTC





494
MMLV I593A Top
CGTTATGCTTTTGCAACAGCGCATGCGCATGGCGA



SDM
AATTTACCGCCGC





495
MMLV I593R Top
CGTTATGCTTTTGCAACAGCGCATCGTCATGGCGA



SDM
AATTTACCGCCGC





496
MMLV I593E Top
CGTTATGCTTTTGCAACAGCGCATGAGCATGGCGA



SDM
AATTTACCGCCGC





497
MMLV E596A Top
GCAACAGCGCATATCCATGGCGCGATTTACCGCCG



SDM
CCGTGGTC





498
MMLV E596R Top
GCAACAGCGCATATCCATGGCCGTATTTACCGCCG



SDM
CCGTGGTC





499
MMLV E596D Top
GCAACAGCGCATATCCATGGCGATATTTACCGCCG



SDM
CCGTGGTC





500
MMLV I597A Top
CAACAGCGCATATCCATGGCGAAGCGTACCGCCGC



SDM
CGTGGTCTG





501
MMLV I597R Top
CAACAGCGCATATCCATGGCGAACGTTACCGCCGC



SDM
CGTGGTCTG





502
MMLV I597E Top
CAACAGCGCATATCCATGGCGAAGAGTACCGCCGC



SDM
CGTGGTCTG





503
MMLV R650A Top
AGCGGAGGCTCGTGGAAACGCGATGGCGGACCAAG



SDM
CTGCCC





504
MMLV R650K
AGCGGAGGCTCGTGGAAACAAAATGGCGGACCAAG



Top SDM
CTGCCC





505
MMLV R650E Top
AGCGGAGGCTCGTGGAAACGAGATGGCGGACCAAG



SDM
CTGCCC





506
MMLV Q654A
GTGGAAACCGTATGGCGGACGCGGCTGCCCGTAAG



Top SDM
GCGGC





507
MMLV Q654R
GTGGAAACCGTATGGCGGACCGTGCTGCCCGTAAG



Top SDM
GCGGC





508
MMLV Q654E Top
GTGGAAACCGTATGGCGGACGAGGCTGCCCGTAAG



SDM
GCGGC





509
MMLV R657A Top
TATGGCGGACCAAGCTGCCGCGAAGGCGGCGATCA



SDM
CAGAGAC





510
MMLV R657K
TATGGCGGACCAAGCTGCCAAAAAGGCGGCGATCA



Top SDM
CAGAGAC





511
MMLV R657E Top
TATGGCGGACCAAGCTGCCGAGAAGGCGGCGATCA



SDM
CAGAGAC





512
MMLV G73A Btm
GCAAGCGCTGAATATGTGGCTTAATCGCCAGGCGG



SDM
GCCTCTTGACTC





513
MMLV G73R Btm
GCAAGCGCTGAATATGTGGCTTAATACGCAGGCGG



SDM
GCCTCTTGACTC





514
MMLV G73E Btm
GCAAGCGCTGAATATGTGGCTTAATCTCCAGGCGG



SDM
GCCTCTTGACTC





515
MMLV P76A Btm
GGTCCAGCAAGCGCTGAATATGCGCCTTAATCCCC



SDM
AGGCGGGCC





516
MMLV P76R Btm
GGTCCAGCAAGCGCTGAATATGACGCTTAATCCCC



SDM
AGGCGGGCC





517
MMLV P76E Btm
GGTCCAGCAAGCGCTGAATATGCTCCTTAATCCCC



SDM
AGGCGGGCC





518
MMLV H77A Btm
CTGGTCCAGCAAGCGCTGAATCGCTGGCTTAATCC



SDM
CCAGGCGG





519
MMLV H77R Btm
CTGGTCCAGCAAGCGCTGAATACGTGGCTTAATCC



SDM
CCAGGCGG





520
MMLV H77E Btm
CTGGTCCAGCAAGCGCTGAATCTCTGGCTTAATCC



SDM
CCAGGCGG





521
MMLV L82A Btm
GGACCAAGATCCCCTGGTCCGCCAAGCGCTGAATA



SDM
TGTGGCTTAATC





522
MMLV L82R Btm
GGACCAAGATCCCCTGGTCACGCAAGCGCTGAATA



SDM
TGTGGCTTAATC





523
MMLV L82E Btm
GGACCAAGATCCCCTGGTCCTCCAAGCGCTGAATA



SDM
TGTGGCTTAATC





524
MMLV D83A Btm
CATGGGACCAAGATCCCCTGCGCCAGCAAGCGCTG



SDM
AATATGTGGC





525
MMLV D83R Btm
CATGGGACCAAGATCCCCTGACGCAGCAAGCGCTG



SDM
AATATGTGGC





526
MMLV D83E Btm
CATGGGACCAAGATCCCCTGCTCCAGCAAGCGCTG



SDM
AATATGTGGC





527
MMLV I125A Btm
ATTATAAGGATTAGGTACAGTCGGATGCGCGTCTT



SDM
CTACGCGTTTGTTGACCT





528
MMLV I125R Btm
ATTATAAGGATTAGGTACAGTCGGATGACGGTCTT



SDM
CTACGCGTTTGTTGACCT





529
MMLV I125E Btm
ATTATAAGGATTAGGTACAGTCGGATGCTCGTCTT



SDM
CTACGCGTTTGTTGACCT





530
MMLV V129A
GCCTGATAACAGATTATAAGGATTAGGCGCAGTCG



Btm SDM
GATGGATGTCTTCTACGC





531
MMLV V129R
GCCTGATAACAGATTATAAGGATTAGGACGAGTCG



Btm SDM
GATGGATGTCTTCTACGC





532
MMLV V129E
GCCTGATAACAGATTATAAGGATTAGGCTCAGTCG



Btm SDM
GATGGATGTCTTCTACGC





533
MMLV L198A
TCACGGTGAAGTGCTTCATCGAACGCTGTGGGGCT



Btm SDM
GTTTTTAAAGCCCT





534
MMLV L198R
TCACGGTGAAGTGCTTCATCGAAACGTGTGGGGCT



Btm SDM
GTTTTTAAAGCCCT





535
MMLV L198E Btm
TCACGGTGAAGTGCTTCATCGAACTCTGTGGGGCT



SDM
GTTTTTAAAGCCCT





536
MMLV E201A
CTGCTAAGTCACGGTGAAGTGCCGCATCGAACAAT



Btm SDM
GTGGGGCTGTTTTTAAA





537
MMLV E201R
CTGCTAAGTCACGGTGAAGTGCACGATCGAACAAT



Btm SDM
GTGGGGCTGTTTTTAAA





538
MMLV E201D
CTGCTAAGTCACGGTGAAGTGCATCATCGAACAAT



Btm SDM
GTGGGGCTGTTTTTAAA





539
MMLV R205A
TGGATACGGAAGTCTGCTAAGTCCGCGTGAAGTGC



Btm SDM
TTCATCGAACAATGTG





540
MMLV R205K
TGGATACGGAAGTCTGCTAAGTCTTTGTGAAGTGC



Btm SDM
TTCATCGAACAATGTG





541
MMLV R205E
TGGATACGGAAGTCTGCTAAGTCCTCGTGAAGTGC



Btm SDM
TTCATCGAACAATGTG





542
MMLV D209A
AAGTCTGGGTGTTGGATACGGAACGCTGCTAAGTC



Btm SDM
ACGGTGAAGTGCTT





543
MMLV D209R
AAGTCTGGGTGTTGGATACGGAAACGTGCTAAGTC



Btm SDM
ACGGTGAAGTGCTT





544
MMLV D209E
AAGTCTGGGTGTTGGATACGGAACTCTGCTAAGTC



Btm SDM
ACGGTGAAGTGCTT





545
MMLV F210A Btm
GAATTAAGTCTGGGTGTTGGATACGCGCGTCTGCT



SDM
AAGTCACGGTGAAGTG





546
MMLV F210R Btm
GAATTAAGTCTGGGTGTTGGATACGACGGTCTGCT



SDM
AAGTCACGGTGAAGTG





547
MMLV F210E Btm
GAATTAAGTCTGGGTGTTGGATACGCTCGTCTGCT



SDM
AAGTCACGGTGAAGTG





548
MMLV R211A
TAACAGAATTAAGTCTGGGTGTTGGATCGCGAAGT



Btm SDM
CTGCTAAGTCACGGTGAA





549
MMLV R211K
TAACAGAATTAAGTCTGGGTGTTGGATTTTGAAGT



Btm SDM
CTGCTAAGTCACGGTGAA





550
MMLV R211E
TAACAGAATTAAGTCTGGGTGTTGGATCTCGAAGT



Btm SDM
CTGCTAAGTCACGGTGAA





551
MMLV I212A Btm
CTGTAACAGAATTAAGTCTGGGTGTTGCGCACGGA



SDM
AGTCTGCTAAGTCACGG





552
MMLV I212R Btm
CTGTAACAGAATTAAGTCTGGGTGTTGACGACGGA



SDM
AGTCTGCTAAGTCACGG





553
MMLV I212E Btm
CTGTAACAGAATTAAGTCTGGGTGTTGCTCACGGA



SDM
AGTCTGCTAAGTCACGG





554
MMLV Q213A
ATACTGTAACAGAATTAAGTCTGGGTGCGCGATAC



Btm SDM
GGAAGTCTGCTAAGTCAC





555
MMLV Q213R
ATACTGTAACAGAATTAAGTCTGGGTGACGGATAC



Btm SDM
GGAAGTCTGCTAAGTCAC





556
MMLV Q213E
ATACTGTAACAGAATTAAGTCTGGGTGCTCGATAC



Btm SDM
GGAAGTCTGCTAAGTCAC





557
MMLV K348A
GGGTGCGGTCAACAAAGCTTGCGCGATCTCCTGAT



Btm SDM
ACGCCTTTTGCT





558
MMLV K348R
GGGTGCGGTCAACAAAGCTTGACGGATCTCCTGAT



Btm SDM
ACGCCTTTTGCT





559
MMLV K348E
GGGTGCGGTCAACAAAGCTTGCTCGATCTCCTGAT



Btm SDM
ACGCCTTTTGCT





560
MMLV L352A
CCCAACGCGGGTGCGGTCGCCAAAGCTTGTTTGAT



Btm SDM
CTCCTGATACG





561
MMLV L352R
CCCAACGCGGGTGCGGTACGCAAAGCTTGTTTGAT



Btm SDM
CTCCTGATACG





562
MMLV L352E Btm
CCCAACGCGGGTGCGGTCTCCAAAGCTTGTTTGAT



SDM
CTCCTGATACG





563
MMLV K285A
GCTGCCCCATTACGGTCTCCGCACGCGCTTCAGTC



Btm SDM
AGCCAAC





564
MMLV K285R
GCTGCCCCATTACGGTCTCACGACGCGCTTCAGTC



Btm SDM
AGCCAAC





565
MMLV K285E
GCTGCCCCATTACGGTCTCCTCACGCGCTTCAGTC



Btm SDM
AGCCAAC





566
MMLV Q299A
GCTGTGCCCAAAAATTCACGCAACGCGCGTGGCGT



Btm SDM
CTTAGGCGTA





567
MMLV Q299R
GCTGTGCCCAAAAATTCACGCAAACGGCGTGGCGT



Btm SDM
CTTAGGCGTA





568
MMLV Q299E
GCTGTGCCCAAAAATTCACGCAACTCGCGTGGCGT



Btm SDM
CTTAGGCGTA





569
MMLV G308A
CCCAGGAATCCATAAACGACAGAACGCCGCTGTGC



Btm SDM
CCAAAAATTCACGC





570
MMLV G308R
CCCAGGAATCCATAAACGACAGAAACGCGCTGTGC



Btm SDM
CCAAAAATTCACGC





571
MMLV G308E
CCCAGGAATCCATAAACGACAGAACTCCGCTGTGC



Btm SDM
CCAAAAATTCACGC





572
MMLV R311A
TCAGCGAACCCAGGAATCCATAACGCACAGAATCC



Btm SDM
CGCTGTGCCC





573
MMLV R311K
TCAGCGAACCCAGGAATCCATAATTTACAGAATCC



Btm SDM
CGCTGTGCCC





574
MMLV R311E
TCAGCGAACCCAGGAATCCATAACTCACAGAATCC



Btm SDM
CGCTGTGCCC





575
MMLV Y271A
CCAACGTTGACCTTCTTTCAGCAACGCCCCAAGGT



Btm SDM
ACTTTACCTGTTTTTGAC





576
MMLV Y271R
CCAACGTTGACCTTCTTTCAGCAAACGCCCAAGGT



Btm SDM
ACTTTACCTGTTTTTGAC





577
MMLV Y271E
CCAACGTTGACCTTCTTTCAGCAACTCCCCAAGGT



Btm SDM
ACTTTACCTGTTTTTGAC





578
MMLV L280A
GGTCTCCTTACGCGCTTCAGTCGCCCAACGTTGAC



Btm SDM
CTTCTTTCAGCA





579
MMLV L280R
GGTCTCCTTACGCGCTTCAGTACGCCAACGTTGAC



Btm SDM
CTTCTTTCAGCA





580
MMLV L280E Btm
GGTCTCCTTACGCGCTTCAGTCTCCCAACGTTGAC



SDM
CTTCTTTCAGCA





581
MMLV L357A
GGCTTGGTTAAATCCGGAAGACCCGCCGCGGGTGC



Btm SDM
GGTCAACAAA





582
MMLV L357R
GGCTTGGTTAAATCCGGAAGACCACGCGCGGGTGC



Btm SDM
GGTCAACAAA





583
MMLV L357E Btm
GGCTTGGTTAAATCCGGAAGACCCTCCGCGGGTGC



SDM
GGTCAACAAA





584
MMLV T328A
CCAGTTGAAAAGCGTCCCTGTTTTCGCTAAGGGGT



Btm SDM
ACAGGGGTGCAG





585
MMLV T328R
CCAGTTGAAAAGCGTCCCTGTTTTACGTAAGGGGT



Btm SDM
ACAGGGGTGCAG





586
MMLV T328E Btm
CCAGTTGAAAAGCGTCCCTGTTTTCTCTAAGGGGT



SDM
ACAGGGGTGCAG





587
MMLV G331A
GGCCCCCAGTTGAAAAGCGTCGCTGTTTTTGTTAA



Btm SDM
GGGGTACAGGGG





588
MMLV G331R
GGCCCCCAGTTGAAAAGCGTACGTGTTTTTGTTAA



Btm SDM
GGGGTACAGGGG





589
MMLV G331E
GGCCCCCAGTTGAAAAGCGTCTCTGTTTTTGTTAA



Btm SDM
GGGGTACAGGGG





590
MMLV T332A
GTCTGGCCCCCAGTTGAAAAGCGCCCCTGTTTTTG



Btm SDM
TTAAGGGGTACAG





591
MMLV T332R
GTCTGGCCCCCAGTTGAAAAGACGCCCTGTTTTTG



Btm SDM
TTAAGGGGTACAG





592
MMLV T332E Btm
GTCTGGCCCCCAGTTGAAAAGCTCCCCTGTTTTTG



SDM
TTAAGGGGTACAG





593
MMLV N335A
TTTGCTGGTCTGGCCCCCACGCGAAAAGCGTCCCT



Btm SDM
GTTTTTGTTAAGG





594
MMLV N335R
TTTGCTGGTCTGGCCCCCAACGGAAAAGCGTCCCT



Btm SDM
GTTTTTGTTAAGG





595
MMLV N335E
TTTGCTGGTCTGGCCCCCACTCGAAAAGCGTCCCT



Btm SDM
GTTTTTGTTAAGG





596
MMLV E367A
ATATCCCTGTTTTTCATCAACGAACAGCGCAAAGG



Btm SDM
GCTTGGTTAAATCCGGAAG





597
MMLV E367R
ATATCCCTGTTTTTCATCAACGAACAGACGAAAGG



Btm SDM
GCTTGGTTAAATCCGGAAG





598
MMLV E367D
ATATCCCTGTTTTTCATCAACGAACAGATCAAAGG



Btm SDM
GCTTGGTTAAATCCGGAAG





599
MMLV F369A Btm
CTTTTGCATATCCCTGTTTTTCATCAACCGCCAGC



SDM
TCAAAGGGCTTGGTTAAATC





600
MMLV F369R Btm
CTTTTGCATATCCCTGTTTTTCATCAACACGCAGC



SDM
TCAAAGGGCTTGGTTAAATC





601
MMLV F369E Btm
CTTTTGCATATCCCTGTTTTTCATCAACCTCCAGC



SDM
TCAAAGGGCTTGGTTAAATC





602
MMLV R389A
TTACTCAAGTAAGCAACAGGGCGCGCCCACGGGCC



Btm SDM
TAACTTTTGGG





603
MMLV R389K
TTACTCAAGTAAGCAACAGGGCGTTTCCACGGGCC



Btm SDM
TAACTTTTGGG





604
MMLV R389E
TTACTCAAGTAAGCAACAGGGCGCTCCCACGGGCC



Btm SDM
TAACTTTTGGG





605
MMLV V433A
TCTACAGCATGTGGAGCCAAGATCGCTAAGGGTTG



Btm SDM
ACCCATCGTCAACT





606
MMLV V433R
TCTACAGCATGTGGAGCCAAGATACGTAAGGGTTG



Btm SDM
ACCCATCGTCAACT





607
MMLV V433E
TCTACAGCATGTGGAGCCAAGATCTCTAAGGGTTG



Btm SDM
ACCCATCGTCAACT





608
MMLV V476A
GAAGCAAAGTAGCTGGATTCAAAGCCGCAACTGGT



Btm SDM
CCAAATTGTACACGATCC





609
MMLV V476R
GAAGCAAAGTAGCTGGATTCAAAGCACGAACTGGT



Btm SDM
CCAAATTGTACACGATCC





610
MMLV V476E
GAAGCAAAGTAGCTGGATTCAAAGCCTCAACTGGT



Btm SDM
CCAAATTGTACACGATCC





611
MMLV I593A Btm
GCGGCGGTAAATTTCGCCATGCGCATGCGCTGTTG



SDM
CAAAAGCATAACG





612
MMLV I593R Btm
GCGGCGGTAAATTTCGCCATGACGATGCGCTGTTG



SDM
CAAAAGCATAACG





613
MMLV I593E Btm
GCGGCGGTAAATTTCGCCATGCTCATGCGCTGTTG



SDM
CAAAAGCATAACG





614
MMLV E596A
GACCACGGCGGCGGTAAATCGCGCCATGGATATGC



Btm SDM
GCTGTTGC





615
MMLV E596R
GACCACGGCGGCGGTAAATACGGCCATGGATATGC



Btm SDM
GCTGTTGC





616
MMLV E596D
GACCACGGCGGCGGTAAATATCGCCATGGATATGC



Btm SDM
GCTGTTGC





617
MMLV I597A Btm
CAGACCACGGCGGCGGTACGCTTCGCCATGGATAT



SDM
GCGCTGTTG





618
MMLV I597R Btm
CAGACCACGGCGGCGGTAACGTTCGCCATGGATAT



SDM
GCGCTGTTG





619
MMLV I597E Btm
CAGACCACGGCGGCGGTACTCTTCGCCATGGATAT



SDM
GCGCTGTTG





620
MMLV R650A
GGGCAGCTTGGTCCGCCATCGCGTTTCCACGAGCC



Btm SDM
TCCGCT





621
MMLV R650K
GGGCAGCTTGGTCCGCCATTTTGTTTCCACGAGCC



Btm SDM
TCCGCT





622
MMLV R650E
GGGCAGCTTGGTCCGCCATCTCGTTTCCACGAGCC



Btm SDM
TCCGCT





623
MMLV Q654A
GCCGCCTTACGGGCAGCCGCGTCCGCCATACGGTT



Btm SDM
TCCAC





624
MMLV Q654R
GCCGCCTTACGGGCAGCACGGTCCGCCATACGGTT



Btm SDM
TCCAC





625
MMLV Q654E
GCCGCCTTACGGGCAGCCTCGTCCGCCATACGGTT



Btm SDM
TCCAC





626
MMLV R657A
GTCTCTGTGATCGCCGCCTTCGCGGCAGCTTGGTC



Btm SDM
CGCCATA





627
MMLV R657K
GTCTCTGTGATCGCCGCCTTTTTGGCAGCTTGGTC



Btm SDM
CGCCATA





628
MMLV R657E
GTCTCTGTGATCGCCGCCTTCTCGGCAGCTTGGTC



Btm SDM
CGCCATA





629
MMLV L280R Top
ATTTGCTGAAAGAAGGTCAACGTTGGCGTACTGAT



SDM V2
GCGCGTAAGGAGACC





630
MMLV L280R
GGTCTCCTTACGCGCATCAGTACGCCAACGTTGAC



Btm SDM V2
CTTCTTTCAGCAAAT





631
MMLV L82R Top
GGGATTAAGCCACATATTCGTCGCTTGCGTGACCA



SDM V2
GGGGATCTTGGTCCC





632
MMLV L82R Btm
GGGACCAAGATCCCCTGGTCACGCAAGCGACGAAT



SDM V2
ATGTGGCTTAATCCC









Example 2: Preparation of Reverse Transcriptase Mutants for Screening Increased Activity and Thermostability

a. Overexpression of MMLV RTase and Mutant Variants


A test induction was used to determine optimum growing conditions. A colony, with the appropriate strain, was used to inoculate Terrific Broth (TB) media (50 mL) with kanamycin (0.05 mg/mL) and grown at 37° C. until an OD of approximately 0.9 was reached. The 50 mL culture was divided in half to accommodate two induction temperatures. IPTG (1M; 12.5 μL) was used to induce protein expression, followed by growth at two induction temperatures for 21 hours. Aliquots (normalized to an OD of 1.25) were taken at 3 and 21 hours, cells were harvested at 13,000×g for one minute, and harvested cells were stored at −20° C. Cells were resuspended in 1×SDS-PAGE running buffer (270 μL) and 5×SDS-PAGE loading dye (70 μL). Samples were boiled for 5 minutes, sonicated, and loaded (15 μL) onto a 4-20% Mini-PROTEAN® TGX Stain-Free™ Protein Gel (Bio Rad, Cat #4568094). SDS-PAGE images are shown in FIG. 2.


b. Expression and Purification of MMLV RTase and Mutant Variants


A colony with the appropriate strain was used to inoculate TB media (1 mL, in a 96-well deep well plate) with kanamycin (0.05 mg/mL) and grown at 37° C. until an OD of approximately 0.9 was achieved followed by cooling of the plate on ice for 5 minutes. Protein expression was induced by the addition of 100 mM IPTG (5 μL), followed by growth at 18° C. for 21 hours. Cells were harvested by spinning samples at 4,700×g for 10 minutes.


Cell pellets were re-suspended in a lysis buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 10 mM imidazole) and lysed by the addition of 1×BugBuster® (Millipore Sigma, Cat #70921) and incubation on an end-over-end mixer for 15 minutes at room temperature. Cell debris was removed by centrifuging the lysate at 16,000×g for 20 minutes at 4° C.


Cleared lysates were applied to a HisPur™ Ni-NTA spin plate (ThermoFisher, Cat #88230). Resin was equilibrated with Screening His-Bind buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 10 mM imidazole) and samples loaded. Samples were washed three times with Screening His-Wash buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 25 mM imidazole) and eluted using Screening His-Elution buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 250 mM imidazole). Purified proteins were normalized to a set concentration (100 nM) for testing purposes.


Example 3: Evaluation of Reverse Transcriptase Mutants

a. Evaluation of Ability of RTase Mutants to Synthesize DNA


The ability of mutant RTase to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) was compared to an MMLV RTase base construct (RNase H minus construct). Mutant MMLV RTases were tested in two formats: (1) standard two-step cDNA synthesis with gene specific primers, followed by qPCR, and (2) one-step addition of the RTase in Integrated DNA Technologies PrimeTime® Gene Expression Master Mix (GEM).


b. Standard Two-Step Procedure


RTases (2 μL, 100 nM) were added to a reaction mixture containing RNA (50 ng), dNTPs (100 μM), gene specific primer set (500 nM; see Table 2), first strand synthesis buffer (1×, 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl2, 10 mM DTT), and SuperaseIN (0.17 U/μL) in a 50 μL volume. The reaction was allowed to proceed at 50° C. for 15 minutes, followed by incubation at 80° C. for 10 minutes.


cDNA synthesized by RTase mutants was quantified by qPCR amplification using an assay that identified the SFRS9 gene in human cells. The assay master mix composition included GEM (1×), ROX (50 nM), SFRS9 primer set (500 nM; see Table 2), and SFRS9 probe (250 nM; see Table 2). Assay master mix and synthesized cDNA were mixed at a 4:1 ratio for a final volume of 20 μL. The reaction was run on qPCR (QuantStudio) for 40 cycles under the following cycle conditions: 95° C. hold for 3 minutes, 95° C. for 15 seconds, and 60° C. for one minute.









TABLE 2







Sequences of primers and probes used for qPCR assays.









SEQ ID NO:
Primer Name
Primer Sequence (5′-3′)





633
Hs SFRS9
GTCGAGTATCTCAGAAAAGAAGACA



Forward Primer



634
Hs SFRS9
CTCGGATGTAGGAAGTTTCACC



Reverse Primer



635
Hs SFRS9 Probe-
/5SUN/ATGCCCTGC/ZEN/GTAAACTGGATGACA



SUN
/3IABKFQ/










c. One-Step Procedure in GEM


RTases (1 μL, 100 nM) were added to a reaction mixture containing RNA (10 ng), GEM (1×), ROX (50 nM), SFRS9 primer set (500 nM; see Table 2), and SFRS9 probe (250 nM; see Table 2) in a final volume of 20 μL. The reaction was run on a qPCR machine (QuantStudio) for 40 cycles using the following cycle conditions: 60° C. hold for 15 minutes, 95° C. hold for 3 minutes, 95° C. for 15 seconds, and 60° C. for one minute.


d. MMLV RTase Base Construct and Single Mutant Variants


As described in Example 1, MMLV RTase single mutant variants were prepared by introducing selected mutations into the MMLV RTase base construct by site-directed mutagenesis, using standard PCR conditions and primers. The sequences of the MMLV RTase base construct and single mutant variants are shown in Table 3. One of skill in the art will understand that the MMLV RTase amino acid sequences of SEQ ID NO: 637 and SEQ ID NO: 717 (the latter of which is described in Example 6 below) are truncated forms of the full-length amino acid sequence of wild-type, or naturally occurring, MMLV RTase. In addition, a person having ordinary skill in the art will understand that a methionine residue is required to recombinantly produce the MMLV RTase base construct and mutants of the disclosure, and as such, that the MMLV RTase sequences disclosed herein (see, e.g., Table 3 below, Table 8 in Example 4, Tables 9 and 12 in Example 5, Table 22 in Example 6, and Table 38 in Example 9) include a methionine residue at the N-terminal end of the amino acid sequence. However, with respect to the present disclosure and for the purpose of identifying and numbering residues in the MMLV RTase amino acid sequence where mutations have been introduced, this methionine residue is considered to be amino acid residue 0 (i.e., is not counted) and the second amino acid residue (e.g., threonine in the MMLV RTase base construct set forth in SEQ ID NO: 637 and SEQ ID NO: 717) is considered to be amino acid residue 1.









TABLE 3







Sequences of MMLV RTase base construct and single mutant MMLV


RTase constructs.









SEQ ID NO:
Construct
Construct Sequence (DNA: 5′-3′ or AA)





636
MMLV RTase
ATGACTTTAAATATTGAGGATGAGCATCGTTTA




CATGAGACATCAAAAGAACCCGACGTGAGCTTA




GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG




TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCAAGAGGCCCGCCTGGGGATTAAGCCA




CATATTCAGCGCTTGCTGGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CTGCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGCTGACTGAAGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCCAGTTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTAGTAATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATATC




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTTTAA





637
MMLV RTase
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA




WAETGGMGLAVROAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





638
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61R mutation
WAETGGMGLAVROAPLIIPLKATSTPVSRKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





639
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R mutation
WAETGGMGLAVROAPLIIPLKATSTPVSIKQYP




MSREARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





640
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q79R mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIRRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





641
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



L99R mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPR




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKOPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





642
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



E282D mutation
WAETGGMGLAVROAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGOLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTOALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





643
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



R298A mutation
WAETGGMGLAVROAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGOLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PAQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF










e. Experimental Results


The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase single mutant variants were analyzed and reported by copy number output based on a standard curve (see Tables 4 and 5). Six single mutant MMLV RTase variants were found to exhibit an increase in the overall activity and thermostability as compared to the MMLV RTase base construct. The six single mutant MMLV RTase variants were as follows: I61R, Q68R, Q79R, L99R, E282D, and R298A.









TABLE 4







Two-step cDNA synthesis by MMLV RT single mutants.


Data was generated via qPCR human


normalizer assay and translated by copy number.









MMLV RT Variant
Quantity Mean
Quantity Standard Deviation












MMLV-II
21,046.784
954.827


MMLV-II A283V
280.423
50.910


MMLV-II A283R
10,390.819
340.236


MMLV-II A283E
7,378.705
122.716


MMLV-II E123A
15,059.791
556.095


MMLV-II E123R
19,043.292
415.522


MMLV-II E123D
3,619.959
243.766


MMLV-II E282A
19,939.551
1,645.246


MMLV-II E282R
15,588.940
546.467


MMLV-II E282D
24,282.327
2,259.264


MMLV-II I61A
648.252
45.640


MMLV-II I61R
26,280.811
549.417


MMLV-II I61E
10,966.741
469.747


MMLV-II K102A
98.438
12.778


MMLV-II K102R
780.114
90.331


MMLV-II K102E
1,674.854
157.485


MMLV-II K103A
359.984
67.322


MMLV-II K103R
206.765
20.758


MMLV-II K103E
200.883
16.719


MMLV-II K120A
217.787
72.696


MMLV-II K120R
3,619.338
100.478


MMLV-II K120E
2,230.375
210.050


MMLV-II K193A
2,736.271
162.383


MMLV-II K193R
11,496.935
193.681


MMLV-II K193E
325.109
50.932


MMLV-II K295A
8,101.927
348.373


MMLV-II K295R
6,879.112
131.993


MMLV-II K295E
9,673.612
351.106


MMLV-II K329A
3,199.167
212.003


MMLV-II K329R
10,387.670
330.429


MMLV-II K329E
18,306.813
1,167.600


MMLV-II K53A
474.465
62.390


MMLV-II K53R
369.020
49.436


MMLV-II K53E
5,308.165
104.585


MMLV-II K62A
2,102.396
64.197


MMLV-II K62R
4,920.330
251.414


MMLV-II K62E
71.723
11.419


MMLV-II K75A
76.659
24.657


MMLV-II K75R
2,842.314
77.212


MMLV-II K75E
1,697.887
158.946


MMLV-II L99A
1,576.246
213.455


MMLV-II L99R
37,070.048
1,531.910


MMLV-II L99E
195.448
22.530


MMLV-II N107A
3,354.325
176.385


MMLV-II N107R
41.532
24.527


MMLV-II N107E
8,523.285
353.411


MMLV-II Q291A
14,093.444
576.318


MMLV-II Q291R
15,736.443
566.630


MMLV-II Q291E
1,480.309
93.187


MMLV-II Q68A
n.d.
n.d.


MMLV-II Q68R
20,158.035
722.022


MMLV-II Q68E
2,263.714
150.236


MMLV-II Q79A
2,317.484
43.518


MMLV-II Q79R
37,480.443
1,268.309


MMLV-II Q79E
489.184
39.449


MMLV-II R110A
1,815.710
7.917


MMLV-II R110K
502.172
38.619


MMLV-II R110E
383.331
38.162


MMLV-II R298A
44,477.013
3,036.502


MMLV-II R298K
14,925.202
186.581


MMLV-II R298E
1,150.932
56.107


MMLV-II R301A
2,745.075
82.646


MMLV-II R301K
12,813.899
568.898


MMLV-II R301E
1,583.826
198.913


MMLV-II T106A
16,641.642
179.631


MMLV-II T106R
2,248.217
71.295


MMLV-II T106E
10,302.113
250.531


MMLV-II T128V
7,034.032
351.446


MMLV-II T128R
3,465.069
143.456


MMLV-II T128E
10,709.019
110.124


MMLV-II T293A
4,612.880
167.335


MMLV-II T293R
13,753.879
319.851


MMLV-II T293E
12,893.457
223.100


MMLV-II T296A
2,192.531
76.071


MMLV-II T296R
893.449
51.913


MMLV-II T296E
473.936
102.414


MMLV-II T55A
5,774.471
223.173


MMLV-II T55R
3,284.089
314.651


MMLV-II T55E
6,143.058
429.507


MMLV-II T57A
6,129.791
285.070


MMLV-II T57R
888.244
11.952


MMLV-II T57E
1,487.448
71.681


MMLV-II V101A
552.130
98.391


MMLV-II V101R
4,754.017
107.434


MMLV-II V101E
1,388.699
87.091


MMLV-II V112A
2,085.594
72.265


MMLV-II V112R
377.194
41.722


MMLV-II V112E
210.825
17.715


MMLV-II V59A
628.779
15.216


MMLV-II V59R
6,662.173
210.234


MMLV-II V59E
3,249.465
79.848


MMLV-II Y109A
101.656
6.717


MMLV-II Y109R
349.373
27.171


MMLV-II Y109E
1,029.589
45.189


MMLV-IV
71,572.714
4,656.679
















TABLE 5







One-step cDNA synthesis by MMLV RT single


mutants. Data was generated via qPCR human


normalizer assay and data is translated by copy number.









MMLV RT Variant
Quantity Mean
Quantity Standard Deviation












MMLV-II
20,638.973
614.785


MMLV-II A283V
8,802.753
220.902


MMLV-II A283R
14,379.575
337.562


MMLV-II A283E
16,396.614
203.476


MMLV-II E123A
17,975.218
259.986


MMLV-II E123R
20,652.508
515.600


MMLV-II E123D
14,452.672
242.000


MMLV-II E282A
19,017.751
827.419


MMLV-II E282R
17,180.421
204.739


MMLV-II E282D
20,735.271
420.881


MMLV-II I61A
7,450.147
348.788


MMLV-II I61R
25,123.507
2,977.836


MMLV-II I61E
17,441.860
1,662.749


MMLV-II K102A
9,342.754
120.846


MMLV-II K102R
10,563.589
255.139


MMLV-II K102E
13,925.008
307.601


MMLV-II K103A
9,429.555
437.351


MMLV-II K103R
9,009.846
155.888


MMLV-II K103E
7,985.278
189.792


MMLV-II K120A
8,593.433
438.722


MMLV-II K120R
12,558.793
407.946


MMLV-II K120E
12,268.574
303.495


MMLV-II K193A
12,977.263
537.992


MMLV-II K193R
13,446.766
2,337.906


MMLV-II K193E
8,536.558
182.514


MMLV-II K295A
13,506.491
1,613.467


MMLV-II K295R
13,944.407
1,839.608


MMLV-II K295E
15,021.823
650.111


MMLV-II K329A
13,284.541
246.298


MMLV-II K329R
15,935.899
970.971


MMLV-II K329E
20,628.859
884.254


MMLV-II K53A
10,868.676
161.435


MMLV-II K53R
9,908.252
632.663


MMLV-II K53E
20,666.775
518.895


MMLV-II K62A
9,454.043
732.242


MMLV-II K62R
14,532.171
63.450


MMLV-II K62E
8,341.361
436.076


MMLV-II K75A
9,084.502
113.100


MMLV-II K75R
13,106.462
331.663


MMLV-II K75E
11,191.849
565.160


MMLV-II L99A
12,876.076
49.507


MMLV-II L99R
27,167.197
142.371


MMLV-II L99E
6,534.199
2,730.598


MMLV-II N107A
13,563.421
349.378


MMLV-II N107R
8,654.167
497.167


MMLV-II N107E
16,675.075
172.596


MMLV-II Q291A
20,957.729
150.006


MMLV-II Q291R
17,980.723
346.436


MMLV-II Q291E
11,025.722
407.116


MMLV-II Q68A
n.d.
n.d.


MMLV-II Q68R
24,925.791
937.265


MMLV-II Q68E
12,844.484
165.039


MMLV-II Q79A
12,038.975
482.596


MMLV-II Q79R
28,458.521
296.595


MMLV-II Q79E
10,358.863
309.043


MMLV-II R110A
11,517.764
562.094


MMLV-II R110K
8,112.167
76.742


MMLV-II R110E
8,809.423
290.785


MMLV-II R298A
27,817.905
172.690


MMLV-II R298K
18,222.660
825.743


MMLV-II R298E
10,783.790
783.279


MMLV-II R301A
11,344.854
63.499


MMLV-II R301K
17,584.850
445.587


MMLV-II R301E
10,146.906
1,879.902


MMLV-II T106A
17,717.520
215.965


MMLV-II T106R
11,680.187
148.213


MMLV-II T106E
21,203.557
366.469


MMLV-II T128V
14,384.970
355.754


MMLV-II T128R
12,938.223
464.841


MMLV-II T128E
14,781.394
1,930.931


MMLV-II T293A
15,658.189
347.640


MMLV-II T293R
19,976.165
253.604


MMLV-II T293E
17,580.335
404.397


MMLV-II T296A
10,312.142
159.775


MMLV-II T296R
8,482.071
92.806


MMLV-II T296E
7,687.972
112.884


MMLV-II T55A
18,073.262
618.174


MMLV-II T55R
11,546.179
138.906


MMLV-II T55E
12,299.658
815.911


MMLV-II T57A
14,700.042
2,916.521


MMLV-II T57R
11,195.901
145.433


MMLV-II T57E
11,958.503
605.445


MMLV-II V101A
10,697.751
269.696


MMLV-II V101R
8,934.765
53.924


MMLV-II V101E
11,295.874
296.506


MMLV-II V112A
12,854.738
356.724


MMLV-II V112R
6,331.802
303.453


MMLV-II V112E
7,643.184
448.446


MMLV-II V59A
9,520.143
339.954


MMLV-II V59R
18,523.053
499.377


MMLV-II V59E
16,029.631
137.454


MMLV-II Y109A
8,421.361
185.196


MMLV-II Y109R
8,581.961
129.732


MMLV-II Y109E
10,216.473
416.388


MMLV-IV
65,726.159
1,811.314









Example 4: Extension of Reverse Transcriptase Single Mutants

The amino acid positions that enclosed the MMLV RTase single mutants identified in Example 3 were further evaluated to include all possible amino acid substitutions at that position. The single mutants were cloned, overexpressed, and purified as described in Examples 1 and 2, and evaluated as described in Example 3. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase double mutant variants were analyzed and reported by copy number output based on a standard curve (see Tables 6 and 7). Ten single mutant MMLV RTase variants (see Table 8) were found to exhibit an increase in the overall activity and thermostability as compared to the MMLV RTase base construct. The ten single mutant MMLV RTase variants were as follows: I61K, I61M, Q68I, Q68K, Q79H, Q79I, L99K, L99N, E282M and E282W.









TABLE 6







Two-step cDNA synthesis by MMLV RT single mutants.


Data was generated via qPCR human


normalizer assay and translated by copy number.









MMLV RT Variant
Quantity Mean
Quantity Standard Deviation












MMLV-II
1,484.121
125.278


MMLV-II E282C
749.332
37.947


MMLV-II E282F
968.042
28.112


MMLV-II E282G
841.839
30.618


MMLV-II E282H
936.562
64.904


MMLV-II E282I
1,418.551
8.682


MMLV-II E282K
2,399.973
50.862


MMLV-II E282L
1,778.903
134.133


MMLV-II E282M
2,115.328
125.477


MMLV-II E282N
1,175.130
79.221


MMLV-II E282P
1,529.331
61.525


MMLV-II E282Q
1,856.418
24.118


MMLV-II E282S
673.670
44.770


MMLV-II E282T
994.318
24.066


MMLV-II E282V
748.877
29.053


MMLV-II E282W
2,469.404
141.080


MMLV-II E282Y
1,360.706
338.309


MMLV-II I61C
283.240
11.244


MMLV-II I61D
349.008
10.979


MMLV-II I61F
784.163
22.643


MMLV-II I61G
395.348
21.967


MMLV-II I61H
736.015
30.271


MMLV-II I61K
4,479.606
62.627


MMLV-II I61L
1,106.547
38.553


MMLV-II I61M
4,198.088
93.025


MMLV-II I61N
709.752
29.312


MMLV-II I61P
32.935
16.814


MMLV-II I61Q
1,311.695
145.810


MMLV-II I61S
797.783
50.626


MMLV-II I61T
628.173
33.371


MMLV-II I61V
1,439.915
27.490


MMLV-II I61W
442.039
29.310


MMLV-II I61Y
534.249
26.831


MMLV-II L99C
3,109.142
80.016


MMLV-II L99D
83.653
3.432


MMLV-II L99F
2,811.513
79.584


MMLV-II L99G
908.041
16.157


MMLV-II L99H
4,881.196
390.497


MMLV-II L99I
910.072
71.671


MMLV-II L99K
6,410.818
127.262


MMLV-II L99M
976.548
65.154


MMLV-II L99N
4,974.458
162.464


MMLV-II L99P
6.416
1.820


MMLV-II L99Q
3,908.473
337.167


MMLV-II L99S
3,793.955
86.959


MMLV-II L99T
4,189.211
27.640


MMLV-II L99V
964.081
48.105


MMLV-II L99W
1,614.660
40.442


MMLV-II L99Y
2,123.406
181.945


MMLV-II Q68A
1,184.702
7.676


MMLV-II Q68C
2,038.167
36.463


MMLV-II Q68D
1,613.880
77.796


MMLV-II Q68F
1,805.647
62.456


MMLV-II Q68G
2,262.873
69.688


MMLV-II Q68H
106.421
9.860


MMLV-II Q681
2,675.446
73.874


MMLV-II Q68K
1,042.979
70.081


MMLV-II Q68L
1,070.742
57.215


MMLV-II Q68M
1,342.806
58.349


MMLV-II Q68N
1,993.946
65.808


MMLV-II Q68P
2,025.753
25.540


MMLV-II Q68S
1,895.984
26.959


MMLV-II Q68T
431.442
22.751


MMLV-II Q68V
1,534.710
110.794


MMLV-II Q68W
1,790.706
124.583


MMLV-II Q79C
2,477.812
107.510


MMLV-II Q79D
627.902
11.073


MMLV-II Q79F
1,786.571
126.904


MMLV-II Q79G
2,702.985
83.998


MMLV-II Q79H
2,851.710
57.501


MMLV-II Q791
2,967.710
57.440


MMLV-II Q79K
1,346.751
64.513


MMLV-II Q79L
2,214.615
67.622


MMLV-II Q79M
1,847.181
31.384


MMLV-II Q79N
1,365.563
54.775


MMLV-II Q79P
674.074
42.100


MMLV-II Q79S
2,199.353
52.958


MMLV-II Q79T
1,523.163
77.025


MMLV-II Q79V
1,704.661
77.643


MMLV-II Q79W
2,186.489
31.470


MMLV-II Q79Y
2,326.023
123.508


MMLV-II R298C
79.970
9.815


MMLV-II R298D
0.000
0.000


MMLV-II R298F
84.760
9.362


MMLV-II R298G
357.027
15.726


MMLV-II R298H
269.257
20.814


MMLV-II R298I
130.983
5.364


MMLV-II R298L
199.612
5.843


MMLV-II R298M
172.013
18.710


MMLV-II R298N
199.678
2.660


MMLV-II R298P
122.098
5.900


MMLV-II R298Q
118.092
40.694


MMLV-II R298S
406.112
7.695


MMLV-II R298T
618.616
20.023


MMLV-II R298V
136.498
13.297


MMLV-II R298W
68.096
7.016


MMLV-II R298Y
162.713
7.854


MMLV-IV
6,830.294
376.878
















TABLE 7







One-step cDNA synthesis by MMLV RT single mutants.


Data was generated via qPCR human normalizer


assay and data is translated by copy number.











Quantity Standard


MMLV RT Variant
Quantity Mean
Deviation












MMLV-II
408.018
8.693


MMLV-II E282C
175.083
7.005


MMLV-II E282F
1,043.025
16.137


MMLV-II E282G
635.037
13.293


MMLV-II E282H
656.956
10.018


MMLV-II E282I
1,033.125
44.996


MMLV-II E282K
751.309
17.611


MMLV-II E282L
1,072.350
80.365


MMLV-II E282M
1,318.072
51.735


MMLV-II E282N
539.305
10.767


MMLV-II E282P
725.869
92.685


MMLV-II E282Q
626.674
12.129


MMLV-II E282S
354.956
34.850


MMLV-II E282T
485.477
45.783


MMLV-II E282V
594.047
27.898


MMLV-II E282W
913.290
61.145


MMLV-II E282Y
759.920
34.784


MMLV-II I61C
219.438
18.403


MMLV-II I61D
347.020
13.303


MMLV-II I61F
428.623
25.316


MMLV-II I61G
389.503
21.764


MMLV-II I61H
514.330
18.416


MMLV-II I61K
2,343.894
67.214


MMLV-II I61L
621.572
14.892


MMLV-II I61M
2,536.807
150.371


MMLV-II I61N
538.519
20.736


MMLV-II I61P
61.683
18.802


MMLV-II I61Q
701.471
32.487


MMLV-II I61S
611.977
30.430


MMLV-II I61T
534.254
31.643


MMLV-II I61V
881.608
20.662


MMLV-II I61W
428.440
17.964


MMLV-II I61Y
347.930
4.412


MMLV-II L99C
2,390.104
35.867


MMLV-II L99D
185.044
6.975


MMLV-II L99F
1,577.767
7.757


MMLV-II L99G
987.225
9.718


MMLV-II L99H
3,886.372
111.670


MMLV-II L99I
613.648
46.303


MMLV-II L99K
7,597.650
321.753


MMLV-II L99M
934.817
52.006


MMLV-II L99N
4,689.222
160.641


MMLV-II L99P
18.537
1.131


MMLV-II L99Q
2,394.744
64.077


MMLV-II L99S
3,293.831
111.802


MMLV-II L99T
3,505.113
101.670


MMLV-II L99V
677.756
49.356


MMLV-II L99W
839.088
50.301


MMLV-II L99Y
1,127.536
19.074


MMLV-II Q68A
827.617
30.689


MMLV-II Q68C
1,110.680
45.944


MMLV-II Q68D
1,045.802
25.488


MMLV-II Q68F
1,210.166
120.899


MMLV-II Q68G
907.279
30.688


MMLV-II Q68H
150.384
6.867


MMLV-II Q68I
1,550.372
76.712


MMLV-II Q68K
1,712.176
47.342


MMLV-II Q68L
651.039
51.426


MMLV-II Q68M
1,395.463
34.805


MMLV-II Q68N
1,241.364
25.780


MMLV-II Q68P
1,249.444
13.709


MMLV-II Q68S
1,125.260
21.324


MMLV-II Q68T
792.901
31.513


MMLV-II Q68V
1,026.654
24.972


MMLV-II Q68W
1,594.175
101.221


MMLV-II Q79C
1,948.151
87.341


MMLV-II Q79D
458.131
10.763


MMLV-II Q79F
1,623.675
50.723


MMLV-II Q79G
1,885.097
20.190


MMLV-II Q79H
2,508.763
149.926


MMLV-II Q79I
2,329.030
76.545


MMLV-II Q79K
1,861.302
24.320


MMLV-II Q79L
1,496.247
30.399


MMLV-II Q79M
1,496.469
38.178


MMLV-II Q79N
995.813
42.279


MMLV-II Q79P
526.914
23.216


MMLV-II Q79S
1,685.124
42.694


MMLV-II Q79T
966.505
8.377


MMLV-II Q79V
1,218.191
21.512


MMLV-II Q79W
1,962.326
37.135


MMLV-II Q79Y
2,218.504
56.938


MMLV-II R298C
45.500
1.456


MMLV-II R298D
0.000
0.000


MMLV-II R298F
104.825
5.133


MMLV-II R298G
323.542
14.052


MMLV-II R298H
253.202
47.711


MMLV-II R298I
205.982
8.304


MMLV-II R298L
213.674
15.199


MMLV-II R298M
176.347
12.484


MMLV-II R298N
142.969
39.198


MMLV-II R298P
188.995
3.689


MMLV-II R298Q
95.525
44.292


MMLV-II R298S
307.614
9.962


MMLV-II R298T
487.828
3.480


MMLV-II R298V
255.828
12.902


MMLV-II R298W
37.872
8.482


MMLV-II R298Y
153.333
25.137


MMLV-IV
19,407.721
466.310
















TABLE 8







Sequences of single mutant MMLV RTase variants.









SEQ ID NO:
Construct
Construct Sequence (AA)





644
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61K mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSKKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





645
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61M mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSMKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





646
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68I mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSIEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





647
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68K mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSKEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





648
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q79H mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIHRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





649
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q79I mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIIRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





650
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



L99K mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




KPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





651
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



L99N mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




NPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





652
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



E282M mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTMARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





653
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



E282W mutation
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTWARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF









Example 5: Stacking of Reverse Transcriptase Mutants with Enhanced Activity

a. MMLV RTase Double Mutants


The MMLV RTase single mutants identified in Example 3 were stacked to further improve the ability of MMLV RTase to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) as compared to the MMLV RTase base construct (RNase H minus construct). Fifteen MMLV RTase double mutant variants (see Table 9) were cloned, overexpressed, and purified as described in Examples 1 and 2, and evaluated as described in Example 3. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase double mutant variants were analyzed and reported by copy number output based on a standard curve (see Tables 10 and 11).


Four of the fifteen MMLV RTase double mutant variants were found to exhibit increased overall activity and thermostability as compared to the other MMLV RTase double mutant variants, and almost all of the MMLV RTase double mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The four MMLV RTase double mutant variants that were found to exhibit the highest overall activity were E282D/L99R, L99R/Q68R, L99R/Q79R, and Q68R/Q79R.









TABLE 9







Sequences of double mutant MMLV RTase variants.









SEQ ID NO:
Construct
Construct Sequence (AA)





654
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61R/E282D mutations
WAETGGMGLAVRQAPLIIPLKATSTPVSRKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





655
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



L99R/E282D mutations
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPR




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





656
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





657
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q79R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSQEARLGIKPHIRRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





658
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



E282D/R298A
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PAQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





659
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61R/L99R mutations
WAETGGMGLAVRQAPLIIPLKATSTPVSRKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





660
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61R/Q68R mutations
WAETGGMGLAVRQAPLIIPLKATSTPVSRKQYP




MSREARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEH





661
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61R/Q79R mutations
WAETGGMGLAVRQAPLIIPLKATSTPVSRKQYP




MSQEARLGIKPHIRRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





662
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/L99R mutations
WAETGGMGLAVRQAPLIIPLKATSTPVSRKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PAQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





663
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61R/R298A mutations
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSREARLGIKPHIQRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





664
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q79R/L99R mutations
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





665
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



L99R/R298A
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PAQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





666
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R mutations
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





667
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/R298A
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PAQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





668
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q79R/R298A
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSQEARLGIKPHIRRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PAQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF
















TABLE 10







Two-Step cDNA synthesis by MMLV RT double mutants.


Data was generated via qPCR human normalizer


assay and data is translated by copy number.













Quantity Standard



MMLV RT Variant
Quantity Mean
Deviation















MMLV-II
1,773.623
5.057



MMLV-II E282D/I61R
4,810.277
143.422



MMLV-II E282D/L99R
7,266.281
50.730



MMLV-II E282D/Q68R
5,186.392
69.563



MMLV-II E282D/Q79R
4,311.403
95.402



MMLV-II E282D/R298A
1,366.524
16.429



MMLV-II I61R/L99R
6,061.812
174.619



MMLV-II I61R/Q68R
5,899.316
39.879



MMLV-II I61R/Q79R
5,257.089
98.378



MMLV-II I61R/R298A
2,661.223
68.948



MMLV-II L99R/Q68R
7,750.519
94.408



MMLV-II L99R/Q79R
7,455.203
124.095



MMLV-II L99R/R298A
5,351.021
179.558



MMLV-II Q68R/Q79R
7,178.681
86.595



MMLV-II Q68R/R298A
4,524.340
84.703



MMLV-II Q79R/R298A
3,739.608
58.621



MMLV-IV
8,258.715
79.458

















TABLE 11







One-Step cDNA synthesis by MMLV RT double mutants.


Data was generated via qPCR human normalizer


assay and data is translated by copy number.













Quantity Standard



MMLV-RT Variant
Quantity Mean
Deviation















MMLV-II
859.127
24.795



MMLV-II E282D/I61R
2,948.906
49.177



MMLV-II E282D/L99R
4,814.957
239.110



MMLV-II E282D/Q68R
3,709.046
131.434



MMLV-II E282D/Q79R
3,694.187
98.772



MMLV-II E282D/R298A
794.643
39.913



MMLV-II I61R/L99R
3,443.713
180.210



MMLV-II I61R/Q68R
3,525.138
112.288



MMLV-II I61R/Q79R
3,125.990
120.996



MMLV-II I61R/R298A
2,006.208
83.559



MMLV-II L99R/Q68R
6,755.852
102.788



MMLV-II L99R/Q79R
6,709.502
35.997



MMLV-II L99R/R298A
2,128.451
55.565



MMLV-II Q68R/Q79R
6,343.821
140.779



MMLV-II Q68R/R298A
2,406.470
74.117



MMLV-II Q79R/R298A
2,301.759
22.849



MMLV-IV
15,411.857
333.388











b. Cloning of MMLV RTase Triple and More Mutants


Following the double mutant variants, MMLV RTase single mutants were stacked further to improve the ability of MMLV RTase to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) as compared to the MMLV RTase base construct (RNase H minus construct). Seventeen MMLV RTase triple or more mutant variants (see Table 12) were cloned as described in Example 1.









TABLE 12







Sequences of triple or more mutant MMLV RTase variants.









SEQ ID




NO:
Construct
Construct Sequence (AA)





669
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/L99R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIQRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





670
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q79R/L99R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSQEARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





671
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





672
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





673
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





674
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99K/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




KPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





675
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99N/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




NPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





676
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68I/Q79R/L99R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSIEARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





677
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68K/Q79R/L99R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSKEARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





678
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79H/L99R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIHRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





679
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79I/L99R/E282D
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIIRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





680
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R/E282M
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTMARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





681
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R/E282W
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTWARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





682
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61K/Q68R/Q79R/L99R/
WAETGGMGLAVRQAPLIIPLKATSTPVSKKQYP



E282D mutations
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





683
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61M/Q68R/Q79R/L99R/
WAETGGMGLAVRQAPLIIPLKATSTPVSMKQYP



E282D mutations
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL




RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





684
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68I/Q79H/L99K/E282M
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



mutations
MSIEARLGIKPHIHRLLDQGILVPCQSPWNTPL




KPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTMARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





685
MMLV RTase with
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



I61M/Q68I/Q79H/L99K/
WAETGGMGLAVRQAPLIIPLKATSTPVSMKQYP



E282M mutations
MSIEARLGIKPHIHRLLDQGILVPCQSPWNTPL




KPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTMARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF










c. Expression and Purification of MMLV RTase and Mutant Variants


A colony with the appropriate strain was used to inoculate TB media (200 mL) with kanamycin (0.05 mg/mL) and grown at 37° C. until an OD of approximately 0.9 was achieved followed by cooling of the flask for 30 minutes at 4° C. Protein expression was induced by the addition of 1 M IPTG (100 μL), followed by growth at 18° C. for 21 hours. Cells were harvested by spinning samples at 4,700×g for 10 minutes.


Cell pellets were re-suspended in a lysis buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, 10 mM imidazole, 5 mM DTT, 0.01% n-ocyl-β-D-glucopyranoside, DNaseI, 10 mM CaCl2, lysozyme (1 mg/mL), and protease inhibitor). The sample was lysed on an Avestin Emulsiflex C3 pre-chilled to 4° C. at 15-20 kpsi with three passes. Cell debris was removed by centrifuging the lysate at 16,000×g for 30 minutes at 4° C.


Cleared lysates were applied to a HisTrap HP column (Cytiva Life Sciences, Cat #17524701). The resin was equilibrated with MMLV His-Bind buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 0.3 M NaCl, 10 mM imidazole, 1 mM DTT and 0.01% IGEPAL-CA), followed by sample loading. The samples were washed with MMLV His-Bind buffer, followed by a 25% B wash (B=MMLV His Elution buffer=50 mM NaPO4, pH 7.8, 5% glycerol, 0.3 M NaCl, 250 mM imidazole, 1 mM DTT and 0.01% IGEPAL-CA). The sample was eluted with 100% B for 10 CVs in 45 mL fractions.


Purified proteins were applied to a HiTrap Heparin HP column (Cytiva Life Sciences, Cat #17040601). The resin was equilibrated with MMLV Heparin-Bind buffer (50 mM Tris HCl pH 8.5, 75 mM NaCl, 1 mM DTT, 5% glycerol and 0.01% IGEPAL-CA), followed by sample loading. The sample was washed with MLV Heparin Bind buffer, followed by a 25% B wash (B=MLV Heparin Elution Buffer). The sample was eluted with 60% B for 10 CVs in 45 mL fractions.


Purified proteins were applied to a Bio-Scale™ Mini CHT™ Cartridge (Bio-Rad Laboratories, Cat #7324322). The resin was washed with 1 M NaOH, followed by equilibration with MMLV Heparin-Bind buffer and sample loading. The sample was washed with MLV Heparin Elution buffer, followed by MMLV Heparin Bind buffer. The sample was linearly eluted to 100% B2 (B2=MMLV HA Elution Buffer=250 mM KPO4 pH 7.5, 1 mM DTT, 5% glycerol and 0.01% IGEPAL-CA) for 15 CVs in 5 mL fractions.


Fractions containing purified protein were pooled and dialyzed in MMLV Storage Buffer (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM DTT, 50% (v/v) glycerol).


d. Evaluation of Ability of Purified MMLV RTase Mutant Variants to Synthesize DNA by Gene Specific Priming


MMLV RTase base construct and MMLV RTase mutant variants evaluated as described in Example 3. Temperatures were adjusted for both two-step and one-step reactions to 55 and 60° C., respectively. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (see Tables 13 and 14).


Six of the seventeen MMLV RTase triple or more mutant variants were found to exhibit increased overall activity and thermostability as compared to the other MMLV RTase stacked mutant variants, and almost all of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The six MMLV RTase mutant variants that were found to exhibit the highest overall activity were Q68R/L99R, Q68R/Q79R/L99R, Q68R/Q79R/L99R/E282D, Q68R/Q79R/L99K/E282D, Q68R/Q79R/L99R/E282W, I61M/Q68R/Q79R/L99R/E282D and Q68I/Q79H/L99K/E282M.









TABLE 13







Two-Step cDNA synthesis by MMLV RT triple and more mutants.


Data was generated via qPCR human normalizer


assay and data is reported by Ct value.











Concentration

Ct Standard


MMLV RT Variant
of RTase (nM)
Ct Mean
Deviation













MMLV-II
0.625
25.520
0.047


MMLV-II L99R/E282D
0.625
24.332
0.060


MMLV-II Q68R/L99R
0.625
22.207
0.097


MMLV-II Q79R/L99R
0.625
23.789
0.012


MMLV-II Q68R/Q79R
0.625
23.629
0.038


MMLV-II Q68R/L99R/E282D
0.625
22.855
0.079


MMLV-II Q79R/L99R/E282D
0.625
23.095
0.035


MMLV-II Q68R/Q79R/E282D
0.625
22.526
0.027


MMLV-II Q68R/Q79R/L99R
0.625
22.099
0.018


MMLV-II
0.625
21.056
0.023


Q68R/Q79R/L99R/E282D





MMLV-II
0.625
21.833
0.031


Q68R/Q79R/L99K/E282D





MMLV-II
0.625
23.607
0.031


Q68R/Q79R/L99N/E282D





MMLV-II
0.625
23.858
0.029


Q68I/Q79R/L99R/E282D





MMLV-II
0.625
22.615
0.054


Q68K/Q79R/L99R/E282D





MMLV-II
0.625
28.866
0.008


Q68R/Q79H/L99R/E282D





MMLV-II
0.625
23.283
0.085


Q68R/Q79I/L99R/E282D





MMLV-II
0.625
25.073
0.097


Q68R/Q79R/L99R/E282M





MMLV-II
0.625
22.331
0.048


Q68R/Q79R/L99R/E282W





MMLV-II
0.625
23.271
0.065


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
0.625
22.133
0.018


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
0.625
23.344
0.037


Q68I/Q79H/L99K/E282M





MMLV-II
0.625
25.255
0.058


I61M/Q68I/Q79H/L99K/E282M





MMLV-II
2.5
22.154
0.052


MMLV-II L99R/E282D
2.5
21.501
0.054


MMLV-II Q68R/L99R
2.5
21.151
0.048


MMLV-II Q79R/L99R
2.5
21.229
0.163


MMLV-II Q68R/Q79R
2.5
21.228
0.054


MMLV-II Q68R/L99R/E282D
2.5
21.126
0.030


MMLV-II Q79R/L99R/E282D
2.5
21.418
0.033


MMLV-II Q68R/Q79R/E282D
2.5
21.011
0.052


MMLV-II Q68R/Q79R/L99R
2.5
20.953
0.041


MMLV-II
2.5
21.113
0.108


Q68R/Q79R/L99R/E282D





MMLV-II
2.5
20.906
0.081


Q68R/Q79R/L99K/E282D





MMLV-II
2.5
21.196
0.029


Q68R/Q79R/L99N/E282D





MMLV-II
2.5
21.369
0.009


Q68I/Q79R/L99R/E282D





MMLV-II
2.5
20.960
0.030


Q68K/Q79R/L99R/E282D





MMLV-II
2.5
26.167
0.038


Q68R/Q79H/L99R/E282D





MMLV-II
2.5
21.012
0.056


Q68R/Q79I/L99R/E282D





MMLV-II
2.5
21.277
0.036


Q68R/Q79R/L99R/E282M





MMLV-II
2.5
20.944
0.020


Q68R/Q79R/L99R/E282W





MMLV-II
2.5
21.320
0.009


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
2.5
21.095
0.013


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
2.5
21.329
0.047


Q68I/Q79H/L99K/E282M





MMLV-II
2.5
22.159
0.031


I61M/Q68I/Q79H/L99K/E282M





MMLV-II
10
21.575
0.101


MMLV-II L99R/E282D
10
21.546
0.041


MMLV-II Q68R/L99R
10
21.343
0.021


MMLV-II Q79R/L99R
10
21.387
0.016


MMLV-II Q68R/Q79R
10
21.147
0.032


MMLV-II Q68R/L99R/E282D
10
21.265
0.076


MMLV-II Q79R/L99R/E282D
10
21.250
0.036


MMLV-II Q68R/Q79R/E282D
10
21.135
0.015


MMLV-II Q68R/Q79R/L99R
10
21.051
0.036


MMLV-II
10
21.159
0.065


Q68R/Q79R/L99R/E282D





MMLV-II
10
21.056
0.032


Q68R/Q79R/L99K/E282D





MMLV-II
10
21.180
0.052


Q68R/Q79R/L99N/E282D





MMLV-II
10
21.068
0.069


Q68I/Q79R/L99R/E282D





MMLV-II
10
21.065
0.053


Q68K/Q79R/L99R/E282D





MMLV-II
10
21.683
0.075


Q68R/Q79H/L99R/E282D





MMLV-II
10
21.152
0.064


Q68R/Q79I/L99R/E282D





MMLV-II
10
21.029
0.055


Q68R/Q79R/L99R/E282M





MMLV-II
10
21.214
0.052


Q68R/Q79R/L99R/E282W





MMLV-II
10
21.391
0.051


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
10
21.307
0.038


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
10
21.583
0.019


Q68I/Q79H/L99K/E282M





MMLV-II
10
21.759
0.029


I61M/Q68I/Q79H/L99K/E282M
















TABLE 14







One-Step cDNA synthesis by MMLV RT triple and more mutants.


Data was generated via qPCR human normalizer


assay and data is reported by Ct value.











Concentration

Ct Standard


MMLV RT Variant
of RTase (nM)
Ct Mean
Deviation













MMLV-II
0.625
22.153
0.122


MMLV-II L99R/E282D
0.625
21.713
0.111


MMLV-II Q68R/L99R
0.625
21.334
0.167


MMLV-II Q79R/L99R
0.625
21.398
0.069


MMLV-II Q68R/Q79R
0.625
21.546
0.096


MMLV-II Q68R/L99R/E282D
0.625
21.112
0.149


MMLV-II Q79R/L99R/E282D
0.625
21.260
0.104


MMLV-II Q68R/Q79R/E282D
0.625
21.014
0.102


MMLV-II Q68R/Q79R/L99R
0.625
20.338
0.042


MMLV-II
0.625
19.537
0.120


Q68R/Q79R/L99R/E282D





MMLV-II
0.625
20.516
0.131


Q68R/Q79R/L99K/E282D





MMLV-II
0.625
20.960
0.023


Q68R/Q79R/L99N/E282D





MMLV-II
0.625
21.325
0.088


Q68I/Q79R/L99R/E282D





MMLV-II
0.625
20.602
0.038


Q68K/Q79R/L99R/E282D





MMLV-II
0.625
23.889
0.042


Q68R/Q79H/L99R/E282D





MMLV-II
0.625
21.375
0.035


Q68R/Q79I/L99R/E282D





MMLV-II
0.625
21.805
0.054


Q68R/Q79R/L99R/E282M





MMLV-II
0.625
20.229
0.085


Q68R/Q79R/L99R/E282W





MMLV-II
0.625
20.972
0.037


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
0.625
20.225
0.042


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
0.625
20.578
0.061


Q68I/Q79H/L99K/E282M





MMLV-II
0.625
21.107
0.101


I61M/Q68I/Q79H/L99K/E282M





MMLV-II
2.5
20.874
0.042


MMLV-II L99R/E282D
2.5
19.679
0.047


MMLV-II Q68R/L99R
2.5
19.152
0.024


MMLV-II Q79R/L99R
2.5
19.202
0.091


MMLV-II Q68R/Q79R
2.5
19.506
0.010


MMLV-II Q68R/L99R/E282D
2.5
19.142
0.060


MMLV-II Q79R/L99R/E282D
2.5
19.301
0.004


MMLV-II Q68R/Q79R/E282D
2.5
19.023
0.041


MMLV-II Q68R/Q79R/L99R
2.5
18.312
0.041


MMLV-II
2.5
17.867
0.099


Q68R/Q79R/L99R/E282D





MMLV-II
2.5
18.591
0.036


Q68R/Q79R/L99K/E282D





MMLV-II
2.5
19.123
0.097


Q68R/Q79R/L99N/E282D





MMLV-II
2.5
19.553
0.076


Q68I/Q79R/L99R/E282D





MMLV-II
2.5
18.771
0.113


Q68K/Q79R/L99R/E282D





MMLV-II
2.5
21.911
0.048


Q68R/Q79H/L99R/E282D





MMLV-II
2.5
19.298
0.146


Q68R/Q79I/L99R/E282D





MMLV-II
2.5
19.621
0.027


Q68R/Q79R/L99R/E282M





MMLV-II
2.5
18.219
0.103


Q68R/Q79R/L99R/E282W





MMLV-II
2.5
18.846
0.056


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
2.5
18.500
0.042


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
2.5
18.752
0.148


Q68I/Q79H/L99K/E282M





MMLV-II
2.5
19.445
0.098


I61M/Q68I/Q79H/L99K/E282M





MMLV-II
10
18.239
0.025


MMLV-II L99R/E282D
10
17.293
0.021


MMLV-II Q68R/L99R
10
17.144
0.032


MMLV-II Q79R/L99R
10
17.324
0.016


MMLV-II Q68R/Q79R
10
17.123
0.072


MMLV-II Q68R/L99R/E282D
10
17.082
0.088


MMLV-II Q79R/L99R/E282D
10
17.353
0.068


MMLV-II Q68R/Q79R/E282D
10
17.111
0.036


MMLV-II Q68R/Q79R/L99R
10
16.562
0.101


MMLV-II
10
16.492
0.066


Q68R/Q79R/L99R/E282D





MMLV-II
10
17.027
0.054


Q68R/Q79R/L99K/E282D





MMLV-II
10
17.335
0.080


Q68R/Q79R/L99N/E282D





MMLV-II
10
17.726
0.055


Q68I/Q79R/L99R/E282D





MMLV-II
10
17.144
0.140


Q68K/Q79R/L99R/E282D





MMLV-II
10
19.772
0.064


Q68R/Q79H/L99R/E282D





MMLV-II
10
17.424
0.020


Q68R/Q79I/L99R/E282D





MMLV-II
10
17.624
0.014


Q68R/Q79R/L99R/E282M





MMLV-II
10
16.629
0.080


Q68R/Q79R/L99R/E282W





MMLV-II
10
16.903
0.022


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
10
16.803
0.028


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
10
16.894
0.056


Q68I/Q79H/L99K/E282M





MMLV-II
10
17.509
0.058


I61M/Q68I/Q79H/L99K/E282M










e. Evaluation of Ability of Purified MMLV RTase Mutant Variants to Synthesize DNA by Oligo-dT or Random Priming


MMLV RTase base construct and MMLV RTase mutant variants evaluated as described in Example 3. Oligo-dT or random hexamer priming conditions were adjusted for the two-step reactions and RTase concentration was normalized to 31 nM. The two-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (see Tables 15 and 16).


Nine of the seventeen MMLV RTase triple or more mutant variants were found to exhibit increased overall activity and thermostability as compared to the other MMLV RTase stacked mutant variants, and almost all of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The nine MMLV RTase mutant variants that were found to exhibit the highest overall activity were Q79R/L99R/E282D, Q68R/Q79R/L99R, Q68R/Q79R/L99R/E282D, Q68R/Q79R/L99K/E282D, Q68R/Q79R/L99N/E282D, Q68K/Q79R/L99R/E282D, Q68R/Q79R/L99R/E282M, I61K/Q68R/Q79R/L99R/E282D and 161M/Q68R/Q79R/L99R/E282D.









TABLE 15







Two-Step cDNA synthesis by MMLV RT triple and more mutants


by Oligo-dT priming. Data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temperature





of Reaction

Ct Standard


MMLV RT Variant
(° C.)
Ct Mean
Deviation





MMLV-II
42
25.165
0.057


MMLV-II L99R/E282D
42
25.287
0.062


MMLV-II Q68R/L99R
42
25.026
0.035


MMLV-II Q79R/L99R
42
24.932
0.032


MMLV-II Q68R/Q79R
42
25.002
0.076


MMLV-II Q68R/L99R/E282D
42
24.964
0.068


MMLV-II Q79R/L99R/E282D
42
24.822
0.106


MMLV-II Q68R/Q79R/E282D
42
24.905
0.134


MMLV-II Q68R/Q79R/L99R
42
24.673
0.131


MMLV-II
42
24.523
0.111


Q68R/Q79R/L99R/E282D





MMLV-II
42
24.677
0.076


Q68R/Q79R/L99K/E282D





MMLV-II
42
24.635
0.087


Q68R/Q79R/L99N/E282D





MMLV-II
42
25.010
0.074


Q68I/Q79R/L99R/E282D





MMLV-II
42
24.676
0.066


Q68K/Q79R/L99R/E282D





MMLV-II
42
28.929
0.021


Q68R/Q79H/L99R/E282D





MMLV-II
42
24.932
0.039


Q68R/Q79I/L99R/E282D





MMLV-II
42
24.900
0.113


Q68R/Q79R/L99R/E282M





MMLV-II
42
24.967
0.091


Q68R/Q79R/L99R/E282W





MMLV-II
42
24.597
0.076


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
42
24.833
0.007


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
42
25.440
0.048


Q68I/Q79H/L99K/E282M





MMLV-II
42
25.679
0.050


I61M/Q68I/Q79H/L99K/E282M





MMLV-II
55
34.223
0.406


MMLV-II L99R/E282D
55
34.732
3.729


MMLV-II Q68R/L99R
55
31.509
0.169


MMLV-II Q79R/L99R
55
31.831
0.019


MMLV-II Q68R/Q79R
55
32.633
1.094


MMLV-II Q68R/L99R/E282D
55
32.089
0.075


MMLV-II Q79R/L99R/E282D
55
32.134
0.081


MMLV-II Q68R/Q79R/E282D
55
34.639
3.791


MMLV-II Q68R/Q79R/L99R
55
29.559
0.029


MMLV-II
55
28.013
0.136


Q68R/Q79R/L99R/E282D





MMLV-II
55
29.712
0.090


Q68R/Q79R/L99K/E282D





MMLV-II
55
30.442
0.224


Q68R/Q79R/L99N/E282D





MMLV-II
55
32.857
0.378


Q68I/Q79R/L99R/E282D





MMLV-II
55
31.186
0.630


Q68K/Q79R/L99R/E282D





MMLV-II
55
37.338
1.882


Q68R/Q79H/L99R/E282D





MMLV-II
55
31.830
0.120


Q68R/Q79I/L99R/E282D





MMLV-II
55
31.682
0.181


Q68R/Q79R/L99R/E282M





MMLV-II
55
32.256
0.228


Q68R/Q79R/L99R/E282W





MMLV-II
55
30.362
0.129


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
55
31.473
0.070


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
55
32.892
0.286


Q68I/Q79H/L99K/E282M





MMLV-II
55
33.872
0.131


I61M/Q68I/Q79H/L99K/E282M
















TABLE 16







Two-Step cDNA synthesis by MMLV RT triple and more mutants


by random hexamer priming. Data was generated via qPCR


human normalizer assay and data is reported by Ct value.











Temperature





of Reaction

Ct Standard


MMLV RT Variant
(° C.)
Ct Mean
Deviation





MMLV-II
42
24.675
0.054


MMLV-II L99R/E282D
42
24.864
0.043


MMLV-II Q68R/L99R
42
24.577
0.066


MMLV-II Q79R/L99R
42
24.630
0.103


MMLV-II Q68R/Q79R
42
24.496
0.050


MMLV-II Q68R/L99R/E282D
42
24.549
0.059


MMLV-II Q79R/L99R/E282D
42
24.625
0.013


MMLV-II Q68R/Q79R/E282D
42
24.623
0.083


MMLV-II Q68R/Q79R/L99R
42
24.494
0.070


MMLV-II
42
24.422
0.035


Q68R/Q79R/L99R/E282D





MMLV-II
42
24.517
0.066


Q68R/Q79R/L99K/E282D





MMLV-II
42
24.324
0.059


Q68R/Q79R/L99N/E282D





MMLV-II
42
24.488
0.070


Q68I/Q79R/L99R/E282D





MMLV-II
42
24.501
0.041


Q68K/Q79R/L99R/E282D





MMLV-II
42
26.574
0.029


Q68R/Q79H/L99R/E282D





MMLV-II
42
24.496
0.055


Q68R/Q79I/L99R/E282D





MMLV-II
42
24.382
0.043


Q68R/Q79R/L99R/E282M





MMLV-II
42
24.617
0.109


Q68R/Q79R/L99R/E282W





MMLV-II
42
24.391
0.045


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
42
24.426
0.028


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
42
24.660
0.027


Q68I/Q79H/L99K/E282M





MMLV-II
42
24.949
0.052


I61M/Q68I/Q79H/L99K/E282M





MMLV-II
55
32.082
0.095


MMLV-II L99R/E282D
55
31.612
0.190


MMLV-II Q68R/L99R
55
30.349
0.041


MMLV-II Q79R/L99R
55
30.494
0.094


MMLV-II Q68R/Q79R
55
29.735
0.153


MMLV-II Q68R/L99R/E282D
55
30.724
0.045


MMLV-II Q79R/L99R/E282D
55
30.774
0.152


MMLV-II Q68R/Q79R/E282D
55
30.232
0.079


MMLV-II Q68R/Q79R/L99R
55
28.270
0.340


MMLV-II
55
26.673
0.143


Q68R/Q79R/L99R/E282D





MMLV-II
55
28.258
0.018


Q68R/Q79R/L99K/E282D





MMLV-II
55
28.973
0.116


Q68R/Q79R/L99N/E282D





MMLV-II
55
31.617
0.071


Q68I/Q79R/L99R/E282D





MMLV-II
55
28.994
0.110


Q68K/Q79R/L99R/E282D





MMLV-II
55
35.664
0.695


Q68R/Q79H/L99R/E282D





MMLV-II
55
30.265
0.116


Q68R/Q79I/L99R/E282D





MMLV-II
55
29.765
0.059


Q68R/Q79R/L99R/E282M





MMLV-II
55
30.535
0.424


Q68R/Q79R/L99R/E282W





MMLV-II
55
28.878
0.038


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
55
29.778
0.081


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
55
31.836
0.222


Q68I/Q79H/L99K/E282M





MMLV-II
55
31.984
0.223


I61M/Q68I/Q79H/L99K/E282M










f. Evaluation of Ability of Purified MMLV RTase Mutant Variants to Synthesize DNA Over a Wide Range of Temperatures


MMLV RTase base construct and MMLV RTase mutant variants evaluated as described in Example 3. Oligo-dT or random hexamer priming conditions and reaction temperatures were adjusted for the two-step reactions and RTase concentration was normalized to 31 nM. The two-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (see Tables 17 and 18).


Six of the nine MMLV RTase triple or more mutant variants were found to exhibit high overall activity as compared to the other MMLV RTase stacked mutant variants over a wide range of temperatures, spanning from 37.0 to 65° C., regardless of which priming method used. All of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The six MMLV RTase mutant variants that were found to exhibit the highest overall activity at a wide range of temperatures were Q68R/Q79R/L99R, Q68R/Q79R/L99R/E282D, Q68R/Q79R/L99K/E282D, Q68R/Q79R/L99N/E282D, I61K/Q68R/Q79R/L99R/E282D and I61M/Q68R/Q79R/L99R/E282D.









TABLE 17







Two-Step cDNA synthesis by MMLV RT triple and more mutants


by Oligo-dT priming. Data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temperature





of Reaction

Ct Standard


MMLV RT Variant
(° C.)
Ct Mean
Deviation





MMLV-II
37.0
26.593
0.020


MMLV-II Q79R/L99R/E282D
37.0
25.713
0.024


MMLV-II Q68R/Q79R/L99R
37.0
25.164
0.059


MMLV-II
37.0
25.163
0.035


Q68R/Q79R/L99R/E282D





MMLV-II
37.0
25.135
0.078


Q68R/Q79R/L99K/E282D





MMLV-II
37.0
25.693
0.048


Q68R/Q79R/L99N/E282D





MMLV-II
37.0
25.491
0.062


Q68K/Q79R/L99R/E282D





MMLV-II
37.0
25.450
0.083


Q68R/Q79R/L99R/E282M





MMLV-II
37.0
25.094
0.071


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
37.0
25.356
0.034


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
37.8
26.623
0.062


MMLV-II Q79R/L99R/E282D
37.8
25.516
0.078


MMLV-II Q68R/Q79R/L99R
37.8
25.251
0.094


MMLV-II
37.8
24.987
0.050


Q68R/Q79R/L99R/E282D





MMLV-II
37.8
25.093
0.084


Q68R/Q79R/L99K/E282D





MMLV-II
37.8
25.273
0.095


Q68R/Q79R/L99N/E282D





MMLV-II
37.8
25.310
0.079


Q68K/Q79R/L99R/E282D





MMLV-II
37.8
25.545
0.044


Q68R/Q79R/L99R/E282M





MMLV-II
37.8
25.144
0.196


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
37.8
25.302
0.035


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
39.5
26.430
0.074


MMLV-II Q79R/L99R/E282D
39.5
25.067
0.026


MMLV-II Q68R/Q79R/L99R
39.5
25.138
0.050


MMLV-II
39.5
24.788
0.022


Q68R/Q79R/L99R/E282D





MMLV-II
39.5
24.842
0.071


Q68R/Q79R/L99K/E282D





MMLV-II
39.5
24.892
0.042


Q68R/Q79R/L99N/E282D





MMLV-II
39.5
25.047
0.038


Q68K/Q79R/L99R/E282D





MMLV-II
39.5
25.249
0.081


Q68R/Q79R/L99R/E282M





MMLV-II
39.5
24.845
0.130


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
39.5
25.130
0.072


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
42.0
25.485
0.052


MMLV-II Q79R/L99R/E282D
42.0
24.941
0.024


MMLV-II Q68R/Q79R/L99R
42.0
24.848
0.101


MMLV-II
42.0
24.802
0.009


Q68R/Q79R/L99R/E282D





MMLV-II
42.0
24.805
0.008


Q68R/Q79R/L99K/E282D





MMLV-II
42.0
24.744
0.076


Q68R/Q79R/L99N/E282D





MMLV-II
42.0
24.893
0.073


Q68K/Q79R/L99R/E282D





MMLV-II
42.0
24.968
0.031


Q68R/Q79R/L99R/E282M





MMLV-II
42.0
24.933
0.088


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
42.0
24.821
0.045


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
45.2
25.776
0.028


MMLV-II Q79R/L99R/E282D
45.2
24.902
0.034


MMLV-II Q68R/Q79R/L99R
45.2
24.792
0.055


MMLV-II
45.2
24.705
0.092


Q68R/Q79R/L99R/E282D





MMLV-II
45.2
24.791
0.009


Q68R/Q79R/L99K/E282D





MMLV-II
45.2
24.890
0.071


Q68R/Q79R/L99N/E282D





MMLV-II
45.2
25.420
0.101


Q68K/Q79R/L99R/E282D





MMLV-II
45.2
25.196
0.086


Q68R/Q79R/L99R/E282M





MMLV-II
45.2
24.823
0.079


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
45.2
24.720
0.006


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
47.8
27.932
0.049


MMLV-II Q79R/L99R/E282D
47.8
24.858
0.063


MMLV-II Q68R/Q79R/L99R
47.8
24.685
0.095


MMLV-II
47.8
24.689
0.067


Q68R/Q79R/L99R/E282D





MMLV-II
47.8
24.620
0.072


Q68R/Q79R/L99K/E282D





MMLV-II
47.8
24.780
0.039


Q68R/Q79R/L99N/E282D





MMLV-II
47.8
24.855
0.018


Q68K/Q79R/L99R/E282D





MMLV-II
47.8
24.961
0.040


Q68R/Q79R/L99R/E282M





MMLV-II
47.8
24.681
0.076


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
47.8
24.759
0.055


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
49.2
30.393
0.118


MMLV-II Q79R/L99R/E282D
49.2
24.974
0.090


MMLV-II Q68R/Q79R/L99R
49.2
24.794
0.056


MMLV-II
49.2
24.720
0.100


Q68R/Q79R/L99R/E282D





MMLV-II
49.2
25.007
0.096


Q68R/Q79R/L99K/E282D





MMLV-II
49.2
25.304
0.147


Q68R/Q79R/L99N/E282D





MMLV-II
49.2
25.273
0.066


Q68K/Q79R/L99R/E282D





MMLV-II
49.2
25.560
0.019


Q68R/Q79R/L99R/E282M





MMLV-II
49.2
24.719
0.177


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
49.2
25.123
0.034


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
50.0
30.870
0.210


MMLV-II Q79R/L99R/E282D
50.0
26.677
0.090


MMLV-II Q68R/Q79R/L99R
50.0
25.381
0.049


MMLV-II
50.0
24.820
0.064


Q68R/Q79R/L99R/E282D





MMLV-II
50.0
25.348
0.098


Q68R/Q79R/L99K/E282D





MMLV-II
50.0
25.287
0.064


Q68R/Q79R/L99N/E282D





MMLV-II
50.0
25.208
0.085


Q68K/Q79R/L99R/E282D





MMLV-II
50.0
25.790
0.051


Q68R/Q79R/L99R/E282M





MMLV-II
50.0
24.840
0.071


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
50.0
25.317
0.042


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
51.0
27.914
0.002


MMLV-II Q79R/L99R/E282D
51.0
25.561
0.069


MMLV-II Q68R/Q79R/L99R
51.0
25.225
0.069


MMLV-II
51.0
24.726
0.034


Q68R/Q79R/L99R/E282D





MMLV-II
51.0
25.324
0.071


Q68R/Q79R/L99K/E282D





MMLV-II
51.0
25.157
0.062


Q68R/Q79R/L99N/E282D





MMLV-II
51.0
25.275
0.039


Q68K/Q79R/L99R/E282D





MMLV-II
51.0
25.938
0.095


Q68R/Q79R/L99R/E282M





MMLV-II
51.0
25.821
0.072


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
51.0
25.053
0.044


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
51.9
28.602
0.059


MMLV-II Q79R/L99R/E282D
51.9
25.975
0.024


MMLV-II Q68R/Q79R/L99R
51.9
25.256
0.075


MMLV-II
51.9
24.903
0.050


Q68R/Q79R/L99R/E282D





MMLV-II
51.9
25.163
0.169


Q68R/Q79R/L99K/E282D





MMLV-II
51.9
25.272
0.011


Q68R/Q79R/L99N/E282D





MMLV-II
51.9
25.491
0.075


Q68K/Q79R/L99R/E282D





MMLV-II
51.9
25.878
0.038


Q68R/Q79R/L99R/E282M





MMLV-II
51.9
26.071
0.044


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
51.9
25.419
0.067


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
53.8
26.412
0.082


MMLV-II Q79R/L99R/E282D
53.8
25.558
0.063


MMLV-II Q68R/Q79R/L99R
53.8
24.969
0.065


MMLV-II
53.8
25.356
0.063


Q68R/Q79R/L99R/E282D





MMLV-II
53.8
25.460
0.056


Q68R/Q79R/L99K/E282D





MMLV-II
53.8
25.769
0.118


Q68R/Q79R/L99N/E282D





MMLV-II
53.8
26.251
0.103


Q68K/Q79R/L99R/E282D





MMLV-II
53.8
26.310
0.174


Q68R/Q79R/L99R/E282M





MMLV-II
53.8
25.701
0.106


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
53.8
26.412
0.082


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
56.5
29.343
0.085


MMLV-II Q79R/L99R/E282D
56.5
26.885
0.083


MMLV-II Q68R/Q79R/L99R
56.5
25.736
0.015


MMLV-II
56.5
25.223
0.016


Q68R/Q79R/L99R/E282D





MMLV-II
56.5
25.900
0.039


Q68R/Q79R/L99K/E282D





MMLV-II
56.5
25.930
0.031


Q68R/Q79R/L99N/E282D





MMLV-II
56.5
25.869
0.204


Q68K/Q79R/L99R/E282D





MMLV-II
56.5
26.622
0.067


Q68R/Q79R/L99R/E282M





MMLV-II
56.5
25.817
0.089


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
56.5
26.290
0.009


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
59.9
29.693
0.047


MMLV-II Q79R/L99R/E282D
59.9
27.820
0.014


MMLV-II Q68R/Q79R/L99R
59.9
26.069
0.057


MMLV-II
59.9
25.374
0.061


Q68R/Q79R/L99R/E282D





MMLV-II
59.9
26.066
0.053


Q68R/Q79R/L99K/E282D





MMLV-II
59.9
25.873
0.018


Q68R/Q79R/L99N/E282D





MMLV-II
59.9
26.278
0.073


Q68K/Q79R/L99R/E282D





MMLV-II
59.9
27.068
0.075


Q68R/Q79R/L99R/E282M





MMLV-II
59.9
26.863
0.025


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
59.9
26.176
0.072


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
62.6
29.731
0.092


MMLV-II Q79R/L99R/E282D
62.6
27.161
0.035


MMLV-II Q68R/Q79R/L99R
62.6
25.929
0.026


MMLV-II
62.6
25.303
0.074


Q68R/Q79R/L99R/E282D





MMLV-II
62.6
25.907
0.003


Q68R/Q79R/L99K/E282D





MMLV-II
62.6
26.145
0.053


Q68R/Q79R/L99N/E282D





MMLV-II
62.6
26.181
0.056


Q68K/Q79R/L99R/E282D





MMLV-II
62.6
27.134
0.015


Q68R/Q79R/L99R/E282M





MMLV-II
62.6
26.025
0.178


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
62.6
26.304
0.041


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
64.2
26.809
0.080


MMLV-II Q79R/L99R/E282D
64.2
27.325
0.038


MMLV-II Q68R/Q79R/L99R
64.2
26.131
0.018


MMLV-II
64.2
25.542
0.135


Q68R/Q79R/L99R/E282D





MMLV-II
64.2
26.408
0.093


Q68R/Q79R/L99K/E282D





MMLV-II
64.2
26.734
0.040


Q68R/Q79R/L99N/E282D





MMLV-II
64.2
30.589
0.128


Q68K/Q79R/L99R/E282D





MMLV-II
64.2
26.262
0.090


Q68R/Q79R/L99R/E282M





MMLV-II
64.2
27.594
0.118


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
64.2
27.062
0.051


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
65.0
30.277
0.050


MMLV-II Q79R/L99R/E282D
65.0
27.119
0.065


MMLV-II Q68R/Q79R/L99R
65.0
26.078
0.025


MMLV-II
65.0
25.583
0.068


Q68R/Q79R/L99R/E282D





MMLV-II
65.0
25.906
0.080


Q68R/Q79R/L99K/E282D





MMLV-II
65.0
26.943
0.058


Q68R/Q79R/L99N/E282D





MMLV-II
65.0
26.413
0.067


Q68K/Q79R/L99R/E282D





MMLV-II
65.0
28.233
0.075


Q68R/Q79R/L99R/E282M





MMLV-II
65.0
25.778
0.129


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
65.0
27.345
0.015


I61M/Q68R/Q79R/L99R/E282D
















TABLE 18







Two-Step cDNA synthesis by MMLV RT triple and more mutants


by random hexamer priming. Data was generated via qPCR


human normalizer assay and data is reported by Ct value.











Temperature





of Reaction

Ct Standard


MMLV RT Variant
(° C.)
Ct Mean
Deviation





MMLV-II
37.0
25.827
0.120


MMLV-II Q79R/L99R/E282D
37.0
25.616
0.094


MMLV-II Q68R/Q79R/L99R
37.0
24.747
0.041


MMLV-II
37.0
24.595
0.034


Q68R/Q79R/L99R/E282D





MMLV-II
37.0
24.917
0.078


Q68R/Q79R/L99K/E282D





MMLV-II
37.0
24.817
0.024


Q68R/Q79R/L99N/E282D





MMLV-II
37.0
24.757
0.032


Q68K/Q79R/L99R/E282D





MMLV-II
37.0
24.754
0.062


Q68R/Q79R/L99R/E282M





MMLV-II
37.0
24.883
0.106


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
37.0
24.776
0.028


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
37.8
25.609
0.038


MMLV-II Q79R/L99R/E282D
37.8
25.300
0.061


MMLV-II Q68R/Q79R/L99R
37.8
24.822
0.037


MMLV-II
37.8
24.690
0.044


Q68R/Q79R/L99R/E282D





MMLV-II
37.8
24.884
0.033


Q68R/Q79R/L99K/E282D





MMLV-II
37.8
24.665
0.022


Q68R/Q79R/L99N/E282D





MMLV-II
37.8
24.846
0.021


Q68K/Q79R/L99R/E282D





MMLV-II
37.8
24.882
0.043


Q68R/Q79R/L99R/E282M





MMLV-II
37.8
24.846
0.059


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
37.8
24.723
0.023


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
39.5
25.455
0.020


MMLV-II Q79R/L99R/E282D
39.5
24.790
0.109


MMLV-II Q68R/Q79R/L99R
39.5
24.712
0.050


MMLV-II
39.5
24.543
0.005


Q68R/Q79R/L99R/E282D





MMLV-II
39.5
24.714
0.035


Q68R/Q79R/L99K/E282D





MMLV-II
39.5
24.520
0.084


Q68R/Q79R/L99N/E282D





MMLV-II
39.5
24.752
0.047


Q68K/Q79R/L99R/E282D





MMLV-II
39.5
24.850
0.054


Q68R/Q79R/L99R/E282M





MMLV-II
39.5
24.698
0.059


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
39.5
24.682
0.024


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
42.0
25.136
0.034


MMLV-II Q79R/L99R/E282D
42.0
24.760
0.052


MMLV-II Q68R/Q79R/L99R
42.0
24.637
0.037


MMLV-II
42.0
24.449
0.008


Q68R/Q79R/L99R/E282D





MMLV-II
42.0
24.650
0.068


Q68R/Q79R/L99K/E282D





MMLV-II
42.0
24.477
0.055


Q68R/Q79R/L99N/E282D





MMLV-II
42.0
24.624
0.029


Q68K/Q79R/L99R/E282D





MMLV-II
42.0
24.627
0.044


Q68R/Q79R/L99R/E282M





MMLV-II
42.0
24.718
0.083


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
42.0
24.532
0.021


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
45.2
25.079
0.017


MMLV-II Q79R/L99R/E282D
45.2
24.624
0.026


MMLV-II Q68R/Q79R/L99R
45.2
24.525
0.021


MMLV-II
45.2
24.430
0.014


Q68R/Q79R/L99R/E282D





MMLV-II
45.2
24.525
0.037


Q68R/Q79R/L99K/E282D





MMLV-II
45.2
34.853
0.705


Q68R/Q79R/L99N/E282D





MMLV-II
45.2
24.653
0.055


Q68K/Q79R/L99R/E282D





MMLV-II
45.2
24.552
0.060


Q68R/Q79R/L99R/E282M





MMLV-II
45.2
24.595
0.027


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
45.2
24.493
0.016


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
47.8
25.346
0.007


MMLV-II Q79R/L99R/E282D
47.8
24.521
0.097


MMLV-II Q68R/Q79R/L99R
47.8
24.605
0.018


MMLV-II
47.8
24.333
0.107


Q68R/Q79R/L99R/E282D





MMLV-II
47.8
24.516
0.043


Q68R/Q79R/L99K/E282D





MMLV-II
47.8
24.527
0.026


Q68R/Q79R/L99N/E282D





MMLV-II
47.8
24.539
0.064


Q68K/Q79R/L99R/E282D





MMLV-II
47.8
24.631
0.019


Q68R/Q79R/L99R/E282M





MMLV-II
47.8
24.227
0.260


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
47.8
24.441
0.030


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
49.2
25.791
0.064


MMLV-II Q79R/L99R/E282D
49.2
24.700
0.033


MMLV-II Q68R/Q79R/L99R
49.2
24.658
0.008


MMLV-II
49.2
24.471
0.069


Q68R/Q79R/L99R/E282D





MMLV-II
49.2
24.590
0.024


Q68R/Q79R/L99K/E282D





MMLV-II
49.2
24.482
0.099


Q68R/Q79R/L99N/E282D





MMLV-II
49.2
24.549
0.028


Q68K/Q79R/L99R/E282D





MMLV-II
49.2
24.753
0.030


Q68R/Q79R/L99R/E282M





MMLV-II
49.2
24.499
0.157


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
49.2
24.559
0.033


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
50.0
26.267
0.025


MMLV-II Q79R/L99R/E282D
50.0
24.729
0.047


MMLV-II Q68R/Q79R/L99R
50.0
24.462
0.040


MMLV-II
50.0
24.412
0.035


Q68R/Q79R/L99R/E282D





MMLV-II
50.0
24.438
0.090


Q68R/Q79R/L99K/E282D





MMLV-II
50.0
24.509
0.050


Q68R/Q79R/L99N/E282D





MMLV-II
50.0
24.405
0.059


Q68K/Q79R/L99R/E282D





MMLV-II
50.0
24.547
0.041


Q68R/Q79R/L99R/E282M





MMLV-II
50.0
24.504
0.005


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
50.0
24.481
0.009


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
51.0
27.277
0.058


MMLV-II Q79R/L99R/E282D
51.0
25.694
0.104


MMLV-II Q68R/Q79R/L99R
51.0
24.579
0.037


MMLV-II
51.0
24.364
0.019


Q68R/Q79R/L99R/E282D





MMLV-II
51.0
24.849
0.041


Q68R/Q79R/L99K/E282D





MMLV-II
51.0
24.899
0.121


Q68R/Q79R/L99N/E282D





MMLV-II
51.0
24.980
0.048


Q68K/Q79R/L99R/E282D





MMLV-II
51.0
25.292
0.065


Q68R/Q79R/L99R/E282M





MMLV-II
51.0
25.147
0.100


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
51.0
25.034
0.075


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
51.9
28.797
0.055


MMLV-II Q79R/L99R/E282D
51.9
26.585
0.011


MMLV-II Q68R/Q79R/L99R
51.9
25.021
0.036


MMLV-II
51.9
24.763
0.028


Q68R/Q79R/L99R/E282D





MMLV-II
51.9
25.392
0.012


Q68R/Q79R/L99K/E282D





MMLV-II
51.9
25.543
0.087


Q68R/Q79R/L99N/E282D





MMLV-II
51.9
25.549
0.058


Q68K/Q79R/L99R/E282D





MMLV-II
51.9
26.025
0.065


Q68R/Q79R/L99R/E282M





MMLV-II
51.9
26.087
0.024


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
51.9
25.756
0.054


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
53.8
30.985
0.073


MMLV-II Q79R/L99R/E282D
53.8
29.356
0.044


MMLV-II Q68R/Q79R/L99R
53.8
26.370
0.041


MMLV-II
53.8
25.580
0.049


Q68R/Q79R/L99R/E282D





MMLV-II
53.8
26.682
0.029


Q68R/Q79R/L99K/E282D





MMLV-II
53.8
26.438
0.031


Q68R/Q79R/L99N/E282D





MMLV-II
53.8
27.024
0.042


Q68K/Q79R/L99R/E282D





MMLV-II
53.8
28.314
0.051


Q68R/Q79R/L99R/E282M





MMLV-II
53.8
27.489
0.025


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
53.8
27.871
0.118


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
56.5
33.313
0.164


MMLV-II Q79R/L99R/E282D
56.5
32.626
0.113


MMLV-II Q68R/Q79R/L99R
56.5
30.047
0.089


MMLV-II
56.5
29.183
0.155


Q68R/Q79R/L99R/E282D





MMLV-II
56.5
30.750
0.051


Q68R/Q79R/L99K/E282D





MMLV-II
56.5
30.403
0.095


Q68R/Q79R/L99N/E282D





MMLV-II
56.5
31.707
0.111


Q68K/Q79R/L99R/E282D





MMLV-II
56.5
31.878
0.093


Q68R/Q79R/L99R/E282M





MMLV-II
56.5
32.235
0.291


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
56.5
32.395
0.105


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
59.9
34.408
0.498


MMLV-II Q79R/L99R/E282D
59.9
36.798
2.131


MMLV-II Q68R/Q79R/L99R
59.9
33.997
0.035


MMLV-II
59.9
32.009
0.051


Q68R/Q79R/L99R/E282D





MMLV-II
59.9
33.685
0.317


Q68R/Q79R/L99K/E282D





MMLV-II
59.9
33.083
0.163


Q68R/Q79R/L99N/E282D





MMLV-II
59.9
34.160
0.066


Q68K/Q79R/L99R/E282D





MMLV-II
59.9
33.650
0.161


Q68R/Q79R/L99R/E282M





MMLV-II
59.9
33.341
0.096


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
59.9
34.439
0.222


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
62.6
35.163
0.447


MMLV-II Q79R/L99R/E282D
62.6
37.138
1.603


MMLV-II Q68R/Q79R/L99R
62.6
34.108
0.604


MMLV-II
62.6
32.539
0.060


Q68R/Q79R/L99R/E282D





MMLV-II
62.6
34.175
0.421


Q68R/Q79R/L99K/E282D





MMLV-II
62.6
33.726
0.622


Q68R/Q79R/L99N/E282D





MMLV-II
62.6
34.376
0.408


Q68K/Q79R/L99R/E282D





MMLV-II
62.6
33.792
0.231


Q68R/Q79R/L99R/E282M





MMLV-II
62.6
33.768
0.387


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
62.6
34.428
0.085


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
64.2
37.284
0.764


MMLV-II Q79R/L99R/E282D
64.2
36.661
0.192


MMLV-II Q68R/Q79R/L99R
64.2
34.463
0.213


MMLV-II
64.2
32.992
0.023


Q68R/Q79R/L99R/E282D





MMLV-II
64.2
34.805
0.472


Q68R/Q79R/L99K/E282D





MMLV-II
64.2
34.060
0.043


Q68R/Q79R/L99N/E282D





MMLV-II
64.2
34.508
0.302


Q68K/Q79R/L99R/E282D





MMLV-II
64.2
34.481
0.078


Q68R/Q79R/L99R/E282M





MMLV-II
64.2
34.231
0.253


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
64.2
35.049
0.885


I61M/Q68R/Q79R/L99R/E282D





MMLV-II
65.0
35.809
0.511


MMLV-II Q79R/L99R/E282D
65.0
35.932
0.372


MMLV-II Q68R/Q79R/L99R
65.0
34.979
0.856


MMLV-II
65.0
33.293
0.319


Q68R/Q79R/L99R/E282D





MMLV-II
65.0
34.974
0.536


Q68R/Q79R/L99K/E282D





MMLV-II
65.0
34.862
0.268


Q68R/Q79R/L99N/E282D





MMLV-II
65.0
34.363
0.201


Q68K/Q79R/L99R/E282D





MMLV-II
65.0
34.687
0.666


Q68R/Q79R/L99R/E282M





MMLV-II
65.0
34.246
0.563


I61K/Q68R/Q79R/L99R/E282D





MMLV-II
65.0
34.872
0.467


I61M/Q68R/Q79R/L99R/E282D









Example 6: Reverse Transcriptase Mutant Evaluation by Oligo dT or Random Priming

This example demonstrates the procedure used to evaluate each mutant RTase's ability to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) compared to the base construct of MMLV RTase. The mutant MMLV RTases were tested by two priming conditions: Oligo dT only and random hexamer priming using a standard two-step cDNA synthesis as described in Example 5.


The reactions were analyzed and reported by Ct value (Tables 19 and 20). Four mutant variants of MMLV RTase showed an increase in the overall activity using oligo dT priming compared to the base construct, Q299E, T332E and V433R. Eight mutant variants of MMLV RTase showed an increase in the overall activity using random priming compared to the base construct, P76R, L82R, I125R, Y271A, L280A, L280R, T328R and V433R.









TABLE 19







Two-Step cDNA Synthesis by MMLV-RT single mutants


using oligo dT priming. The data was generated via qPCR


human normalizer assay and data is reported by Ct value.









MMLV-RT Variant
Ct Mean
Ct Standard Deviation












MMLV-II
40.000
0.000


MMLV-II D209A
40.000
0.000


MMLV-II D209E
40.000
0.000


MMLV-II D209R
40.000
0.000


MMLV-II D83A
40.000
0.000


MMLV-II D83E
40.000
0.000


MMLV-II D83R
40.000
0.000


MMLV-II E201A
40.000
0.000


MMLV-II E201D
40.000
0.000


MMLV-II E201R
40.000
0.000


MMLV-II E367A
40.000
0.000


MMLV-II E367D
40.000
0.000


MMLV-II E367R
40.000
0.000


MMLV-II E596A
40.000
0.000


MMLV-II E596D
40.000
0.000


MMLV-II E596R
40.000
0.000


MMLV-II F210A
40.000
0.000


MMLV-II F210E
40.000
0.000


MMLV-II F210R
40.000
0.000


MMLV-II F369A
40.000
0.000


MMLV-II F369E
40.000
0.000


MMLV-II F369R
40.000
0.000


MMLV-II G308A
40.000
0.000


MMLV-II G308E
40.000
0.000


MMLV-II G308R
40.000
0.000


MMLV-II G331A
40.000
0.000


MMLV-II G331E
40.000
0.000


MMLV-II G331R
40.000
0.000


MMLV-II G73A
40.000
0.000


MMLV-II G73E
40.000
0.000


MMLV-II G73R
40.000
0.000


MMLV-II H77A
40.000
0.000


MMLV-II H77E
40.000
0.000


MMLV-II H77R
40.000
0.000


MMLV-II I125A
40.000
0.000


MMLV-II I125E
40.000
0.000


MMLV-II I125R
40.000
0.000


MMLV-II I212A
40.000
0.000


MMLV-II I212E
40.000
0.000


MMLV-II I212R
40.000
0.000


MMLV-II I593A
40.000
0.000


MMLV-II I593E
40.000
0.000


MMLV-II I593R
40.000
0.000


MMLV-II I597A
40.000
0.000


MMLV-II I597E
40.000
0.000


MMLV-II I597R
40.000
0.000


MMLV-II K285A
40.000
0.000


MMLV-II K285E
40.000
0.000


MMLV-II K285R
40.000
0.000


MMLV-II K348A
40.000
0.000


MMLV-II K348E
40.000
0.000


MMLV-II K348R
40.000
0.000


MMLV-II L198A
40.000
0.000


MMLV-II L198E
40.000
0.000


MMLV-II L198R
40.000
0.000


MMLV-II L280A
40.000
0.000


MMLV-II L280E
40.000
0.000


MMLV-II L280R
40.000
0.000


MMLV-II L352A
40.000
0.000


MMLV-II L352E
40.000
0.000


MMLV-II L352R
40.000
0.000


MMLV-II L357A
40.000
0.000


MMLV-II L357E
40.000
0.000


MMLV-II L357R
40.000
0.000


MMLV-II L82A
40.000
0.000


MMLV-II L82E
40.000
0.000


MMLV-II L82R
40.000
0.000


MMLV-II N335A
39.787
0.302


MMLV-II N335E
40.000
0.000


MMLV-II N335R
40.000
0.000


MMLV-II P76A
40.000
0.000


MMLV-II P76E
40.000
0.000


MMLV-II P76R
40.000
0.000


MMLV-II Q213A
40.000
0.000


MMLV-II Q213E
40.000
0.000


MMLV-II Q213R
40.000
0.000


MMLV-II Q299A
40.000
0.000


MMLV-II Q299E
37.177
3.993


MMLV-II Q299R
40.000
0.000


MMLV-II Q654A
40.000
0.000


MMLV-II Q654E
40.000
0.000


MMLV-II Q654R
40.000
0.000


MMLV-II R205A
40.000
0.000


MMLV-II R205E
39.947
0.075


MMLV-II R205K
40.000
0.000


MMLV-II R211A
40.000
0.000


MMLV-II R211E
40.000
0.000


MMLV-II R211K
40.000
0.000


MMLV-II R311A
40.000
0.000


MMLV-II R311E
40.000
0.000


MMLV-II R311K
40.000
0.000


MMLV-II R389A
40.000
0.000


MMLV-II R389E
40.000
0.000


MMLV-II R389K
40.000
0.000


MMLV-II R650A
40.000
0.000


MMLV-II R650E
40.000
0.000


MMLV-II R650K
40.000
0.000


MMLV-II R657A
40.000
0.000


MMLV-II R657E
39.965
0.050


MMLV-II R657K
40.000
0.000


MMLV-II S67A
40.000
0.000


MMLV-II S67E
40.000
0.000


MMLV-II S67R
36.816
0.703


MMLV-II T328A
40.000
0.000


MMLV-II T328E
40.000
0.000


MMLV-II T328R
40.000
0.000


MMLV-II T332A
39.750
0.354


MMLV-II T332E
38.461
2.177


MMLV-II T332R
40.000
0.000


MMLV-II V129A
40.000
0.000


MMLV-II V129E
40.000
0.000


MMLV-II V129R
40.000
0.000


MMLV-II V433A
40.000
0.000


MMLV-II V433E
40.000
0.000


MMLV-II V433R
38.884
0.806


MMLV-II V476A
40.000
0.000


MMLV-II V476E
40.000
0.000


MMLV-II V476R
40.000
0.000


MMLV-II Y271A
40.000
0.000


MMLV-II Y271E
40.000
0.000


MMLV-II Y271R
40.000
0.000


MMLV-IV
31.467
0.190
















TABLE 20







Two-Step cDNA Synthesis by MMLV-RT single mutants


using random priming. The data was generated via qPCR


human normalizer assay and data is reported by Ct value.









MMLV-RT Variant
Ct Mean
Ct Standard Deviation












MMLV-II
40.000
0.000


MMLV-II D209A
40.000
0.000


MMLV-II D209E
40.000
0.000


MMLV-II D209R
40.000
0.000


MMLV-II D83A
40.000
0.000


MMLV-II D83E
40.000
0.000


MMLV-II D83R
40.000
0.000


MMLV-II E201A
40.000
0.000


MMLV-II E201D
40.000
0.000


MMLV-II E201R
40.000
0.000


MMLV-II E367A
40.000
0.000


MMLV-II E367D
40.000
0.000


MMLV-II E367R
40.000
0.000


MMLV-II E596A
40.000
0.000


MMLV-II E596D
40.000
0.000


MMLV-II E596R
40.000
0.000


MMLV-II F210A
40.000
0.000


MMLV-II F210E
40.000
0.000


MMLV-II F210R
40.000
0.000


MMLV-II F369A
40.000
0.000


MMLV-II F369E
40.000
0.000


MMLV-II F369R
40.000
0.000


MMLV-II G308A
40.000
0.000


MMLV-II G308E
40.000
0.000


MMLV-II G308R
40.000
0.000


MMLV-II G331A
40.000
0.000


MMLV-II G331E
40.000
0.000


MMLV-II G331R
40.000
0.000


MMLV-II G73A
40.000
0.000


MMLV-II G73E
40.000
0.000


MMLV-II G73R
40.000
0.000


MMLV-II H77A
39.708
0.412


MMLV-II H77E
40.000
0.000


MMLV-II H77R
40.000
0.000


MMLV-II I125A
40.000
0.000


MMLV-II I125E
40.000
0.000


MMLV-II I125R
39.449
0.779


MMLV-II I212A
40.000
0.000


MMLV-II I212E
40.000
0.000


MMLV-II I212R
40.000
0.000


MMLV-II I593A
40.000
0.000


MMLV-II I593E
40.000
0.000


MMLV-II I593R
40.000
0.000


MMLV-II I597A
40.000
0.000


MMLV-II I597E
40.000
0.000


MMLV-II I597R
40.000
0.000


MMLV-II K285A
40.000
0.000


MMLV-II K285E
40.000
0.000


MMLV-II K285R
39.783
0.308


MMLV-II K348A
40.000
0.000


MMLV-II K348E
40.000
0.000


MMLV-II K348R
40.000
0.000


MMLV-II L198A
40.000
0.000


MMLV-II L198E
40.000
0.000


MMLV-II L198R
40.000
0.000


MMLV-II L280A
39.503
0.703


MMLV-II L280E
40.000
0.000


MMLV-II L280R
38.762
1.751


MMLV-II L352A
39.778
0.313


MMLV-II L352E
40.000
0.000


MMLV-II L352R
40.000
0.000


MMLV-II L357A
40.000
0.000


MMLV-II L357E
40.000
0.000


MMLV-II L357R
40.000
0.000


MMLV-II L82A
40.000
0.000


MMLV-II L82E
39.673
0.462


MMLV-II L82R
38.926
1.518


MMLV-II N335A
39.876
0.175


MMLV-II N335E
40.000
0.000


MMLV-II N335R
39.861
0.196


MMLV-II P76A
40.000
0.000


MMLV-II P76E
40.000
0.000


MMLV-II P76R
39.535
0.658


MMLV-II Q213A
40.000
0.000


MMLV-II Q213E
40.000
0.000


MMLV-II Q213R
40.000
0.000


MMLV-II Q299A
40.000
0.000


MMLV-II Q299E
40.000
0.000


MMLV-II Q299R
40.000
0.000


MMLV-II Q654A
40.000
0.000


MMLV-II Q654E
40.000
0.000


MMLV-II Q654R
40.000
0.000


MMLV-II R205A
39.811
0.267


MMLV-II R205E
40.000
0.000


MMLV-II R205K
40.000
0.000


MMLV-II R211A
40.000
0.000


MMLV-II R211E
40.000
0.000


MMLV-II R211K
40.000
0.000


MMLV-II R311A
40.000
0.000


MMLV-II R311E
40.000
0.000


MMLV-II R311K
40.000
0.000


MMLV-II R389A
40.000
0.000


MMLV-II R389E
40.000
0.000


MMLV-II R389K
40.000
0.000


MMLV-II R650A
40.000
0.000


MMLV-II R650E
40.000
0.000


MMLV-II R650K
40.000
0.000


MMLV-II R657A
40.000
0.000


MMLV-II R657E
40.000
0.000


MMLV-II R657K
40.000
0.000


MMLV-II S67A
40.000
0.000


MMLV-II S67E
39.435
0.800


MMLV-II S67R
38.209
0.977


MMLV-II T328A
40.000
0.000


MMLV-II T328E
40.000
0.000


MMLV-II T328R
39.478
0.739


MMLV-II T332A
40.000
0.000


MMLV-II T332E
40.000
0.000


MMLV-II T332R
40.000
0.000


MMLV-II V129A
40.000
0.000


MMLV-II V129E
40.000
0.000


MMLV-II V129R
40.000
0.000


MMLV-II V433A
40.000
0.000


MMLV-II V433E
40.000
0.000


MMLV-II V433R
38.071
1.452


MMLV-II V476A
40.000
0.000


MMLV-II V476E
40.000
0.000


MMLV-II V476R
40.000
0.000


MMLV-II Y271A
39.466
0.755


MMLV-II Y271E
40.000
0.000


MMLV-II Y271R
40.000
0.000


MMLV-IV
31.850
0.183









In addition to the increased activity demonstrated in the MMLV RTase mutations Q299E, T332E, and V433R (Table 19), and the MMLV RTase mutations P76R, L82R, I125R, Y271A, L280A, L280R, T328R, and V433R (Table 20), further MMLV RTase mutations were selected by rational design and introduced by site-directed mutagenesis using standard PCR conditions and primers (Table 21).









TABLE 21







Sequences of primers used for cloning of MMLV


RTase base construct and mutants into pET28b. All


primers were ordered as DNA oligos from Integrated


DNA Technologies.









SEQ




ID




NO:
Primer Name
Primer Sequence (5′ - 3′)





700
MMLV V433R
AGTTGACGATGGGTCAACCCTTACGTATCTTGGCT



SDM F
CCACATGCTGTAGA





701
MMLV V433R
TCTACAGCATGTGGAGCCAAGATACGTAAGGGTTG



SDM R
ACCCATCGTCAACT





702
MMLV I593E
CGTTATGCTTTTGCAACAGCGCATGAGCATGGCGA



SDM F
AATTTACCGCCGC





703
MMLV I593E
GCGGCGGTAAATTTCGCCATGCTCATGCGCTGTTG



SDM R
CAAAAGCATAACG





704
MMLV Q299E
TACGCCTAAGACGCCACGCGAGTTGCGTGAATTTT



SDM F
TGGGCACAGC





705
MMLV Q299E
GCTGTGCCCAAAAATTCACGCAACTCGCGTGGCGT



SDM R
CTTAGGCGTA





706
MMLV L82Y
GATTAAGCCACATATTCAGCGCTTGTATGACCAGG



SDM F
GGATCTTGGTCC





707
MMLV L82Y
GGACCAAGATCCCCTGGTCATACAAGCGCTGAATA



SDM R
TGTGGCTTAATC





708
MMLV L280I
TGCTGAAAGAAGGTCAACGTTGGATCACTGAAGCG



SDM F
CGTAAGGAGACC





709
MMLV L280I
GGTCTCCTTACGCGCTTCAGTGATCCAACGTTGACC



SDM R
TTCTTTCAGCA





710
MMLV V433N
AGTTGACGATGGGTCAACCCTTAAACATCTTGGCT



SDM F
CCACATGCTGTAGA





711
MMLV V433N
TCTACAGCATGTGGAGCCAAGATGTTTAAGGGTTG



SDM R
ACCCATCGTCAACT





712
MMLV I593W
CGTTATGCTTTTGCAACAGCGCATTGGCATGGCGA



SDM F
AATTTACCGCCGC





713
MMLV I593W
GCGGCGGTAAATTTCGCCATGCCAATGCGCTGTTG



SDM R
CAAAAGCATAACG





714
MMLV T306K
GCCAGTTGCGTGAATTTTTGGGCAAAGCGGGATTC



TQP
TGTCGTTTATGGATTCC





715
MMLV T306K
GGAATCCATAAACGACAGAATCCCGCTTTGCCCAA



BTM
AAATTCACGCAACTGGC









The resulting plasmids were transformed into E. coli BL21(DE3) cells for protein expression and proteins isolated through affinity and ion exchange chromatography (Table 22).









TABLE 22







Sequences of MMLV RTase base construct and mutant MMLV RTase









SEQ ID NO:
Construct
Construct Sequence (DNA: 5′-3′ or AA)





716
MMLV-II RTase
ATGACTTTAAATATTGAGGATGAGCATCGTTTA




CATGAGACATCAAAAGAACCCGACGTGAGCTTA




GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG




TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCAAGAGGCCCGCCTGGGGATTAAGCCA




CATATTCAGCGCTTGCTGGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CTGCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGCTGACTGAAGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCCAGTTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTAGTAATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATATC




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTTTAA





717
MMLV-II RTase
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA




WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP




MSQEARLGIKPHIQRLLDQGILVPCQSPWNTPL




LPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTEARKETVMGQPTPKT




PRQLREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLVILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHI




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





718
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L99R/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



E282D/Q299E/V433N/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



I593W
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGCTGGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGCTGACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATTGG




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





719
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



E282D/Q299E/V433N/
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL



I593W
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRELREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHW




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





720
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L99R/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L280I/E282D/Q299E/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



V433N/I593W
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGCTGGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATTGG




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





721
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L280I/E282D/Q299E/
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL



V433N/I593W
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHW




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





722
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L82Y/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L99R/L280I/E282D/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



Q299E/V433N/I593W
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGTATGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATTGG




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





723
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L82Y/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L99R/L280I/E282D/
MSREARLGIKPHIRRLYDQGILVPCQSPWNTPL



Q299E/V433N/I593W
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHW




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





724
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L82Y/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L99R/L280I/E282D/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



Q299E/T306K/V433N/
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC



I593W
CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGTATGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCAAAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTAAACATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATTGG




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





725
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L82Y/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L99R/L280I/E282D/
MSREARLGIKPHIRRLYDQGILVPCQSPWNTPL



Q299E/T306K/V433N/
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN



I593W
PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGKAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLNILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHW




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





726
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L99R/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



E282D/Q299E/T306K/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



V433R/I593E
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGCTGGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGCTGACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCAAAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATGAA




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





727
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L99R/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



E282D/Q299E/T306K/
MSREARLGIKPHIRRLLDQGILVPCQSPWNTPL



V433R/I593E
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWLTDARKETVMGQPTPKT




PRELREFLGKAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHE




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





728
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L82Y/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L99R/L280I/E282D/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



Q299E/V433R/I593E
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC




CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGTATGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCACAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATGAA




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





729
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L82Y/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L99R/L280I/E282D/
MSREARLGIKPHIRRLYDQGILVPCQSPWNTPL



Q299E/V433R/I593E
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN




PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGTAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHE




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF





730
MMLV-II
ATGACTTTAAATATTGAGGATGAGCATCGTTTA



Q68R/Q79R/L82Y/
CATGAGACATCAAAAGAACCCGACGTGAGCTTA



L99R/L280I/E282D/
GGGTCAACGTGGCTTTCTGACTTCCCCCAGGCG



Q299E/T306K/V433R/
TGGGCGGAGACTGGCGGAATGGGGTTAGCTGTC



I593E
CGCCAAGCACCGTTGATCATCCCGTTAAAGGCA




ACGTCTACACCTGTCTCTATCAAACAGTACCCC




ATGAGTCGTGAGGCCCGCCTGGGGATTAAGCCA




CATATTCGTCGCTTGTATGACCAGGGGATCTTG




GTCCCATGTCAATCTCCGTGGAACACCCCCCTT




CGTCCCGTGAAAAAGCCAGGTACAAACGATTAT




CGTCCAGTTCAAGATCTTCGCGAGGTCAACAAA




CGCGTAGAAGACATCCATCCGACTGTACCTAAT




CCTTATAATCTGTTATCAGGCCTGCCCCCATCG




CACCAATGGTATACAGTATTAGACTTGAAAGAC




GCGTTCTTTTGCCTGCGTCTGCACCCAACGTCT




CAGCCGCTGTTTGCGTTCGAATGGCGTGATCCT




GAAATGGGAATTTCGGGTCAGTTAACCTGGACT




CGTCTGCCCCAGGGCTTTAAAAACAGCCCCACA




TTGTTCGATGAAGCACTTCACCGTGACTTAGCA




GACTTCCGTATCCAACACCCAGACTTAATTCTG




TTACAGTATGTTGACGACCTTTTGTTGGCGGCA




ACGTCTGAACTTGACTGTCAGCAAGGCACACGC




GCGTTATTACAAACGTTAGGTAACTTAGGATAT




CGTGCGTCCGCGAAAAAGGCGCAAATTTGTCAA




AAACAGGTAAAGTACCTTGGGTATTTGCTGAAA




GAAGGTCAACGTTGGATTACTGATGCGCGTAAG




GAGACCGTAATGGGGCAGCCTACGCCTAAGACG




CCACGCGAATTGCGTGAATTTTTGGGCAAAGCG




GGATTCTGTCGTTTATGGATTCCTGGGTTCGCT




GAAATGGCTGCACCCCTGTACCCCTTAACAAAA




ACAGGGACGCTTTTCAACTGGGGGCCAGACCAG




CAAAAGGCGTATCAGGAGATCAAACAAGCTTTG




TTGACCGCACCCGCGTTGGGTCTTCCGGATTTA




ACCAAGCCCTTTGAGCTGTTCGTTGATGAAAAA




CAGGGATATGCAAAAGGAGTATTAACCCAAAAG




TTAGGCCCGTGGCGTCGCCCTGTTGCTTACTTG




AGTAAAAAATTGGATCCTGTCGCAGCAGGATGG




CCACCGTGCTTGCGTATGGTCGCGGCAATTGCC




GTTTTGACAAAGGATGCAGGTAAGTTGACGATG




GGTCAACCCTTACGTATCTTGGCTCCACATGCT




GTAGAAGCGTTAGTAAAGCAGCCCCCAGACCGC




TGGCTTTCTAATGCGCGCATGACCCACTATCAG




GCGCTTCTGCTTGATACGGATCGTGTACAATTT




GGACCAGTTGTAGCTTTGAATCCAGCTACTTTG




CTTCCCCTTCCAGAAGAAGGACTTCAGCACAAT




TGTTTAGATATTCTGGCCGAGGCACATGGGACG




CGCCCTGATTTGACGGATCAGCCACTGCCTGAT




GCCGACCATACATGGTATACTGGCGGCAGTAGT




CTTCTTCAAGAGGGGCAACGCAAGGCGGGAGCA




GCCGTCACTACGGAGACCGAAGTTATCTGGGCC




AAAGCGTTACCCGCGGGAACATCCGCGCAACGT




GCACAGTTAATCGCTCTGACACAGGCCCTGAAG




ATGGCAGAGGGCAAAAAGTTGAATGTCTACACC




AACTCACGTTATGCTTTTGCAACAGCGCATGAA




CATGGCGAAATTTACCGCCGCCGTGGTCTGCTG




ACTAGTGAGGGTAAGGAAATTAAAAATAAAGAT




GAGATTCTTGCGTTGTTAAAAGCTTTATTCTTA




CCAAAACGCCTTTCGATCATTCATTGCCCGGGG




CATCAAAAGGGTCACTCAGCGGAGGCTCGTGGA




AACCGTATGGCGGACCAAGCTGCCCGTAAGGCG




GCGATCACAGAGACCCCGGATACATCAACGCTG




TTGATCGAAAACAGCTCTCCCTACACTAGCGAG




CATTTT





731
MMLV-II
MTLNIEDEHRLHETSKEPDVSLGSTWLSDFPQA



Q68R/Q79R/L82Y/
WAETGGMGLAVRQAPLIIPLKATSTPVSIKQYP



L99R/L280I/E282D/
MSREARLGIKPHIRRLYDQGILVPCQSPWNTPL



Q299E/T306K/V433R/
RPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPN



I593E
PYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTS




QPLFAFEWRDPEMGISGQLTWTRLPQGFKNSPT




LFDEALHRDLADFRIQHPDLILLQYVDDLLLAA




TSELDCQQGTRALLQTLGNLGYRASAKKAQICQ




KQVKYLGYLLKEGQRWITDARKETVMGQPTPKT




PRELREFLGKAGFCRLWIPGFAEMAAPLYPLTK




TGTLFNWGPDQQKAYQEIKQALLTAPALGLPDL




TKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYL




SKKLDPVAAGWPPCLRMVAAIAVLTKDAGKLTM




GQPLRILAPHAVEALVKQPPDRWLSNARMTHYQ




ALLLDTDRVQFGPVVALNPATLLPLPEEGLQHN




CLDILAEAHGTRPDLTDQPLPDADHTWYTGGSS




LLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHE




HGEIYRRRGLLTSEGKEIKNKDEILALLKALFL




PKRLSIIHCPGHQKGHSAEARGNRMADQAARKA




AITETPDTSTLLIENSSPYTSEHF









For the standard two-step procedure, RTases (1 μL, 620 nM) were added to a reaction mixture containing RNA (20 ng), dNTPs (100 μM), oligo dT primer (5 ng/uL) or both random hexamers and oligo dT primers (5 ng/uL each), first strand synthesis buffer (1×, 50 mM potassium acetate, 20 mM tris-acetate, pH 7.9, 10 mM magnesium acetate, 0.6 M trehalose 100 μg/ml BSA, and 10 mM DTT), and SuperaseIN (0.17 U/4) in a 20 μL volume. The reaction proceeded at 50 or 65° C. for 15 minutes, followed by 80° C. for 10 minutes.


The subsequent cDNA synthesized by the RTase mutants in this disclosure were quantified by qPCR amplification using an assay that identified the SFRS9 gene in human cells. The assay master mix was a composition of Integrated DNA Technologies PrimeTime® Gene Expression Master Mix (GEM, 1×), SFRS9 primer set (500 nM, Table 3) and SFRS9 probe (250 nM, Table 3). The assay master mix and synthesized cDNA were mixed at a 10:1 ratio for a final volume of 20 μL. The reaction proceeded on a qPCR (QuantStudio7 Flex) using the following method: 95° C. hold for 3 minutes, followed by 95° C. for 15 seconds and 60° C. for one minute for 40 cycles. The reactions were analyzed and reported by Ct value (Tables 23-25). All mutant variants of MMLV RTase showed an increase in the overall activity compared to the base construct and three mutant variants of MMLV RTase showed noteworthy activity compared to the others, Q68R/Q79R/L82Y/L99R/L280I/E282D/Q299E/T306K/V433N/I593W; Q68R/Q79R/L99R/E282D/Q299E/T306K/V433R/I593E; and Q68R/Q79R/L83Y/L99R/L280I/E282D/Q299E/T306K/V433R/I593E.









TABLE 23







Two-Step cDNA Synthesis by MMLV-RT mutants using


oligo dT priming. The data was generated via qPCR


human normalizer assay and data is reported by Ct value.











RT

Ct



Temperature
Ct
Standard


MMLV-RT Variant
(° C.)
Mean
Deviation













MMLV-II
50
24.873
0.043



65
35.817
0.630


MMLV-II Q68R/Q79R/
50
24.932
0.058


L99R/E282D
65
36.668
0.614


MMLV-II Q68R/Q79R/
50
24.750
0.036


L99R/E282D/Q299E/
65
35.782
1.366


V433R/I593E





MMLV-II Q68R/Q79R/
50
24.586
0.035


L99R/E282D/Q299E/
65
35.819
0.284


V433N/I593W





MMLV-II
50
24.638
0.028


Q68R/Q79R/L99R/
65
34.319
0.343


E282D/L280I/Q299E/





V433N/I593W





MMLV-II
50
24.681
0.019


Q68R/Q79R/L82Y/
65
33.184
0.021


L99R/E282D/L280I/





Q299E/V433N/I593W
















TABLE 24







Two-Step cDNA Synthesis by MMLV-RT mutants using


oligo dT priming. The data was generated via qPCR


human normalizer assay and data is reported by Ct value.











RT

Ct



Temperature
Ct
Standard


MMLV-RT Variant
(° C.)
Mean
Deviation













MMLV-II
50
24.887
0.041



65
32.730
0.053


MMLV-II Q68R/Q79R/
50
25.061
0.126


L99R/E282D/Q299E/
65
27.898
0.070


V433R/I593E





MMLV-II
50
24.849
0.101


Q68R/Q79R/L82Y/
65
26.607
0.077


L99R/L280I/E282D/





Q299E/V433N/





I593W





MMLV-II
50
25.110
0.154


Q68R/Q79R/L82Y/
65
25.701
0.062


L99R/L280I/E282D/





Q299E/T306K/





V433N/I593W





MMLV-II
50
24.990
0.088


Q68R/Q79R/L99R/
65
25.929
0.114


E282D/Q299E/T306K/





V433R/I593E





MMLV-II
50
25.133
0.114


Q68R/Q79R/L82Y/
65
27.032
0.141


L99R/L280I/E282D/





Q299E/V433R/I593E





MMLV-II
50
24.817
0.122


Q68R/Q79R/L82Y/
65
25.721
0.187


L99R/L280I/E282D/





Q299E/T306K/V433R/





I593E
















TABLE 25







Two-Step cDNA Synthesis by MMLV-RT mutants using


random priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.











RT

Ct



Temperature
Ct
Standard


MMLV-RT Variant
(° C.)
Mean
Deviation













MMLV-II
50
25.048
0.075



65
32.563
0.156


MMLV-II
50
25.002
0.027


Q68R/Q79R/L99R/
65
28.062
0.106


E282D/Q299E/V433R/





I593E





MMLV-II
50
25.016
0.179


Q68R/Q79R/L82Y/
65
26.724
0.040


L99R/L280I/E282D/





Q299E/V433N/I593W





MMLV-II
50
24.973
0.021


Q68R/Q79R/L82Y/
65
25.732
0.061


L99R/L280I/E282D/





Q299E/T306K/V433N/





I593W





MMLV-II
50
24.982
0.030


Q68R/Q79R/L99R/
65
26.006
0.020


E282D/Q299E/T306K/





V433R/I593E





MMLV-II
50
25.078
0.065


Q68R/Q79R/L82Y/
65
27.080
0.122


L99R/L280I/E282D/





Q299E/V433R/I593E





MMLV-II
50
25.074
0.094


Q68R/Q79R/L82Y/
65
25.784
0.100


L99R/L280I/E282D/





Q299E/T306K/V433R/





I593E









Example 7. Reverse Transcriptase Mutant Evaluation by Gene Specific Priming

This example demonstrates the procedure used to evaluate each mutant RTase's ability to synthesize cDNA from purified RNA ultramers (Integrated DNA Technologies) compared to the base construct of MMLV RTase. The mutant MMLV RTases were tested by a one-step addition of the RTase in GEM as described in Example 5. The reactions were analyzed and reported by Ct value (Table 26). Twelve mutant variants of MMLV RTase showed an increase in the overall activity compared to the base construct, H77A, D83E, D83R, Y271E, Q299E, G308E, F396A, V433R, I593E, I597A, and I597R.









TABLE 26







One-Step cDNA Synthesis by MMLV-RT single mutants


by gene specific priming. The data was generated via


qPCR human normalizer assay and data is reported by Ct value.









MMLV-RT Variant
Ct Mean
Ct Standard Deviation












MMLV-II
29.065
0.277


MMLV-II D209A
29.583
0.166


MMLV-II D209E
28.900
0.088


MMLV-II D209R
29.266
0.068


MMLV-II D83A
29.588
0.082


MMLV-II D83E
28.499
0.087


MMLV-II D83R
28.724
0.087


MMLV-II E201A
30.692
0.173


MMLV-II E201D
29.130
0.157


MMLV-II E201R
29.333
0.141


MMLV-II E367A
31.153
0.021


MMLV-II E367D
31.070
0.187


MMLV-II E367R
34.221
0.475


MMLV-II E596A
29.150
0.121


MMLV-II E596D
30.494
0.081


MMLV-II E596R
31.787
0.227


MMLV-II F210A
33.639
0.196


MMLV-II F210E
34.982
0.065


MMLV-II F210R
37.201
1.986


MMLV-II F369A
29.055
0.063


MMLV-II F369E
36.856
0.508


MMLV-II F369R
36.149
0.308


MMLV-II G308A
30.226
0.170


MMLV-II G308E
28.772
0.121


MMLV-II G308R
40.000
0.000


MMLV-II G331A
30.412
0.137


MMLV-II G331E
31.321
0.160


MMLV-II G331R
31.340
0.020


MMLV-II G73A
30.741
0.125


MMLV-II G73E
34.319
0.369


MMLV-II G73R
29.721
0.061


MMLV-II H77A
28.581
0.070


MMLV-II H77E
29.475
0.107


MMLV-II H77R
29.726
0.120


MMLV-II I125A
29.812
0.043


MMLV-II I125E
30.712
0.147


MMLV-II I125R
30.324
0.012


MMLV-II I212A
29.586
0.086


MMLV-II I212E
29.459
0.073


MMLV-II I212R
29.037
0.092


MMLV-II I593A
30.560
0.101


MMLV-II I593E
27.779
0.056


MMLV-II I593R
29.268
0.012


MMLV-II I597A
28.983
0.024


MMLV-II I597E
29.583
0.143


MMLV-II I597R
28.671
0.103


MMLV-II K285A
32.375
0.158


MMLV-II K285E
37.065
0.044


MMLV-II K285R
30.564
0.075


MMLV-II K348A
34.241
0.516


MMLV-II K348E
34.533
0.432


MMLV-II K348R
29.703
0.225


MMLV-II L198A
31.900
0.054


MMLV-II L198E
34.193
0.167


MMLV-II L198R
30.819
0.077


MMLV-II L280A
35.724
0.175


MMLV-II L280E
40.000
0.000


MMLV-II L280R
40.000
0.000


MMLV-II L352A
28.936
0.043


MMLV-II L352E
30.177
0.059


MMLV-II L352R
29.371
0.063


MMLV-II L357A
38.802
1.694


MMLV-II L357E
40.000
0.000


MMLV-II L357R
40.000
0.000


MMLV-II L82A
31.245
0.035


MMLV-II L82E
31.384
0.122


MMLV-II L82R
29.682
0.116


MMLV-II N335A
29.668
0.086


MMLV-II N335E
29.113
0.058


MMLV-II N335R
32.323
5.429


MMLV-II P76A
29.463
0.123


MMLV-II P76E
30.030
0.163


MMLV-II P76R
29.443
0.028


MMLV-II Q213A
29.833
0.223


MMLV-II Q213E
29.677
0.196


MMLV-II Q213R
29.704
0.053


MMLV-II Q299A
31.314
0.200


MMLV-II Q299E
28.652
0.149


MMLV-II Q299R
31.711
0.062


MMLV-II Q654A
29.415
0.117


MMLV-II Q654E
30.523
0.057


MMLV-II Q654R
29.523
0.052


MMLV-II R205A
29.140
0.138


MMLV-II R205E
29.356
0.179


MMLV-II R205K
29.162
0.206


MMLV-II R211A
29.491
0.025


MMLV-II R211E
30.049
0.205


MMLV-II R211K
30.196
0.147


MMLV-II R311A
31.237
0.425


MMLV-II R311E
40.000
0.000


MMLV-II R311K
29.857
0.091


MMLV-II R389A
32.173
0.151


MMLV-II R389E
32.717
0.105


MMLV-II R389K
31.944
0.166


MMLV-II R650A
29.734
0.060


MMLV-II R650E
31.012
0.074


MMLV-II R650K
29.404
0.094


MMLV-II R657A
31.470
0.133


MMLV-II R657E
32.785
0.145


MMLV-II R657K
29.468
0.274


MMLV-II S67A
29.268
0.090


MMLV-II S67E
30.157
0.254


MMLV-II S67R
27.274
0.054


MMLV-II T328A
40.000
0.000


MMLV-II T328E
37.699
1.627


MMLV-II T328R
37.169
0.848


MMLV-II T332A
29.219
0.075


MMLV-II T332E
29.714
0.057


MMLV-II T332R
30.462
0.130


MMLV-II V129A
29.305
0.077


MMLV-II V129E
31.188
0.181


MMLV-II V129R
30.383
0.081


MMLV-II V433A
30.483
0.059


MMLV-II V433E
30.106
0.144


MMLV-II V433R
29.297
0.457


MMLV-II V476A
31.295
0.244


MMLV-II V476E
34.664
0.364


MMLV-II V476R
31.223
0.166


MMLV-II Y271A
30.854
0.086


MMLV-II Y271E
28.620
0.068


MMLV-II Y271R
33.280
0.258


MMLV-IV
26.368
0.057









Example 8. Further Stacking of Reverse Transcriptase Mutants with Enhanced Activity

This example demonstrates the procedure used to stack the enhanced mutants found in Examples 6 and 7 to further improve the MMLV RTase's ability to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) compared to the the base construct and previously found mutant MMLV RTase containing the following mutations: Q68R/Q79R/L99R/E282D. The stacked mutant MMLV RTases were cloned, overexpressed and purified as described in Examples 1 and 2 and tested as described in Examples 6 and 7. Both the two- and one-step reactions were analyzed and reported by Ct value (Tables 27-29). Six of the eight stacked mutant variants of MMLV RTase increased the overall activity and thermostability compared to the base construct, Q68R/Q79R/L99R/E282D/V433R, Q68R/Q79R/L99R/E282D/I593E, Q68R/Q79R/L99R/E282D/Q299E, Q68R/Q79R/L99R/E282D/T332E, Q68R/L82R/L99R/E282D and Q68R/Q79R/L82R/L99R/E282D. Subsequentially, four of those six stacked mutant variants of MMLV RTase increased the overall activity and thermostability compared to the previously identified mutant RTase (Q68R/Q79R/L99R/E282D), Q68R/Q79R/L99R/E282D/I593E, Q68R/Q79R/L99R/E282D/Q299E, Q68R/L82R/L99R/E282D and Q68R/Q79R/L82R/L99R/E282D.


Following these stacked mutant variants, MMLV RTase mutations were stacked further to improve the ability of MMLV RTase to synthesize cDNA from purified total RNA (DNased, isolated from HeLa cells) as compared to the MMLV RTase base construct (RNase H minus construct). Eight MMLV RTase sextuple or more mutant variants were cloned as described in Example 1 and overexpressed and purified as in Example 5.


MMLV RTase base construct and MMLV RTase mutant variants evaluated as described in Example 3. Temperatures were adjusted for both two-step and one-step reactions to 42/55 and 50/60° C., respectively. The two-step first strand synthesis buffer was modified from 50 mM Tris-hydrochloride, pH 8.3, 75 mM potassium chloride, 3 mM magnesium chloride and 10 mM DTT to 50 mM potassium acetate, 20 mM Tris-acetate, pH 7.0, 10 mM magnesium acetate, 100 μg/ml bovine serum albumin and 10 mM DTT. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (Tables 27-29).


Four of the eleven MMLV RTase sextuple or more mutant variants were found to exhibit increased overall activity and thermostability as compared to the other MMLV RTase stacked mutant variants, and almost all of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The four MMLV RTase mutant variants that were found to exhibit the highest overall activity were Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E, Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E, Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E, and Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/I593E.









TABLE 27







Two-Step cDNA Synthesis by MMLV-RT stacked mutants using


oligo dT priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Ct Standard


MMLV-RT Variant
Ct Mean
Deviation












MMLV-II
37.388
0.396


MMLV-II Q68R/Q79R/L99R/E282D/V433R
29.215
0.113


MMLV-II Q68R/Q79R/L99R/E282D/I593E
33.563
0.118


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
31.902
0.169


MMLV-II Q68R/Q79R/L99R/E282D/T332E
33.988
0.108


MMLV-II Q68R/Q79R/L99R/L280R
40.000
0.000


MMLV-II Q68R/Q79R/L99R/L280R/E282D
40.000
0.000


MMLV-II Q68R/L82R/L99R/E282D
39.259
1.047


MMLV-II Q68R/Q79R/L82R/L99R/E282D
30.623
0.076


MMLV-IV
25.880
0.023
















TABLE 28







Two-Step cDNA Synthesis by MMLV-RT stacked mutants


using random priming. The data was generated via qPCR


human normalizer assay and data is reported by Ct value.










Ct
Ct Standard


MMLV-RT Variant
Mean
Deviation












MMLV-II
36.638
1.014


MMLV-II Q68R/Q79R/L99R/E282D/V433R
40.000
0.000


MMLV-II Q68R/Q79R/L99R/E282D/I593E
32.331
0.111


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
30.430
0.154


MMLV-II Q68R/Q79R/L99R/E282D/T332E
33.720
0.266


MMLV-II Q68R/Q79R/L99R/L280R
40.000
0.000


MMLV-II Q68R/Q79R/L99R/L280R/E282D
40.000
0.000


MMLV-II Q68R/L82R/L99R/E282D
35.325
0.422


MMLV-II Q68R/Q79R/L82R/L99R/E282D
31.928
0.177


MMLV-IV
25.840
0.049
















TABLE 29







One-Step cDNA Synthesis by MMLV-RT stacked mutants


by gene specific priming. The data was generated via qPCR


human normalizer assay and data is reported by Ct value.










Ct
Ct Standard


MMLV-RT Variant
Mean
Deviation












MMLV-II
33.027
0.048


MMLV-II Q68R/Q79R/L99R/E282D/V433R
29.937
0.040


MMLV-II Q68R/Q79R/L99R/E282D/I593E
28.724
0.081


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
29.341
0.022


MMLV-II Q68R/Q79R/L99R/E282D/T332E
30.330
0.036


MMLV-II Q68R/Q79R/L99R/L280R
40.000
0.000


MMLV-II Q68R/Q79R/L99R/L280R/E282D
40.000
0.000


MMLV-II Q68R/L82R/L99R/E282D
30.559
0.045


MMLV-II Q68R/Q79R/L82R/L99R/E282D
30.097
0.033


MMLV-IV
28.975
0.012










a. Evaluation of Ability of Purified MMLV RTase Mutant Variants to Synthesize DNA Over a Wide Range of Temperatures


MMLV RTase base construct MMLV RTase mutant variants evaluated as described in Example 5. Oligo-dT or random hexamer priming conditions and reaction temperatures were adjusted for the two-step reactions and RTase concentration was normalized to 31 nM. The two-step reactions for MMLV RTase base construct and MMLV RTase mutant variants were analyzed and reported by Ct output from the qPCR (see Tables 25 and 26)


Five MMLV RTase mutants were found to exhibit high overall activity as compared to the MMLV RTase base construct over a wide range of temperatures, spanning from 37.0 to 51° C., regardless of which priming method used. All of the MMLV RTase stacked mutant variants exhibited increased overall activity and thermostability as compared to the MMLV RTase base construct. The five MMLV RTas mutant variants that were found to exhibit the highest overall activity at a wide range of temperatures were Q68R/Q79R/L99R/E282D, Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E, Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E, Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E and Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/I593E









TABLE 30







Two-Step cDNA synthesis by MMLV RT quadruple and


more mutants by Oligo-dT priming. Data was generated via qPCR


human normalizer assay and data is reported by Ct value.











Temperature





of Reaction
Ct
Ct


MMLV RT Mutant
(° C.)
Mean
SD













MMLV-II
37.0
26.340
0.033


MMLV-II
37.8
26.130
0.061


MMLV-II
39.5
25.830
0.014


MMLV-II
42.0
25.753
0.041


MMLV-II
45.2
25.632
0.077


MMLV-II
47.8
25.935
0.026


MMLV-II
49.2
26.478
0.042


MMLV-II
50.0
29.461
0.120


MMLV-II
51.0
29.430
0.098


MMLV-II
51.9
31.123
0.066


MMLV-II
53.8
33.632
0.073


MMLV-II
56.5
36.499
0.385


MMLV-II
59.9
37.158
0.427


MMLV-II
62.6
37.464
0.440


MMLV-II
64.2
37.082
0.022


MMLV-II
65.0
37.518
0.370


MMLV-II Q68R/Q79R/L99R/E282D
37.0
25.688
0.031


MMLV-II Q68R/Q79R/L99R/E282D
37.8
25.734
0.032


MMLV-II Q68R/Q79R/L99R/E282D
39.5
25.613
0.040


MMLV-II Q68R/Q79R/L99R/E282D
42.0
25.528
0.032


MMLV-II Q68R/Q79R/L99R/E282D
45.2
25.525
0.029


MMLV-II Q68R/Q79R/L99R/E282D
47.8
25.471
0.105


MMLV-II Q68R/Q79R/L99R/E282D
49.2
25.491
0.047


MMLV-II Q68R/Q79R/L99R/E282D
50.0
25.608
0.061


MMLV-II Q68R/Q79R/L99R/E282D
51.0
25.679
0.006


MMLV-II Q68R/Q79R/L99R/E282D
51.9
25.969
0.032


MMLV-II Q68R/Q79R/L99R/E282D
53.8
27.251
0.053


MMLV-II Q68R/Q79R/L99R/E282D
56.5
33.619
0.195


MMLV-II Q68R/Q79R/L99R/E282D
59.9
36.635
0.059


MMLV-II Q68R/Q79R/L99R/E282D
62.6
36.929
0.500


MMLV-II Q68R/Q79R/L99R/E282D
64.2
37.515
0.478


MMLV-II Q68R/Q79R/L99R/E282D
65.0
37.107
0.285


MMLV-II Q68R/Q79R/L99R/E282D/I593E
37.0
26.133
0.054


MMLV-II Q68R/Q79R/L99R/E282D/I593E
37.8
26.029
0.012


MMLV-II Q68R/Q79R/L99R/E282D/I593E
39.5
25.850
0.047


MMLV-II Q68R/Q79R/L99R/E282D/I593E
42.0
25.793
0.012


MMLV-II Q68R/Q79R/L99R/E282D/I593E
45.2
25.614
0.018


MMLV-II Q68R/Q79R/L99R/E282D/I593E
47.8
25.658
0.005


MMLV-II Q68R/Q79R/L99R/E282D/I593E
49.2
25.663
0.024


MMLV-II Q68R/Q79R/L99R/E282D/I593E
50.0
25.791
0.041


MMLV-II Q68R/Q79R/L99R/E282D/I593E
51.0
25.877
0.067


MMLV-II Q68R/Q79R/L99R/E282D/I593E
51.9
26.602
0.038


MMLV-II Q68R/Q79R/L99R/E282D/I593E
53.8
29.535
0.086


MMLV-II Q68R/Q79R/L99R/E282D/I593E
56.5
35.912
0.439


MMLV-II Q68R/Q79R/L99R/E282D/I593E
59.9
37.158
0.566


MMLV-II Q68R/Q79R/L99R/E282D/I593E
62.6
37.187
0.158


MMLV-II Q68R/Q79R/L99R/E282D/I593E
64.2
37.958
0.236


MMLV-II Q68R/Q79R/L99R/E282D/I593E
65.0
36.861
0.416


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
37.0
26.106
0.070


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
37.8
26.024
0.092


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
39.5
25.830
0.122


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
42.0
25.788
0.025


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
45.2
25.634
0.022


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
47.8
25.681
0.016


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
49.2
25.684
0.029


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
50.0
25.743
0.096


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
51.0
25.870
0.003


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
51.9
26.301
0.033


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
53.8
28.283
0.036


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
56.5
34.732
0.445


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
59.9
36.947
0.407


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
62.6
37.140
0.280


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
64.2
37.403
0.205


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
65.0
37.347
0.438


MMLV-II Q68R/Q79R/L82R/L99R/E282D
37.0
25.961
0.170


MMLV-II Q68R/Q79R/L82R/L99R/E282D
37.8
26.065
0.085


MMLV-II Q68R/Q79R/L82R/L99R/E282D
39.5
25.909
0.028


MMLV-II Q68R/Q79R/L82R/L99R/E282D
42.0
25.802
0.055


MMLV-II Q68R/Q79R/L82R/L99R/E282D
45.2
25.632
0.087


MMLV-II Q68R/Q79R/L82R/L99R/E282D
47.8
25.728
0.065


MMLV-II Q68R/Q79R/L82R/L99R/E282D
49.2
25.612
0.165


MMLV-II Q68R/Q79R/L82R/L99R/E282D
50.0
25.795
0.038


MMLV-II Q68R/Q79R/L82R/L99R/E282D
51.0
25.830
0.009


MMLV-II Q68R/Q79R/L82R/L99R/E282D
51.9
26.477
0.037


MMLV-II Q68R/Q79R/L82R/L99R/E282D
53.8
28.496
0.040


MMLV-II Q68R/Q79R/L82R/L99R/E282D
56.5
34.329
0.177


MMLV-II Q68R/Q79R/L82R/L99R/E282D
59.9
36.564
0.315


MMLV-II Q68R/Q79R/L82R/L99R/E282D
62.6
37.152
0.322


MMLV-II Q68R/Q79R/L82R/L99R/E282D
64.2
37.340
0.585


MMLV-II Q68R/Q79R/L82R/L99R/E282D
65.0
38.351
1.016


MMLV-II
37.0
25.853
0.057


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
37.8
25.898
0.016


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
39.5
25.716
0.093


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
42.0
25.669
0.064


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
45.2
25.643
0.056


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
47.8
25.680
0.016


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
49.2
25.663
0.057


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
50.0
25.708
0.045


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
51.0
25.557
0.025


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
51.9
26.015
0.125


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
53.8
27.812
0.048


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
56.5
34.073
0.217


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
59.9
36.512
0.168


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
62.6
37.182
0.167


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
64.2
37.239
0.291


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
65.0
36.573
0.232


Q68R/Q79R/L99R/E282D/Q299E/V433R/





I593E





MMLV-II
37.0
25.789
0.075


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
37.8
25.784
0.103


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
39.5
25.714
0.025


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
42.0
25.713
0.027


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
45.2
25.690
0.030


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
47.8
25.662
0.026


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
49.2
25.713
0.021


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
50.0
25.551
0.092


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
51.0
25.561
0.107


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
51.9
25.975
0.125


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
53.8
27.556
0.023


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
56.5
33.934
0.249


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
59.9
36.473
0.285


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
62.6
37.411
0.377


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
64.2
37.656
0.478


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
65.0
37.950
1.451


Q68R/Q79R/L82R/L99R/E282D/Q299E/





V433R/I593E





MMLV-II
37.0
25.788
0.028


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
37.8
25.680
0.229


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
39.5
25.794
0.051


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
42.0
25.415
0.270


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
45.2
25.631
0.047


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
47.8
25.672
0.027


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
49.2
25.792
0.045


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
50.0
25.759
0.022


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
51.0
25.852
0.015


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
51.9
26.425
0.033


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
53.8
29.964
0.023


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
56.5
36.532
0.113


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
59.9
38.246
0.608


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
62.6
37.333
0.446


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
64.2
37.223
0.212


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
65.0
36.930
0.527


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/I593E





MMLV-II
37.0
25.863
0.014


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
37.8
25.649
0.036


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
39.5
25.573
0.057


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
42.0
25.453
0.023


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
45.2
25.447
0.083


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
47.8
25.413
0.061


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
49.2
25.542
0.035


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
50.0
25.567
0.060


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
51.0
25.741
0.093


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
51.9
26.231
0.225


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
53.8
28.556
0.142


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
56.5
35.202
0.208


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
59.9
36.991
0.419


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
62.6
37.168
0.463


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
64.2
37.670
0.410


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E





MMLV-II
65.0
37.680
0.273


Q68R/Q79R/L82R/L99R/E282D/Q299E/





T332E/V433R/I593E
















TABLE 31







Two-Step cDNA synthesis by MMLV RT quadruple and


more mutants by Random priming. Data was generated via qPCR


human normalizer assay and data is reported by Ct value.











Temperature





of Reaction
Ct
Ct


MMLV RT Mutant
(° C.)
Mean
SD













MMLV-II
37.0
26.365
0.066


MMLV-II
37.8
26.390
0.006


MMLV-II
39.5
25.939
0.016


MMLV-II
42.0
25.798
0.029


MMLV-II
45.2
25.849
0.064


MMLV-II
47.8
26.647
0.050


MMLV-II
49.2
28.326
0.028


MMLV-II
50.0
29.340
0.010


MMLV-II
51.0
30.684
0.099


MMLV-II
51.9
32.462
0.163


MMLV-II
53.8
33.855
0.307


MMLV-II
56.5
35.376
0.461


MMLV-II
59.9
36.098
0.481


MMLV-II
62.6
36.391
0.367


MMLV-II
64.2
36.442
0.547


MMLV-II
65.0
35.871
0.301


MMLV-II Q68R/Q79R/L99R/E282D
37.0
25.699
0.009


MMLV-II Q68R/Q79R/L99R/E282D
37.8
25.674
0.038


MMLV-II Q68R/Q79R/L99R/E282D
39.5
25.594
0.029


MMLV-II Q68R/Q79R/L99R/E282D
42.0
25.496
0.016


MMLV-II Q68R/Q79R/L99R/E282D
45.2
25.431
0.011


MMLV-II Q68R/Q79R/L99R/E282D
47.8
25.420
0.036


MMLV-II Q68R/Q79R/L99R/E282D
49.2
25.481
0.023


MMLV-II Q68R/Q79R/L99R/E282D
50.0
25.646
0.035


MMLV-II Q68R/Q79R/L99R/E282D
51.0
25.979
0.012


MMLV-II Q68R/Q79R/L99R/E282D
51.9
26.591
0.053


MMLV-II Q68R/Q79R/L99R/E282D
53.8
28.345
0.091


MMLV-II Q68R/Q79R/L99R/E282D
56.5
32.976
0.109


MMLV-II Q68R/Q79R/L99R/E282D
59.9
34.407
0.158


MMLV-II Q68R/Q79R/L99R/E282D
62.6
35.130
0.014


MMLV-II Q68R/Q79R/L99R/E282D
64.2
34.866
0.258


MMLV-II Q68R/Q79R/L99R/E282D
65.0
35.317
0.299


MMLV-II Q68R/Q79R/L99R/E282D/I593E
37.0
26.079
0.036


MMLV-II Q68R/Q79R/L99R/E282D/I593E
37.8
25.951
0.015


MMLV-II Q68R/Q79R/L99R/E282D/I593E
39.5
25.801
0.055


MMLV-II Q68R/Q79R/L99R/E282D/I593E
42.0
25.602
0.087


MMLV-II Q68R/Q79R/L99R/E282D/I593E
45.2
25.424
0.038


MMLV-II Q68R/Q79R/L99R/E282D/I593E
47.8
25.520
0.011


MMLV-II Q68R/Q79R/L99R/E282D/I593E
49.2
25.674
0.046


MMLV-II Q68R/Q79R/L99R/E282D/I593E
50.0
25.922
0.015


MMLV-II Q68R/Q79R/L99R/E282D/I593E
51.0
26.351
0.014


MMLV-II Q68R/Q79R/L99R/E282D/I593E
51.9
27.411
0.092


MMLV-II Q68R/Q79R/L99R/E282D/I593E
53.8
30.482
0.048


MMLV-II Q68R/Q79R/L99R/E282D/I593E
56.5
33.914
0.075


MMLV-II Q68R/Q79R/L99R/E282D/I593E
59.9
35.443
0.191


MMLV-II Q68R/Q79R/L99R/E282D/I593E
62.6
35.872
0.445


MMLV-II Q68R/Q79R/L99R/E282D/I593E
64.2
36.107
0.011


MMLV-II Q68R/Q79R/L99R/E282D/I593E
65.0
35.715
0.299


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
37.0
25.955
0.040


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
37.8
25.934
0.023


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
39.5
25.669
0.035


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
42.0
25.523
0.016


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
45.2
25.532
0.054


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
47.8
25.550
0.021


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
49.2
25.620
0.030


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
50.0
25.711
0.035


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
51.0
26.215
0.056


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
51.9
26.969
0.013


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
53.8
29.622
0.060


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
56.5
33.679
0.234


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
59.9
35.253
0.144


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
62.6
35.408
0.441


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
64.2
35.586
0.139


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
65.0
36.076
0.700


MMLV-II Q68R/Q79R/L82R/L99R/E282D
37.0
25.884
0.012


MMLV-II Q68R/Q79R/L82R/L99R/E282D
37.8
25.833
0.009


MMLV-II Q68R/Q79R/L82R/L99R/E282D
39.5
25.684
0.077


MMLV-II Q68R/Q79R/L82R/L99R/E282D
42.0
25.553
0.026


MMLV-II Q68R/Q79R/L82R/L99R/E282D
45.2
25.471
0.043


MMLV-II Q68R/Q79R/L82R/L99R/E282D
47.8
25.491
0.085


MMLV-II Q68R/Q79R/L82R/L99R/E282D
49.2
25.646
0.014


MMLV-II Q68R/Q79R/L82R/L99R/E282D
50.0
25.765
0.039


MMLV-II Q68R/Q79R/L82R/L99R/E282D
51.0
26.365
0.044


MMLV-II Q68R/Q79R/L82R/L99R/E282D
51.9
27.170
0.071


MMLV-II Q68R/Q79R/L82R/L99R/E282D
53.8
29.662
0.048


MMLV-II Q68R/Q79R/L82R/L99R/E282D
56.5
33.853
0.162


MMLV-II Q68R/Q79R/L82R/L99R/E282D
59.9
34.899
0.325


MMLV-II Q68R/Q79R/L82R/L99R/E282D
62.6
35.557
0.145


MMLV-II Q68R/Q79R/L82R/L99R/E282D
64.2
35.360
0.222


MMLV-II Q68R/Q79R/L82R/L99R/E282D
65.0
35.614
0.403


MMLV-II
37.0
25.706
0.031


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
37.8
25.757
0.101


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
39.5
25.435
0.036


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
42.0
25.417
0.025


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
45.2
25.425
0.023


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
47.8
25.401
0.049


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
49.2
25.467
0.009


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
50.0
25.516
0.056


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
51.0
25.880
0.039


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
51.9
26.348
0.064


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
53.8
28.506
0.018


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
56.5
32.812
0.242


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
59.9
34.123
0.163


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
62.6
35.108
0.027


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
64.2
34.796
0.171


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
65.0
34.999
0.064


Q68R/Q79R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
37.0
25.711
0.080


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
37.8
25.916
0.224


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
39.5
25.665
0.052


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
42.0
25.527
0.016


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
45.2
25.504
0.065


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
47.8
25.437
0.070


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
49.2
25.555
0.065


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
50.0
25.571
0.028


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
51.0
25.854
0.029


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
51.9
26.259
0.057


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
53.8
28.329
0.053


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
56.5
32.962
0.212


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
59.9
34.072
0.446


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
62.6
34.931
0.205


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
64.2
34.626
0.169


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
65.0
35.085
0.230


Q68R/Q79R/L82R/L99R/E282D/Q299E/V433R/I593E





MMLV-II
37.0
25.940
0.130


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
37.8
25.793
0.129


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
39.5
25.599
0.015


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
42.0
25.504
0.016


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
45.2
25.602
0.041


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
47.8
25.604
0.058


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
49.2
25.665
0.007


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
50.0
25.821
0.068


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
51.0
26.315
0.047


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
51.9
27.036
0.059


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
53.8
31.004
0.089


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
56.5
33.765
0.274


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
59.9
34.656
0.209


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
62.6
35.561
0.468


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
64.2
35.877
0.154


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
65.0
35.659
0.477


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/I593E





MMLV-II
37.0
25.780
0.046


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
37.8
25.652
0.026


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
39.5
25.641
0.037


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
42.0
25.507
0.005


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
45.2
25.484
0.067


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
47.8
25.438
0.027


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
49.2
25.534
0.022


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
50.0
25.755
0.085


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
51.0
25.981
0.027


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
51.9
26.242
0.052


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
53.8
29.146
0.069


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
56.5
33.138
0.159


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
59.9
34.551
0.152


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
62.6
35.186
0.322


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
64.2
35.550
0.368


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E





MMLV-II
65.0
35.459
0.295


Q68R/Q79R/L82R/L99R/E282D/Q299E/T332E/V433R/





I593E









Example 9: Extension of Reverse Transcriptase Single Mutants

The amino acid positions that enclosed the MMLV RTase single mutants identified in Examples 6 and 7 were further evaluated to include all possible amino acid substitutions at that position. The single mutants were cloned, overexpressed, and purified as described in Examples 1 and 2, and evaluated as described in Examples 6 and 7. The two-step and one-step reactions for MMLV RTase base construct and MMLV RTase double mutant variants were analyzed and reported by Ct output from the qPCR (Tables 32-34). Numerous single mutant MMLV RTase variants were found to exhibit an increase in the overall activity and thermostability as compared to the MMLV RTase base construct. The most prevalent among these were: L82F, L82K, L82T, L82Y, L280I, T332V, V433K, V433N, and I593W.









TABLE 32







Two-Step cDNA Synthesis by MMLV-RT single mutants using


Oligo-dT priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.









MMLV-RT Variant
Ct Mean
Ct Standard Deviation












MMLV-II
40.000
0.000


MMLV-II I593A
40.000
0.000


MMLV-II I593C
37.874
0.991


MMLV-II I593D
40.000
0.000


MMLV-II I593E
40.000
0.000


MMLV-II I593F
40.000
0.000


MMLV-II 1593G
39.748
0.356


MMLV-II I593H
39.502
0.704


MMLV-II I593K
40.000
0.000


MMLV-II I593L
38.994
1.423


MMLV-II I593M
39.383
0.873


MMLV-II I593N
40.000
0.000


MMLV-II I593P
40.000
0.000


MMLV-II I593Q
40.000
0.000


MMLV-II I593R
40.000
0.000


MMLV-II I593S
39.614
0.545


MMLV-II I593T
37.709
0.520


MMLV-II I593V
40.000
0.000


MMLV-II I593W
30.504
0.073


MMLV-II I593Y
40.000
0.000


MMLV-II L280A
40.000
0.000


MMLV-II L280C
40.000
0.000


MMLV-II L280D
40.000
0.000


MMLV-II L280E
40.000
0.000


MMLV-II L280F
40.000
0.000


MMLV-II L280G
40.000
0.000


MMLV-II L280H
40.000
0.000


MMLV-II L280I
30.951
0.076


MMLV-II L280K
40.000
0.000


MMLV-II L280M
40.000
0.000


MMLV-II L280N
39.727
0.386


MMLV-II L280P
40.000
0.000


MMLV-II L280Q
40.000
0.000


MMLV-II L280R
39.994
0.009


MMLV-II L280S
40.000
0.000


MMLV-II L280T
40.000
0.000


MMLV-II L280V
37.749
0.142


MMLV-II L280W
40.000
0.000


MMLV-II L280Y
40.000
0.000


MMLV-II L82A
40.000
0.000


MMLV-II L82C
39.565
0.615


MMLV-II L82D
40.000
0.000


MMLV-II L82E
40.000
0.000


MMLV-II L82F
39.347
0.924


MMLV-II L82G
40.000
0.000


MMLV-II L82H
40.000
0.000


MMLV-II L82I
40.000
0.000


MMLV-II L82K
37.136
0.593


MMLV-II L82M
38.649
1.260


MMLV-II L82N
40.000
0.000


MMLV-II L82P
40.000
0.000


MMLV-II L82Q
39.098
1.275


MMLV-II L82R
40.000
0.000


MMLV-II L82S
39.346
0.925


MMLV-II L82T
38.695
1.845


MMLV-II L82V
38.047
1.381


MMLV-II L82W
37.151
0.308


MMLV-II L82Y
35.014
0.421


MMLV-II Q299A
40.000
0.000


MMLV-II Q299C
40.000
0.000


MMLV-II Q299D
40.000
0.000


MMLV-II Q299E
39.061
1.328


MMLV-II Q299F
40.000
0.000


MMLV-II Q299G
40.000
0.000


MMLV-II Q299H
39.398
0.852


MMLV-II Q299I
39.183
1.155


MMLV-II Q299K
40.000
0.000


MMLV-II Q299L
39.474
0.743


MMLV-II Q299M
40.000
0.000


MMLV-II Q299N
40.000
0.000


MMLV-II Q299P
40.000
0.000


MMLV-II Q299R
40.000
0.000


MMLV-II Q299S
40.000
0.000


MMLV-II Q299T
40.000
0.000


MMLV-II Q299V
40.000
0.000


MMLV-II Q299W
40.000
0.000


MMLV-II Q299Y
40.000
0.000


MMLV-II T332A
39.087
1.291


MMLV-II T332C
38.956
1.476


MMLV-II T332D
40.000
0.000


MMLV-II T332E
39.554
0.631


MMLV-II T332F
40.000
0.000


MMLV-II T332G
37.321
2.009


MMLV-II T332H
39.215
1.110


MMLV-II T332I
39.344
0.927


MMLV-II T332K
40.000
0.000


MMLV-II T332L
40.000
0.000


MMLV-II T332M
37.775
1.632


MMLV-II T332N
37.326
0.834


MMLV-II T332P
40.000
0.000


MMLV-II T332Q
39.509
0.694


MMLV-II T332R
39.588
0.582


MMLV-II T332S
39.765
0.332


MMLV-II T332V
36.977
0.384


MMLV-II T332W
40.000
0.000


MMLV-II T332Y
40.000
0.000


MMLV-II V433A
40.000
0.000


MMLV-II V433C
37.504
0.682


MMLV-II V433D
40.000
0.000


MMLV-II V433E
35.189
0.336


MMLV-II V433F
39.379
0.878


MMLV-II V433G
39.482
0.732


MMLV-II V433H
40.000
0.000


MMLV-II V433I
39.781
0.310


MMLV-II V433K
35.770
0.623


MMLV-II V433L
39.015
0.744


MMLV-II V433M
39.119
1.247


MMLV-II V433N
33.981
0.185


MMLV-II V433P
40.000
0.000


MMLV-II V433Q
40.000
0.000


MMLV-II V433R
37.230
1.247


MMLV-II V433S
37.850
0.846


MMLV-II V433T
37.564
1.895


MMLV-II V433W
37.770
1.622


MMLV-II V433Y
40.000
0.000


MMLV-IV
26.102
0.033
















TABLE 33







Two-Step cDNA Synthesis by MMLV-RT single mutants using


random priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.









MMLV-RT Variant
Ct Mean
Ct Standard Deviation












MMLV-II
40.000
0.000


MMLV-II I593A
40.000
0.000


MMLV-II I593C
40.000
0.000


MMLV-II I593D
39.992
0.012


MMLV-II I593E
40.000
0.000


MMLV-II I593F
39.189
1.147


MMLV-II 1593G
40.000
0.000


MMLV-II I593H
40.000
0.000


MMLV-II I593K
40.000
0.000


MMLV-II I593L
40.000
0.000


MMLV-II I593M
40.000
0.000


MMLV-II I593N
40.000
0.000


MMLV-II I593P
40.000
0.000


MMLV-II I593Q
39.201
0.853


MMLV-II I593R
38.928
1.516


MMLV-II I593S
39.025
1.379


MMLV-II I593T
38.385
1.227


MMLV-II I593V
39.574
0.603


MMLV-II I593W
32.572
0.054


MMLV-II I593Y
40.000
0.000


MMLV-II L280A
40.000
0.000


MMLV-II L280C
40.000
0.000


MMLV-II L280D
40.000
0.000


MMLV-II L280E
40.000
0.000


MMLV-II L280F
40.000
0.000


MMLV-II L280G
40.000
0.000


MMLV-II L280H
40.000
0.000


MMLV-II L280I
34.152
0.276


MMLV-II L280K
40.000
0.000


MMLV-II L280M
39.973
0.038


MMLV-II L280N
40.000
0.000


MMLV-II L280P
40.000
0.000


MMLV-II L280Q
40.000
0.000


MMLV-II L280R
40.000
0.000


MMLV-II L280S
40.000
0.000


MMLV-II L280T
40.000
0.000


MMLV-II L280V
39.260
1.046


MMLV-II L280W
40.000
0.000


MMLV-II L280Y
40.000
0.000


MMLV-II L82A
40.000
0.000


MMLV-II L82C
40.000
0.000


MMLV-II L82D
40.000
0.000


MMLV-II L82E
39.672
0.463


MMLV-II L82F
36.854
0.708


MMLV-II L82G
40.000
0.000


MMLV-II L82H
37.705
0.557


MMLV-II L82I
39.231
1.087


MMLV-II L82K
39.437
0.443


MMLV-II L82M
40.000
0.000


MMLV-II L82N
40.000
0.000


MMLV-II L82P
40.000
0.000


MMLV-II L82Q
40.000
0.000


MMLV-II L82R
38.595
1.191


MMLV-II L82S
40.000
0.000


MMLV-II L82T
38.449
1.192


MMLV-II L82V
39.438
0.795


MMLV-II L82W
39.178
1.163


MMLV-II L82Y
36.758
0.962


MMLV-II Q299A
40.000
0.000


MMLV-II Q299C
40.000
0.000


MMLV-II Q299D
38.003
1.414


MMLV-II Q299E
39.338
0.936


MMLV-II Q299F
40.000
0.000


MMLV-II Q299G
40.000
0.000


MMLV-II Q299H
40.000
0.000


MMLV-II Q299I
39.850
0.212


MMLV-II Q299K
40.000
0.000


MMLV-II Q299L
40.000
0.000


MMLV-II Q299M
40.000
0.000


MMLV-II Q299N
40.000
0.000


MMLV-II Q299P
40.000
0.000


MMLV-II Q299R
40.000
0.000


MMLV-II Q299S
40.000
0.000


MMLV-II Q299T
40.000
0.000


MMLV-II Q299V
40.000
0.000


MMLV-II Q299W
40.000
0.000


MMLV-II Q299Y
40.000
0.000


MMLV-II T332A
39.814
0.264


MMLV-II T332C
40.000
0.000


MMLV-II T332D
40.000
0.000


MMLV-II T332E
40.000
0.000


MMLV-II T332F
40.000
0.000


MMLV-II T332G
38.897
1.560


MMLV-II T332H
40.000
0.000


MMLV-II T332I
40.000
0.000


MMLV-II T332K
40.000
0.000


MMLV-II T332L
38.169
2.589


MMLV-II T332M
37.410
1.906


MMLV-II T332N
38.983
1.362


MMLV-II T332P
39.046
1.350


MMLV-II T332Q
40.000
0.000


MMLV-II T332R
40.000
0.000


MMLV-II T332S
40.000
0.000


MMLV-II T332V
38.650
1.326


MMLV-II T332W
40.000
0.000


MMLV-II T332Y
40.000
0.000


MMLV-II V433A
40.000
0.000


MMLV-II V433C
37.605
0.184


MMLV-II V433D
40.000
0.000


MMLV-II V433E
34.693
0.193


MMLV-II V433F
40.000
0.000


MMLV-II V433G
40.000
0.000


MMLV-II V433H
40.000
0.000


MMLV-II V433I
39.792
0.294


MMLV-II V433K
35.725
0.464


MMLV-II V433L
40.000
0.000


MMLV-II V433M
40.000
0.000


MMLV-II V433N
34.604
0.554


MMLV-II V433P
40.000
0.000


MMLV-II V433Q
38.844
1.001


MMLV-II V433R
38.817
0.839


MMLV-II V433S
38.202
1.372


MMLV-II V433T
37.573
0.623


MMLV-II V433W
37.611
1.690


MMLV-II V433Y
40.000
0.000


MMLV-IV
26.053
0.098
















TABLE 34







One-Step cDNA Synthesis by MMLV-RT single mutants by


gene specific priming. The data was generated via qPCR


human normalizer assay and data is reported by Ct value.











MMLV-RT Variant
Ct Mean
Ct Standard Deviation















MMLV-II
32.775
0.189



MMLV-II I593A
32.438
0.209



MMLV-II I593C
32.680
0.053



MMLV-II I593D
31.775
0.237



MMLV-II I593E
30.635
0.048



MMLV-II I593F
30.411
0.008



MMLV-II I593G
30.904
0.098



MMLV-II I593H
29.686
0.131



MMLV-II I593K
31.832
0.259



MMLV-II I593L
32.289
0.273



MMLV-II I593M
32.162
0.078



MMLV-II I593N
31.410
0.251



MMLV-II I593P
34.728
0.201



MMLV-II I593Q
31.609
0.032



MMLV-II I593R
31.144
0.133



MMLV-II I593S
30.548
0.247



MMLV-II I593T
29.572
0.236



MMLV-II I593V
30.673
0.142



MMLV-II I593W
28.179
0.092



MMLV-II I593Y
30.858
0.067



MMLV-II L280A
36.160
0.729



MMLV-II L280C
32.097
0.261



MMLV-II L280D
40.000
0.000



MMLV-II L280E
39.115
1.251



MMLV-II L280F
34.573
0.371



MMLV-II L280G
40.000
0.000



MMLV-II L280H
37.255
0.322



MMLV-II L280I
29.267
1.032



MMLV-II L280K
34.274
0.095



MMLV-II L280M
32.746
0.223



MMLV-II L280N
39.677
0.457



MMLV-II L280P
33.045
0.095



MMLV-II L280Q
39.190
1.145



MMLV-II L280R
40.000
0.000



MMLV-II L280S
40.000
0.000



MMLV-II L280T
37.074
0.325



MMLV-II L280V
30.461
0.052



MMLV-II L280W
40.000
0.000



MMLV-II L280Y
40.000
0.000



MMLV-II L82A
31.729
0.308



MMLV-II L82C
31.131
0.192



MMLV-II L82D
34.280
0.227



MMLV-II L82E
32.973
0.430



MMLV-II L82F
29.760
0.030



MMLV-II L82G
33.066
0.217



MMLV-II L82H
30.098
0.078



MMLV-II L82I
31.605
0.083



MMLV-II L82K
29.258
0.015



MMLV-II L82M
30.280
0.027



MMLV-II L82N
33.074
0.323



MMLV-II L82P
38.754
1.762



MMLV-II L82Q
32.001
0.164



MMLV-II L82R
30.208
0.128



MMLV-II L82S
31.841
0.231



MMLV-II L82T
28.908
0.044



MMLV-II L82V
29.533
0.057



MMLV-II L82W
29.580
0.056



MMLV-II L82Y
28.934
0.073



MMLV-II Q299A
31.113
0.138



MMLV-II Q299C
35.953
0.542



MMLV-II Q299D
32.292
0.080



MMLV-II Q299E
31.663
0.027



MMLV-II Q299F
36.143
0.317



MMLV-II Q299G
31.929
0.131



MMLV-II Q299H
32.387
0.133



MMLV-II Q299I
37.763
1.582



MMLV-II Q299K
32.326
0.096



MMLV-II Q299L
34.807
0.180



MMLV-II Q299M
32.514
0.375



MMLV-II Q299N
34.040
0.186



MMLV-II Q299P
39.460
0.764



MMLV-II Q299R
33.044
0.354



MMLV-II Q299S
33.438
0.256



MMLV-II Q299T
35.093
0.926



MMLV-II Q299V
35.114
1.045



MMLV-II Q299W
38.998
1.417



MMLV-II Q299Y
39.055
1.336



MMLV-II T332A
30.528
0.084



MMLV-II T332C
30.785
0.135



MMLV-II T332D
33.310
0.348



MMLV-II T332E
32.711
0.106



MMLV-II T332F
33.201
0.179



MMLV-II T332G
30.424
0.054



MMLV-II T332H
31.913
0.306



MMLV-II T332I
32.072
0.115



MMLV-II T332K
31.591
0.082



MMLV-II T332L
34.011
0.133



MMLV-II T332M
29.039
0.164



MMLV-II T332N
29.500
0.135



MMLV-II T332P
33.976
0.272



MMLV-II T332Q
31.599
0.041



MMLV-II T332R
32.950
0.130



MMLV-II T332S
31.003
0.341



MMLV-II T332V
29.835
0.061



MMLV-II T332W
35.431
0.099



MMLV-II T332Y
33.384
0.164



MMLV-II V433A
30.757
0.105



MMLV-II V433C
29.901
0.305



MMLV-II V433D
34.152
0.170



MMLV-II V433E
28.868
0.011



MMLV-II V433F
31.529
0.009



MMLV-II V433G
33.663
0.412



MMLV-II V433H
31.811
0.069



MMLV-II V433I
30.460
0.071



MMLV-II V433K
30.040
0.109



MMLV-II V433L
31.758
0.063



MMLV-II V433M
30.791
0.095



MMLV-II V433N
28.566
0.074



MMLV-II V433P
37.436
1.824



MMLV-II V433Q
30.586
0.104



MMLV-II V433R
30.773
0.080



MMLV-II V433S
29.768
0.074



MMLV-II V433T
29.096
0.107



MMLV-II V433W
29.130
0.064



MMLV-II V433Y
32.676
0.279



MMLV-IV
25.979
0.043

















TABLE 35







Two-Step cDNA Synthesis by MMLV-RT stacked mutants using


oligo dT priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temperature
Ct
Ct Standard


MMLV-RT Variant
(° C.)
Mean
Deviation













MMLV-II
42
25.207
0.025


MMLV-II
55
28.180
0.022


MMLV-II Q68R/Q79R/L99R/E282D
42
25.287
0.068



55
26.442
0.044


MMLV-II
42
25.344
0.065


Q68R/Q79R/L99R/E282D/V433R
55
26.586
0.077


MMLV-II
42
25.266
0.112


Q68R/Q79R/L99R/E282D/I593E
55
27.389
0.069


MMLV-II
42
25.357
0.087


Q68R/Q79R/L99R/E282D/Q299E
55
26.953
0.034


MMLV-II
42
25.394
0.011


Q68R/Q79R/L82R/L99R/E282D
55
27.171
0.028


MMLV-II
42
25.371
0.061


Q68R/Q79R/L99R/E282D/Q299E/
55
26.689
0.068


I593E





MMLV-II
42
25.258
0.035


Q68R/Q79R/L82R/L99R/E282D/
55
26.979
0.034


Q299E/I593E





MMLV-II
42
25.171
0.006


Q68R/Q79R/L99R/E282D/Q299E/
55
26.299
0.025


V433R/I593E





MMLV-II
42
25.146
0.052


Q68R/Q79R/L82R/L99R/E282D/
55
26.320
0.036


Q299E/V433R/I593E





MMLV-II
42
25.176
0.044


Q68R/Q79R/L82R/L99R/E282D/
55
26.750
0.040


Q299E/T332E/I593E





MMLV-II
42
25.110
0.046


Q68R/Q79R/L82R/L99R/E282D/
55
26.587
0.049


Q299E/T332E/V433R/I593E





MMLV-IV
42
25.184
0.025


MMLV-IV
55
25.153
0.037


SuperScript-IV
42
25.082
0.073


SuperScript-IV
55
25.080
0.047
















TABLE 36







Two-Step cDNA Synthesis by MMLV-RT stacked mutants using random


priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.











Temper-

Ct



ature
Ct
Standard


MMLV-RT Variant
(° C.)
Mean
Deviation













MMLV-II
42
25.264
0.019


MMLV-II
55
28.443
0.014


MMLV-II Q68R/Q79R/L99R/E282D
42
25.399
0.040



55
26.484
0.072


MMLV-II Q68R/Q79R/L99R/E282D/V433R
42
25.324
0.063



55
26.794
0.065


MMLV-II Q68R/Q79R/L99R/E282D/I593E
42
25.278
0.025



55
27.616
0.058


MMLV-II Q68R/Q79R/L99R/E282D/Q299E
42
25.281
0.079



55
27.148
0.025


MMLV-II Q68R/Q79R/L82R/L99R/E282D
42
25.279
0.053



55
27.243
0.008


MMLV-II Q68R/Q79R/L99R/
42
25.409
0.065


E282D/Q299E/I593E
55
26.704
0.066


MMLV-II
42
25.581
0.062


Q68R/Q79R/L82R/L99R/
55
26.605
0.028


E282D/Q299E/I593E





MMLV-II
42
25.355
0.158


Q68R/Q79R/L99R/E282D/
55
26.305
0.066


Q299E/V433R/I593E





MMLV-II
42
25.418
0.120


Q68R/Q79R/L82R/L99R/E282D/
55
26.403
0.055


Q299E/V433R/I593E





MMLV-II
42
25.374
0.115


Q68R/Q79R/L82R/L99R/E282D/
55
26.747
0.065


Q299E/T332E/I593E





MMLV-II
42
25.426
0.082


Q68R/Q79R/L82R/L99R/E282D/
55
26.481
0.017


Q299E/T332E/V433R/I593E





MMLV-IV
42
25.394
0.162


MMLV-IV
55
25.185
0.022


SuperScript-IV
42
25.299
0.132


SuperScript-IV
55
25.214
0.021
















TABLE 37







One-Step cDNA Synthesis by MMLV-RT stacked mutants by


gene specific priming. The data was generated via qPCR human


normalizer assay and data is reported by Ct value.












Temper-
Con-

Ct



ature
centration
Ct
Standard


MMLV-RT Variant
(° C.)
of RT (nM)
Mean
Deviation














MMLV-II
50
0.28
26.401
0.022




1.4
24.701
0.061




7.0
24.664
0.007



60
0.28
31.134
0.205




1.4
28.109
0.042




7.0
27.644
0.061


MMLV-II
50
0.28
25.171
0.046


Q68R/Q79R/L99R/

1.4
24.440
0.037


E282D

7.0
24.406
0.010



60
0.28
28.848
0.114




1.4
25.905
0.066




7.0
25.618
0.057


MMLV-II
50
0.28
24.967
0.068


Q68R/Q79R/L99R/

1.4
24.386
0.015


E282D/V433R

7.0
24.433
0.079



60
0.28
28.516
0.051




1.4
25.803
0.063




7.0
25.620
0.035


MMLV-II
50
0.28
24.660
0.053


Q68R/Q79R/L99R/

1.4
24.377
0.028


E282D/I593E

7.0
24.355
0.021



60
0.28
27.488
0.074




1.4
25.413
0.049




7.0
25.209
0.136


MMLV-II
50
0.28
25.044
0.094


Q68R/Q79R/L99R/

1.4
24.422
0.023


E282D/Q299E

7.0
24.528
0.055



60
0.28
28.818
0.137




1.4
25.953
0.082




7.0
25.754
0.098


MMLV-II
50
0.28
25.014
0.152


Q68R/Q79R/L82R/

1.4
24.467
0.020


L99R/E282D

7.0
24.507
0.046



60
0.28
28.743
0.076




1.4
26.662
0.012




7.0
25.883
0.022


MMLV-II
50
0.28
24.771
0.027


Q68R/Q79R/L99R/

1.4
24.501
0.008


E282D/Q299E/I593E

7.0
24.485
0.087



60
0.28
27.721
0.057




1.4
25.836
0.030




7.0
25.199
0.016


MMLV-II
50
0.28
24.777
0.029


Q68R/Q79R/L82R/

1.4
24.432
0.033


L99R/E282D/Q299E/

7.0
24.435
0.024


I593E
60
0.28
27.854
0.035




1.4
25.613
0.028




7.0
25.072
0.030


MMLV-II
50
0.28
24.550
0.003


Q68R/Q79R/L99R/

1.4
24.333
0.033


E282D/Q299E/V433R/

7.0
24.345
0.030


I593E
60
0.28
26.399
0.051




1.4
25.236
0.040




7.0
25.105
0.050


MMLV-II
50
0.28
24.562
0.047


Q68R/Q79R/L82R/

1.4
24.350
0.039


L99R/E282D/Q299E/

7.0
24.302
0.015


V433R/I593E
60
0.28
26.459
0.022




1.4
25.247
0.069




7.0
25.001
0.050


MMLV-II
50
0.28
24.614
0.047


Q68R/Q79R/L82R/

1.4
24.420
0.051


L99R/E282D/Q299E/

7.0
24.361
0.021


T332E/I593E
60
0.28
26.769
0.089




1.4
25.609
0.041




7.0
25.348
0.043


MMLV-II
50
0.28
24.594
0.075


Q68R/Q79R/L82R/

1.4
24.402
0.045


L99R/E282D/Q299E/

7.0
24.291
0.057


T332E/V433R/I593E
60
0.28
26.591
0.018




1.4
25.517
0.048




7.0
25.193
0.027


MMLV-IV
50
0.28
24.397
0.091




1.4
24.303
0.062




7.0
24.189
0.039



60
0.28
25.807
0.045




1.4
25.180
0.037




7.0
24.625
0.011


SuperScript-IV
50
0.28
24.743
0.049




1.4
24.213
0.017




7.0
24.008
0.036



60
0.28
26.124
0.103




1.4
24.681
0.070




7.0
24.180
0.082
















TABLE 38







Sequence of quadruple or more mutant MMLV RTase variants.









SEQ ID NO:
Construct
Construct Sequence (AA)





686
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



V433R
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGOLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLRILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTOALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





687
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



I593E
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





688
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



Q299E
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





689
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



T332E
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGELFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




ETYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHE





690
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/L280R
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG




TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGOLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWR




TEARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





691
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/L280R/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



E282D
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGOLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWR




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGORKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





692
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/L82R/
TGGMGLAVROAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D
RLGIKPHIQRLRDQGILVPCQSPWNTPLRPVKKPG




TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGOLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMT HYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHE





693
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGOLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKOVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRQLREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHIHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





694
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVROAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



Q299E/I593E
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP




PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGOLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





695
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D/Q299E/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



I593E
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





696
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L99R/E282D/
RLGIKPHIRRLLDQGILVPCQSPWNTPLRPVKKPG



Q299E/V433R/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



I593E
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLRILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTOALKMAEGKKLNVYTNSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





697
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVROAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D/Q299E/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



V433R/I593E
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGOLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGTLFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLRILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





698
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D/Q299E/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



T332E/I593E
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP




EMGISGOLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGELFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF





699
MMLV-II
TLNIEDEHRLHETSKEPDVSLGSTWLSDFPQAWAE



Q68R/Q79R/
TGGMGLAVROAPLIIPLKATSTPVSIKQYPMSREA



L82R/L99R/
RLGIKPHIRRLRDQGILVPCQSPWNTPLRPVKKPG



E282D/Q299E/
TNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLP



T332E/V433R/
PSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRDP



I593E
EMGISGQLTWTRLPQGFKNSPTLFDEALHRDLADF




RIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQ




TLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWL




TDARKETVMGQPTPKTPRELREFLGTAGFCRLWIP




GFAEMAAPLYPLTKTGELFNWGPDQQKAYQEIKQA




LLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKL




GPWRRPVAYLSKKLDPVAAGWPPCLRMVAAIAVLT




KDAGKLTMGQPLRILAPHAVEALVKOPPDRWLSNA




RMTHYQALLLDTDRVQFGPVVALNPATLLPLPEEG




LOHNCLDILAEAHGTRPDLTDQPLPDADHTWYTGG




SSLLQEGQRKAGAAVTTETEVIWAKALPAGTSAQR




AQLIALTQALKMAEGKKLNVYTNSRYAFATAHEHG




EIYRRRGLLTSEGKEIKNKDEILALLKALFLPKRL




SIIHCPGHQKGHSAEARGNRMADQAARKAAITETP




DTSTLLIENSSPYTSEHF









Example 10: Selection of C-Terminal Peptide Extensions of MMLV RTase for Increased Activity and Thermostability

C-terminal peptide extensions were selected from use in previous studies demonstrating an increase in thermostability of a non-RTase related protein attached to the N-terminal or C-terminal end of the desired protein. The origin, amino acid sequence, and reference of the C-terminal extensions are summarized in Table 39.









TABLE 39







C-terminal peptide studies.












Size





C-terminal
(amino acid





peptide
residues)
Origin
Amino Acid Sequence
Reference














Control Tag 1
16
Random generation of peptide
RDRNKNNDRRKAKENE (SEQ
Hogrefe et al.




tag
ID NO: 732)






ATS
21
C-end tail of human α-
DPDNEAYEMPSEEGYQDYEP
Lee et al. (2005)




synuclein (NCBI accession
EA (SEQ ID NO: 733)





no. NP_001362216.1)







ATS
42
C-end tail of human α-
QLGKNEEGAPQEGILEDMP
Zhang et al. (2015);




synuclein (NCBI accession
VDPDNEAYEMPSEEGYQDY
Park et al. (2002)




no. NP_001362216.1)
EPEA (SEQ ID NO: 734)






ATTa Peptide
40
C-end tail of Arabidopsis
EGMEEGEFSEAREDLAALE
Zhang et al. (2015)





tubulins, TUA2 (NCBI

KDYEEVGAEGGDDEDDEGE





accession no. NP_175423.1)
EY (SEQ ID NO: 735)






ATTb Peptide
50
C-end tail of Arabidopsis
EGMDEMEFTEAESNMNDLV
Zhang et al. (2015)





tubulins, TUA3 (NCBI

SEYQQYQDATADEEGDYED





accession no. NP_568960.1)
EEEGEYQQEEEY (SEQ ID NO:






736)






Msb
114

E. coli msyB (NCBI

IDAAREEFLADNPGIDAEDA
Zhang et al. (2015);




accession no.
NVQQFNAQKYVLQDGDIM
Zou et al. (2008)




CAD6011033.1)
WQVEFFADEGEEGECLPML






SGEAAQSVFDGDYDEIEIRQ






EWQEENTLHEWDEGEFQLE






PPLDTEEGRAAADEWDER






(SEQ ID NO: 737)






Yd
137

E. coli hypothetical E. coli

ANPEQLEEQREETRLIIEELL
Zou et al. (2008)




ORF, yjgD (NCBI accession
EDGSDPDALYTIEHHLSADD





no. AAG59454.1)
LETLEKAAVEAFKLGYEVTD






PEELEVEDGDIVICCDILSEC






ALNADLIDAQVEQLMTLAE






KFDVEYDGWGTYFEDPNGE






DGDDEDFVDEDDDGVRH






(SEQ ID NO: 738)






Od
182
N-terminal domain of E. coli
DIVDSDQIEDIIQMINDMGIQ
Zou et al. (2008)




rpoD (NCBI accession no.
VMEEAPDADDLMLAENTAD





CAD6003062.1)
EDAAEAAAQVLSSVESEIGR






TTDPVRMYMREMGTVELLT






REGEIDIAKRIEDGINQVQCS






VAEYPEAITYLLEQYDRVEA






EEARLSDLITGFVDPNAEED






LAPTATHVGSELSQEDLDDDE






DEDEEDGDDDSADDD






NSIDPE (SEQ ID NO: 739)






ATYd


E. coli yjgD (NCBI accession

PNGEDGDDEDFVDEDDDGV
Zhang et al. (2015)




ho. AAP43518.1)
(SEQ ID NO: 740)






Trx
102

E. coli thioredoxin (NCBI

MTTATFSRHVERSDLPLLVD
Zou et al. (2008)




accession no.
FWAPCGPCKMMAPQFQQAA





WP_187194155.1)
HQLEPTIRLAKVNIEAEPHLAA






QFGIRSIPTLALFQGGREIARQ






AGVMGAQDIVRWTSTOVGR






(SEQ ID NO: 741)






Syn96-140
45
C-end tail of human α-
KKDQLGKNEEGAPQEGILE
Park et al. (2004)




synuclein (NCBI accession
DMPVDPDNEAYEMPSEEGY





no. NP_001362216.1)
QDYEPEA (SEQ ID NO: 742)






Syn103-115

C-end tail of human α-
NEEGAPQEGILED (SEQ ID
Park et al. (2004)




synuclein (NCBI accessionno.
NO: 743)





NP_001362216.1)







Syn114-126
13
C-end tail of human α-
NDMPVDPDNEAYE (SEQ ID
Park et al. (2004)




synuclein (NCBI accession
NO: 744)





no. NP_001362216.1)







Syn119-140
22
C-end tail of human α-
DPDNEAYEMPSEEGYQDYEP
Park et al. (2004)




synuclein (NCBI accessionno.
EA (SEQ ID NO: 745)





NP_001362216.1)







Syn130-140
11
C-end tail of human α-
EEGYQDYEPEA (SEQ ID NO:
Park et al. (2004)




synuclein (NCBI accessionno.
746)





NP_001362216.1)







LipB
26
C-end tail of Fusarium
DMSDEELEKKLTQYSEMDQ
Nagao et al. (1998)




heterosporum Lipase B
EFVKQMI (SEQ ID NO: 747)






Xyn
22
Linker region of XynAS9 (PDB
SGSGTTTTTTTSTTTGGTDPT
Li et al. (2019)




ID of 3WUB) from
(SEQ ID NO: 748)






Streptomycessp. S9








HP-76
76
chicken villin headpiece
VFTATTTLVPTKLETFPLDV
McKnight et al. 





LVNTAAEDLPRGVDPSRKEN
(1996)





HLSDEDFKAVFGMTRSAFAN






LPLWKQQNLKKEKGLF (SEQ






ID NO: 749)






HP-35
35
C-terminus of chicken villin
LSDEDFKAVFGMTRSAFANL
McKnight et al. 




headpiece
PLWKQQNLKKEKGLF (SEQ
(1996)





ID NO: 750)






Foldon
27
derived from the native T4
GYIPEAPRDGQAYVRKDGE
Du et al. (2008)




phage fibritin
WVLLSTFL (SEQ ID NO: 751)






PPC1
184
Full pre-peptidase C-terminal
TNVTFTMSGGTGDADLYVR
Yan et al. (2009)




domain of deep-sea
AGSKPTSTTYDCRPYKGGNS





psychroolerant bacterium 
EECSIDSPTAGTYHVMLRGY






Pseudoalteromonas sp. SM9913

SAYSGVSLVGNITGGSTGGG






SGTPQAGGGTVSDITANAGQ






WKHYTLDVPAGMANFTVTT






SGGTGDADLFVKFGSQPTSS






SYDCRPYKNGNAETCTFSNP






QAGTWHLSVNAYQTFSGLT






LSGQYQP (SEQ ID NO: 752)






PPC2
67
Half of pre-peptidase C-
TNVTFTMSGGTGDADLYVR
Yan et al. (2009)




terminaldomain of deep-
AGSKPTSTTYDCRPYKGGNS





sea psychrotolerant bacterium
EECSIDSPTAGTYHVMLRGY






Pseudoalteromonas sp.

SAYSGVSL (SEQ ID NO: 753)





SM9913







PPC3
85
Half of pre-peptidase C-
AGQWKHYTLDVPAGMANF
Yan et al. (2009)




terminaldomain of deep-
TVTTSGGTGDADLFVKFGSQ





sea psychrotolerant bacterium
PTSSSYDCRPYKNGNAETCT






Pseudoalteromonas sp.

FSNPQAGTWHLSVNAYQTFS





SM9913
GLTLSGQ (SEQ ID NO: 754)






KerSMF
105
pre-peptidase C-terminal
NPGGNVLQNNVPVTGLGAA
Fang et al. (2016);




domainof keratinase from
TGAELNYTVAVPAGSSQLRV
Fang et al. (2017)





Stenotrophomonasmaltophilia

TISGGSGDADLYVRQGSAPT





(KerSMF, NCBI accession no.
DTSYTCRPYLSGNSETCTINS





AGK29593.1)
PAAGTWYVRVKAYSTFSGV






TLNAQY (SEQ ID NO: 755)






KerSMD
106
pre-peptidase C-terminal
SCGPVATPLTNKAAVGGLN
Fang et al. (2016);




domain of keratinase from
GTAGSSRLYSFEAAAGKQLS
Fang et al. (2017)





Stenotrophomonasmaltophilia

VITYGGTGNVSVYIAQGREP





(KerSMD, NCBI accession no.
SASDNDGKSTRPGTSETVRV





AGK12420.1)
NKPVAGTYYIKVVGEAAYN






GVSILATQ (SEQ ID NO: 756)






DDFD1
217
Fusion of two pre-peptidase C-
NPGGNVLQNNVPVTGLGAA
Fang et al. (2017)




terminal domain of keratinase
TGAELNYTVAVPAGSSQLRV





from Stenotrophomonas
TISGGSGDADLYVRQGSAPT






maltophilia (KerSMF,

DTSYTCRPYLSGNSETCTINS





followed by KerSMD)
PAAGTWYVRVKAYSTFSGV






TLNAQYEEPCTESCGPVATP






LINKAAVGGLNGTAGSSRL






YSFEAAAGKQLSVITYGGTG






NVSVYIAQGREPSASDNDGK






STRPGTSETVRVNKPVAGTY






YIKVVGEAAYNGVSILATQ






(SEQ ID NO: 757)






DDFD2
217
Fusion of two pre-peptidase C-
SCGPVATPLTNKAAVGGLN
Fang et al. (2017)




terminal domain of keratinase
GTAGSSRLYSFEAAAGKQLS





from Stenotrophomonas
VITYGGTGNVSVYIAQGREP






maltophilia (KerSMF,

SASDNDGKSTRPGTSETVRV





followed by KerSMD
NKPVAGTYYIKVVGEAAYN






GVSILATQEEPCTENPGGNV






LQNNVPVTGLGAATGAELN






YTVAVPAGSSQLRVTISGGS






GDADLYVRQGSAPTDTSYTC






RPYLSGNSETCTINSPAAGT






WYVRVKAYSTFSGVTLNAQY






(SEQ ID NO: 758)






GD-95
20
C-terminal region of Lipasefrom
SFDIRAFYLRLAEQLASLRP
Gudiukaite et al. 





Geobacillus sp. 95

(SEQ ID NO: 759)
(2014)





BACa
12
C-terminal region of the A
REEKPSSAPSS (SEQ ID NO:
Carver et al. (1998)




subunit of bovine a-crystallin
760)






BACb
14
C-terminal region of the B
REEKPAVTAAPKK (SEQ ID
Carver et al. (1998);




subunit of bovine a-crystallin
NO: 761)
Treweek et al. (2007)









Example 11: Evaluation of cDNA Synthesis Facilitated by MMLV RTase Mutant Fusions with C-Terminal Peptide Extensions

The ability of an MMLV RTase with a C-terminal peptide extension to synthesize cDNA from purified total RNA was evaluated compared to the base construct of MMLV RTase without a C-terminal peptide extension. MMLV RTases with C-terminal peptide extensions were tested by random hexamer priming using standard two-step cDNA synthesis.


A colony of BL21(DE3) cells with the appropriate strain (Table 39) was inoculated in TB media (5 mL) with kanamycin (0.05 mg/mL) and grown at 37° C. until an OD of approximately 0.9 was achieved, followed by cooling of cultures on ice for 5 minutes. Protein expression was induced by the addition of 1M IPTG (2.5 uL), followed by growth at 18° C. for 21 hours. Cells were harvested via centrifugation at 4,700×g for 10 minutes and cell pellets re-suspended in lysis buffer containing 50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 10 mM imidazole. Cells were lysed by the addition of 1×BugBuster (Millipore Sigma) and incubated on an end-over-end mixer for 15 minutes at room temperature. Cellular debris was removed from the lysate by centrifugation at 4,700×g for for 10 minutes at 4° C.


Cleared lysates were applied to a HisPur™ Ni-NTA spin plate (ThermoFisher) after equilibrating the resin with Screening His-Bind buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 10 mM imidazole). Samples were washed three times with Screening His-Wash buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 25 mM imidazole) and eluted using Screening His-Elution buffer (50 mM NaPO4, pH 7.8, 5% glycerol, 300 mM NaCl, and 250 mM imidazole). Purified proteins were normalized to a set concentration (375 nM) and standard two-step cDNA synthesis carried out. More specifically, RTases (4 μL, 375 nM) were added to a reaction mixture containing: RNA (90 ng), dNTPs (100 μM), random hexamers and oligo dT primers (5 ng/uL each), first strand synthesis buffer (1×, 50 mM Potassium Acetate, 20 mM Tris-acetate, 10 mM Magnesium Acetate, 100 m/ml BSA, 0.6 M trehalose, 10 mM DTT, pH 7.9), SuperaseIN (0.17 U/μL) in a 50 μL volume. The reaction was run at 25° C. for 2 minutes, 50° C. for 15 minutes, and 80° C. for 10 minutes.


Resultant cDNA, synthesized by the RTase mutants, was quantified by qPCR amplification for identification of the human SFRS9 gene. Reactions were performed in qPCR assay master mix comprised of Integrated DNA Technologies PrimeTime Gene Expression Master Mix (GEM, 1×), SFRS9 primer set (500 nM, Table 2), and SFRS9 probe (250 nM, Table 2) in a 10:1 ratio for a final volume of 20 μL. Reactions were run on a qPCR instrument (QuantStudio7 Flex) on a 95° C. hold for 3 minutes, followed by 40 cycles of 95° C. for 15 seconds, and 60° C. for one minute for 40 cycles. Reactions were analyzed and Ct value reported (Table 40).









TABLE 40







Two-Step cDNA Synthesis by MMLV-RTase with


C-terminal peptide extension using random priming.











C-terminal Peptide
Ct Mean
Ct Standard Deviation







No tag
29.565
0.130



Control Tag 1
29.260
0.020



ATS-21
26.996
0.019



ATS-42
28.942
0.044



ATTa Peptide
26.679
0.138



ATTb Peptide
25.907
0.077



ATYd
29.697
0.105



BACa
34.043
0.126



DDFD1
27.716
0.053



DDFD2
33.042
0.195



Foldon
30.500
0.031



GD-95
29.925
0.043



HP-35
29.328
0.110



HP-76
30.324
0.034



KerSMD
29.362
0.054



KerSMF
33.338
0.167



LipB
26.097
0.109



Msb
26.998
0.041



Od
28.048
0.125



PPC1
27.410
0.047



PPC2
26.595
0.099



PPC3
28.040
0.094



Syn103-115
27.055
0.011



Syn114-126
26.288
0.062



Syn119-140
34.974
0.975



Syn130-140
26.678
0.068



Syn96-140
28.049
0.099










Eighteen of the thirty C-terminal peptides tested demonstrated an increase in the overall activity using random priming compared to the base construct. Ten of the eighteen C-terminal peptides (i.e., ATTb Peptide, LipB, Syn114-126, PPC2, Syn130-140, ATTa Peptide, ATS-21, Msb, Syn103-115 and PPC1) demonstrated a 6-fold or higher increase in overall activity as compared to the base construct.


Example 12: C-Terminal Peptide Extension of Reverse Transcriptase Evaluation at High Temperatures

The ability of RTase with a C-terminal peptide extension versus a base construct without a C-terminal peptide to synthesize cDNA from purified total RNA was compared. MMLV RTases with C-terminal peptides were tested at higher temperatures to determine robust reverse transcription activity. The standard two-step procedure was used in which RTases (4 μL, 375 nM) were added to a reaction mixture containing RNA (90 ng), dNTPs (100 μM), random hexamers and oligo dT primers (5 ng/uL each), first strand synthesis buffer (1×, 50 mM Potassium Acetate, 20 mM Tris-acetate, 10 mM Magnesium Acetate, 100 μg/ml BSA, 0.6M trehalose, 10 mM DTT, pH 7.9), and SuperaseIN (0.17 U/μL) in a 50 μL volume. The reaction was run at 25° C. for 2 minutes, followed by 55° C. or 60° C. for 15 minutes, and 80° C. for 10 minutes.


cDNA synthesized by RTase mutants was quantified by qPCR amplification using a SFRS9 human cell gene assay that included a master mix comprised of Integrated DNA Technologies PrimeTime Gene Expression Master Mix (GEM, 1×), SFRS9 primer set (500 nM, Table 2), and SFRS9 probe (250 nM, Table 2) in a 10:1 ratio (assay master mix:synthesized cDNA) in a final volume of 20 μL and reaction run on a qPCR (QuantStudio7 Flex) at a 95° C. hold for 3 minutes, followed by 40 cycles of 95° C. for 15 seconds, and 60° C. for one minute and Ct value reported in Table 41.









TABLE 41







Ct value from Two-Step cDNA Synthesis reactions by


MMLV-RTase with C-terminal peptide extensions


using random primimg at higher temperatures










C-terminal
Temperature
Ct
Ct Standard


Peptide
(° C.)
Mean
Deviation





No tag
55
33.627
0.072



60
35.028
0.332


Control Tag 1
55
34.544
0.147



60
35.175
0.241


ATS-21
55
35.176
0.720



60
37.374
0.370


ATS-42
55
34.450
0.113



60
36.448
0.451


ATTa
55
30.802
0.063



60
34.967
1.278


ATTb
55
30.796
0.166



60
33.003
0.082


ATYd
55
35.835
0.632



60
36.123
0.096


BACa
55
36.154
0.816



60
36.950
0.733


DDFD1
55
32.733
0.081



60
34.499
0.395


DDFD2
55
36.891
0.972



60
36.537
0.525


Foldon
55
34.633
0.657



60
36.545
1.237


GD-95
55
34.310
0.772



60
36.007
0.793


HP-35
55
35.310
0.055



60
35.917
0.347


HP-76
55
36.183
0.344



60
36.006
0.267


KerSMD
55
34.195
0.392



60
34.830
0.144


KerSMF
55
35.961
0.901



60
36.713
0.309


LipB
55
31.123
0.108



60
33.129
0.207


Msb
55
32.471
0.116



60
35.981
0.526


Od
55
31.560
0.122



60
33.713
0.255


PPC1
55
32.073
0.169



60
33.963
0.404


PPC2
55
33.545
0.092



60
35.072
0.235


PPC3
55
33.125
0.623



60
33.794
0.134


Syn103-115
55
32.716
0.081



60
34.455
0.564


Syn114-126
55
30.674
0.136



60
32.459
0.143


Syn119-140
55
36.978
0.420



60
36.920
0.752


Syn130-140
55
32.242
0.234



60
34.022
0.388


Syn96-140
55
34.978
0.604



60
35.918
1.100


Trx
55
34.821
0.236



60
36.102
0.649


Xyn
55
35.125
0.268



60
36.063
0.585


Yd
55
35.424
0.126



60
36.527
0.585









Among the 30 C-terminal peptides tested, 11 demonstrated increased overall activity when using random priming as compared to the base construct. A 6-fold or higher increase in overall activity was demonstrated in 5 of the 11 C-terminal peptides (i.e., Syn114-126, ATTb Peptide, ATTa, Peptide, LipB and Od) at 55° C. as compared to the base construct. Two of the 11 C-terminal peptides (i.e., Syn114-126 and ATTb peptide) demonstrated a 6-fold or higher increase in overall activity at 60° C. as compared to the base construct.


Example 13: C- or N-Terminal Peptide Extension of Reverse Transcriptase Evaluation by Random Priming

The ability of an MMLV RTase with a C-terminal peptide extension to synthesize cDNA from purified total RNA was evaluated as compared to the base construct of MMLV RTase without a C-terminal peptide extension. MMLV RTases with C-terminal or N-terminal peptide extensions (Table 42) were expressed and crudely extracted from BL21(DE3) E. coli cells and purified via HisPur™ Ni-NTA spin plate (ThermoFisher).









TABLE 42







C-terminal or N-terminal peptide studies.











C-terminal
Size (AA





peptide
residues)
Origin
Amino Acid Sequence
Reference














ATTa 
40
C-end tail of Arabidopsis
EGMEEGEFSEAREDLAALE
Zhang et al.


Peptide


tubulins, TUA2 (NCBI accession

KDYEEVGAEGGDDEDDEGE
(2015)




no. NP_175423.1)
EY (SEQ ID NO: 735)






ATTb 
50
C-end tail of Arabidopsis
EGMDEMEFTEAESNMNDLV
Zhang et al.


Peptide


tubulins, TUA3 (NCBI accession

SEYQQYQDATADEEGDYED
(2015)




no. NP_568960.1)
EEEGEYQQEEEY(SEQ ID NO:






736






Od
182
N-terminal domain of E. coli
DIVDSDQIEDIIQMINDMGIQ
Zou et al.




rpoD (NCBI accessionno.
VMEEAPDADDLMLAENTAD
(2008)




CAD6003062.1)
EDAAEAAAQVLSSVESEIGR






TTDPVRMYMREMGTVELLT






REGEIDIAKRIEDGINQVQCS






VAEYPEAITYLLEQYDRVEA






EEARLSDLITGFVDPNAEED






LAPTATHVGSELSQEDLDDD






EDEDEEDGDDDSADDD






NSIDPE (SEQ ID NO: 739)






Syn114-126
3
C-end tail of human a-
NDMPVDPDNEAYE (SEQ ID
Park et al.




synuclein (NCBI accessionno.
NO: 744)
(2004)




NP_001362216.1)







LipB
26
C-end tail of Fusarium
DMSDEELEKKLTQYSEMDQ
Nagao et al.





heterosporum Lipase B

EFVKQMI (SEQ ID NO: 747)
(1998)





PPC1 D
184
Full pre-peptidase C-terminal
TNVTFTMSGGTGDADLYVR
Yan et al. 




domain of deep-
AGSKPTSTTYDCRPYKGGNS
(2009)




sea psychrotolerant bacterium 
EECSIDSPTAGTYHVMLRGY






Pseudoalteromonas sp. SM9913

SAYSGVSLVGNITGGSTGGG






SGTPQAGGGTVSDITANAGQ






WKHYTLDVPAGMANFTVT






SGGTGDADLFVKFGSQPTSS






SYDCRPYKNGNAETCTFSNP






QAGTWHLSVNAYQTFSGLT






LSGQYQP (SEQ ID NO: 752)






Sto7d+K12L
64
“7 kDa DNA-binding” proteinfrom
MVTVKFKYKGEELEVDISKI
Kalichuk et





Sulfolobussolfataricus

KKVWRVGKMISFTYDDNGK
al. (2016)





TGRGAVSEKDAPKELLQML






EKSGKK (SEQ ID NO: 762)









Resultant RTases were tested by random hexamer priming using a standard two-step cDNA synthesis. More specifically, RTases (4 μL, 375 nM) were added to a reaction mixture containing RNA (90 ng), dNTPs (100 μM), random hexamers and oligo dT primers (5 ng/uL each), first strand synthesis buffer (1×, 50 mM Potassium Acetate, 20 mM Tris-acetate, 10 mM Magnesium Acetate, 100 m/ml BSA, 0.6 M trehalose, 10 mM DTT, pH 7.9), SuperaseIN (0.17 U/μL) in a 50 μL volume. The reaction was run at 25° C. for 2 minutes, 55 or 60° C. for 15 minutes, and 80° C. for 10 minutes.


Resultant cDNA, synthesized by the RTase mutants, was quantified by qPCR amplification for identification of the human SFRS9 gene. Reactions were performed in qPCR assay master mix comprised of Integrated DNA Technologies PrimeTime Gene Expression Master Mix (GEM, 1×), SFRS9 primer set (500 nM, Table 2), and SFRS9 probe (250 nM, Table 2) in a 10:1 ratio for a final volume of 20 μL. Reactions were run on a qPCR instrument (QuantStudio7 Flex) on a 95° C. hold for 3 minutes, followed by 40 cycles of 95° C. for 15 seconds, and 60° C. for one minute for 40 cycles. Reactions were analyzed and Ct value reported (Table 42).


Seven of the 43 C-terminal or N-terminal peptide extensions (i.e., C-terminal ATTa Peptide, C-terminal ATTb Peptide, C-terminal LipB, C- and N-terminal Syn114-126, C-terminal Od and C-terminal LipB+Od) demonstrated either an increase or negligible affect in the overall activity using random priming as compared to the base construct (Table 43).









TABLE 43







Two-Step cDNA Synthesis by MMLV-RTase with C- or N-terminal


peptide extension using random priming.











Temper-
Ct
Ct Standard


RTase
ature (C)
Mean
Deviation













MMLV-II
55
29.352
0.568



60
31.560
0.13


MMLV-II with CTD Od + Od
55
33.932
0.808



60
34.854
2.151


MMLV-II with CTD ATTa
55
26.589
0.075



60
29.887
0.179


MMLV-II with CTD
55
32.573
0.962


LipB + ATTb
60
32.253
0.589


MMLV-II with CTD
55
32.451
0.106


ATTa + LipB
60
33.326
0.526


MMLV-II with CTD
55
33.277
1.124


ATTb + ATTa
60
33.094
0.868


MMLV-II with CTD
55
34.883
0.606


ATTb + LipB
60
33.887
1.635


MMLV-II with CTD Syn114-
55
33.284
0.368


126 + ATTb
60
34.582
2.122


MMLV-II with CTD ATTb
55
27.949
0.303



60
31.919
1.536


MMLV-II with NTD ATTb
55
32.659
0.525



60
33.757
0.268


MMLV-II with CTD Syn114-
55
32.876
0.857


126 + LipB
60
33.598
0.227


MMLV-II with CTD
55
33.510
0.871


Od + Syn114-126
60
33.011
0.435


MMLV-II with CTD
55
32.355
0.535


LipB + Syn114-126
60
33.490
0.931


MMLV-II with CTD
55
32.604
0.446


ATTa + PPC1
60
34.108
1.18









Example 14: C-Terminal Peptide Extension of Reverse Transcriptase Evaluation by Random Priming

The ability of an MMLV RTase with a C-terminal peptide extension to synthesize cDNA from purified total RNA was evaluated as compared to the base construct of MMLV RTase without a C-terminal peptide extension. MMLV RTases with C-terminal peptides were tested by random hexamer priming using standard two-step cDNA synthesis.


More specifically, RTases (1 μL, 620 nM) were added to a reaction mixture containing RNA (20 ng), dNTPs (100 μM), random hexamers, and oligo dT primers (5 ng/uL each), first strand synthesis buffer (1×, 50 mM, Potassium Acetate, 20 mM Tris-acetate, 10 mM Magnesium Acetate, 100 μg/ml BSA, 0.6, M trehalose, 10 mM DTT, pH 7.9), SuperaseIN (0.17 U/μL)) in a 20 μL volume and run at 25° C. for 2 minutes, followed by 42-65° C. for 15 minutes, and 80° C. for 10 minutes.


Resultant cDNA, synthesized by the RTase mutants, was quantified by qPCR amplification for identification of the human SFRS9 gene. Reactions were performed in qPCR assay master mix comprising Integrated DNA Technologies PrimeTime Gene Expression Master Mix (GEM, 1×), SFRS9 primer set (500 nM, Table 2), and SFRS9 probe (250 nM, Table 2) in a 10:1 ratio for a final volume of 20 μL. Reactions were run on a qPCR instrument (QuantStudio7 Flex) on a 95° C. hold for 3 minutes, followed by 40 cycles of 95° C. for 15 seconds, and 60° C. for one minute for 40 cycles. Reactions were analyzed and Ct value reported (Table 44).


All five C-terminal peptide extensions tested demonstrated an increase in the overall activity using random priming compared to the base construct. Two of the five C-terminal peptide extensions (i.e., LipB and Syn114-126) retained or showed an increase in overall activity as compared to the mutant variant without the C-terminal peptide.









TABLE 44







Two-Step cDNA Synthesis by MMLV-RTase with C-terminal peptide


extensions using random priming.











Temper-

Ct



ature
Ct
Standard


RTase
(° C.)
Mean
Deviation













MMLV-II
42
24.643
0.039



43.4
24.780
0.066



46.4
24.753
0.079



50.8
25.282
0.040



56.4
30.126
0.135



61
31.817
0.036



63.6
32.628
0.220



65
33.110
0.201


SuperScript-IV
42
24.501
0.066



43.4
24.731
0.085



46.4
24.689
0.072



50.8
24.637
0.021



56.4
25.041
0.070



61
25.808
0.034



63.6
25.972
0.118



65
26.097
0.160


MMLV-II Q68R/Q79R/L82Y/L99R/L280I/
42
24.809
0.089


E282D/Q299E/T306K/V433N/I593W
43.4
24.817
0.068



46.4
24.820
0.095



50.8
24.745
0.032



56.4
25.400
0.072



61
25.898
0.083



63.6
26.123
0.116



65
26.079
0.035


MMLV-II Q68R/Q79R/L82Y/L99R/L280I/
42
24.672
0.075



43.4
24.800
0.056



46.4
24.631
0.069


E282D/Q299E/T306K/V433N/I593W
50.8
24.591
0.018


with ATTa
56.4
24.858
0.058



61
26.147
0.083



63.6
26.682
0.144



65
26.880
0.103


MMLV-II Q68R/Q79R/L82Y/L99R/L280I/
42
24.906
0.076


E282D/Q299E/T306K/V433N/I593W
43.4
24.759
0.074


with ATTb
46.4
24.618
0.007



50.8
24.879
0.185



56.4
25.388
0.065



61
29.436
0.154



63.6
30.592
0.128



65
30.882
0.109


MMLV-II Q68R/Q79R/L82Y/L99R/L280I/
42
24.677
0.044


E282D/Q299E/T306K/V433N/I593W
43.4
24.685
0.009


with LipB
46.4
24.785
0.147



50.8
24.751
0.063



56.4
24.885
0.133



6
25.815
0.151



63.6
25.919
0.116



65
26.136
0.087


MMLV-II Q68R/Q79R/L82Y/L99R/L280I/
42
24.823
0.260


E282D/Q299E/T306K/V433N/I593W
43.4
24.869
0.140


with Od
46.4
24.613
0.043



50.8
24.722
0.199



56.4
25.933
0.137



61
28.688
0.190



63.6
28.985
0.167



65
29.440
0.043


MMLV-II Q68R/Q79R/L82Y/L99R/L280I/
42
24.624
0.071


E282D/Q299E/T306K/V433N/I593W
43.4
24.648
0.065


with Syn114-126
46.4
24.694
0.010



50.8
24.614
0.091



56.4
25.016
0.064



61
25.667
0.030



63.6
25.913
0.053



65
25.723
0.055









BIBLIOGRAPHY



  • 1. Carver et al., “NMR spectroscopy of a-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins,” Int. J. Biol. Macromol. 22(3-4): 197-209 (1998).

  • 2. Coffin et al., “The discovery of reverse transcriptase,” Ann. Rev. Virol. 3(1): 29-51 (2016).

  • 3. Du et al., “Improvement of thermostability of recombinant collagen-like protein by incorporating a foldon sequence,” Appl. Microbiol. Biotechnol. 79(2): 195-202 (2008).

  • 4. Fang et al., “Enhancement of the catalytic efficiency and thermostability of Stenotrophomonas sp. keratinase KerSMD by domain exchange with KerSMF,” Microb. Biotechnol. 9(1): 35-46 (2016).

  • 5. Fang et al., “Rational protein engineering approaches to further improve the keratinolytic activity and thermostability of engineered keratinase KerSMD,” Biochem. Eng. J. 127: 147-53 (2017).

  • 6. Gudiukaite et al., “Influence of N- and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95,” Extremophiles 18(1): 131-145 (2014).

  • 7. Hogrefe et al., “Mutant reverse transcriptase and methods of use,” U.S. Pat. No. 9,783,791.

  • 8. Kalichuk et al., “The archaeal ‘7 kDa DNA-binding’ proteins: extended characterization of an old gifted family,” Sci. Rep. 6: 37274 (2016).

  • 8. Kotewicz et al., “Cloned genes encoding reverse transcriptase lacking RNase H activity,” U.S. Pat. No. 5,405,776.

  • 9. Kotewicz et al., “Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity,” Nucleic Acids Res. 16(1): 265-77 (1988).

  • 10. Lee et al., “Stabilizing peptide fusion for solving the stability and solubility problems of therapeutic proteins,” Pharm. Res. 22(10): 1735-46 (2005).

  • 11. Li et al., “Improvement of GH10 family xylanase thermostability by introducing of an extra α-helix at the C-terminal,” Biochem. Biophys. Res. Commun. 515(3): 417-22 (2019).

  • 12. McKnight et al., “A Thermostable 35-Residue Subdomain within Villin Headpiece,” J. Mol. Biol. 260: 126-34 (1996).

  • 13. Nagao et al., “C-terminal peptide of Fusarium heterosporum lipase is necessary for its increasing thermostability,” J. Biochem. 124(6): 1124-29 (1998).

  • 14. Park et al., “Stress-Induced Aggregation Profiles of GST-R-Synuclein Fusion Proteins: Role of the C-Terminal Acidic Tail of R-Synuclein in Protein Thermosolubility and Stability,” Biochemistry 41(12): 4137-46 (2002).

  • 15. Park et al., “Effects of novel peptides derived from the acidic tail of synuclein (ATS) on the aggregation and stability of fusion proteins,” Protein Eng. Des. Sel. 17(3): 251-60 (2004).

  • 16. Rogers et al., “Novel reverse transcriptases for use in high temperature nucleic acid synthesis,” U.S. Patent Application Publication No. US 2015/0210989 A1.

  • 17. Treweek et al., “Site-directed mutations in the C-terminal extension of human abcrystallin affect chaperone function and block amyloid fibril formation,” PLoS One 2(10): e1046 (2007).

  • 18. Yan et al., “Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913: cloning, expression, characterization and function analysis of the C-terminal PPC domains,” Extremophiles 13(4): 725-33 (2009).

  • 19. Zhang et al., “Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners,” Biotechnol. Lett. 37(4): 891-98 (2015).

  • 20. Zou et al., “Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli,” J. Biotechnol. 135(4): 333-39 (2008).


Claims
  • 1. An isolated Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutant comprising a C-terminal peptide extension, an N-terminal peptide extension, or both a C-terminal and an N-terminal peptide extension.
  • 2. The isolated MMLV RTase mutant of claim 1, wherein the C-terminal peptide extension comprises an amino acid sequence of SEQ ID NO: 732-761.
  • 3. The isolated MMLV RTase mutant of claim 1, wherein the N-terminal peptide extension comprises an amino acid sequence of SEQ ID NO: 732-761.
  • 4. The isolated MMLV RTase mutant of claim 1, wherein the C-terminal peptide extension and N-terminal peptide extension comprise an amino acid sequence of SEQ ID NO: 732-761.
  • 5. The isolated MMLV RTase mutant of claim 1, wherein the C-terminal peptide extension and/or N-terminal peptide extension are unnatural peptide tags.
  • 6. The isolated MMLV RTase mutant of claim 1, wherein the C-terminal peptide extension or N-terminal peptide extension is the amino acid sequence of SEQ ID NO: 735, SEQ ID NO: 736, SEQ ID NO: 739, SEQ ID NO: 744, or SEQ ID NO: 747.
  • 7. The isolated MMLV RTase mutant of claim 6, wherein the C-terminal peptide extension or N-extension peptide extension is the amino acid sequence of SEQ ID NO: 736 or SEQ ID NO: 744.
  • 8. The isolated MMLV RTase mutant of claim 6, wherein the C-terminal peptide extension or N-terminal peptide extension is the amino acid sequence of SEQ ID NO: 744 or SEQ ID NO: 747.
  • 9. An isolated Moloney murine leukemia virus (MMLV) reverse transcriptase (RTase) mutant comprising the amino acid sequence of SEQ ID NO: 674 (MMLV-II), wherein the amino acid sequence of the MMLV RTase mutant further comprises a C-terminal peptide extension or N-terminal peptide extension and at least two amino acid substitutions that are: (a) a glutamine to arginine substitution at position 68 (Q68R);(b) a glutamine to arginine substitution at position 79 (Q79R);(c) a leucine to tyrosine at position 82 (L82Y);(d) a leucine to arginine substitution at position 99 (L99R);(e) a leucine to isoluecine at position 280 (L280I);(f) a glutamic acid to aspartic acid substitution at position 282 (E282D);(g) a glutamine to glutamic acid substitution at position 299 (Q299E);(h) threonine to lysine at position 306 (T306K);(i) a valine to asparagine at position 433 (V433N); or(j) an isoleucine to tryptophan at position 593 (I593W).
  • 10. The isolated MMLV Rtase mutant of claim 9, wherein the C-terminal peptide extension or N-terminal peptide extension comprises an amino acid sequence of SEQ ID NO: 735, SEQ ID NO: 736, SEQ ID NO: 739, SEQ ID NO: 744, or SEQ ID NO: 747.
  • 11. The isolated MMLV RTase mutant of any one of claims 1 to 10, wherein the MMLV RTase mutant lacks RNase H activity.
  • 12. The isolated MMLV RTase mutant of any one of claims 1 to 10, wherein the MMLV RTase mutant possesses at least one of the following characteristics: enhanced DNA synthesis, increased fidelity, or enhanced thermostability.
  • 13. An isolated nucleic acid molecule comprising a nucleotide sequence encoding the MMLV Rtase mutant of any one of claims 1 to 10.
  • 14. A composition comprising the isolated MMLV RTase mutant of of any one of claims 1 to 10.
  • 15. The composition of claim 14, wherein the isolated MMLV RTase mutant possesses at least one of the following characteristics: enhanced DNA synthesis, increased fidelity, or enhanced thermostability.
  • 16. A kit comprising the isolated MMLV RTase mutant of mutant of any one of claims 1 to 10.
  • 17. The kit of claim 16, wherein the isolated MMLV RTase mutant lacks RNAse H activity.
  • 18. The kit of claim 16, wherein the isolated MMLV RTase mutant possesses at least one of the following characteristics: enhanced DNA synthesis, increased fidelity, or enhanced thermostability.
  • 19. A method for synthesizing complementary deoxyribonucleic acid (cDNA) comprising: (a) providing the isolated MMLV RTase mutant of any one of claims 1 to 10; and(b) contacting the isolated MMLV RTase mutant with a nucleic acid template to permit synthesis of cDNA.
  • 20. A method for performing reverse transcription-polymerase chain reaction (RT-PCR) comprising: (a) providing the isolated MMLV RTase mutant of any one of claims 1 to 10; and(b) contacting the isolated MMLV RTase mutant with a nucleic acid template to replicate and amplify the nucleic acid template.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 63/314,666 filed Feb. 28, 2022. The above listed application is incorporated by reference herein in its entirety for all purposes

Provisional Applications (1)
Number Date Country
63314666 Feb 2022 US