1. Field of the Invention
The present invention relates to a C5 benzothiazolyl sulfone compound, a method of preparing the same, a method of preparing a polyene dialdehyde compound using the same, and a method of synthesizing lycopene using the same. Particularly, the present invention relates to a C5 benzothiazolyl sulfone compound, a preparation method thereof, a method of efficiently preparing crocetin dialdehyde (C20H24O2) having a polyene dialdehyde structure using the sulfone compound and C30 and C40 apo-carotene dialdehydes homologous thereto, and a method of synthesizing lycopene using the sulfone compound. More particularly, the present invention relates to a novel C5 benzothiazolyl sulfone compound having an acetal protecting group derived from neopentyl glycol, a preparation method thereof, a method of efficiently preparing crocetin dialdehyde and homologous C30 (C30H36O2) and C40 (C40H48O2) apo-carotene dialdehyde compounds using the sulfone compound, and a method synthesizing lycopene via a double-bond formation reaction using the sulfone compound.
2. Description of the Related Art
The present invention pertains to a C5 benzothiazolyl sulfone compound having an acetal protecting group, a method of preparing the same, a method of efficiently preparing C20 crocetin dialdehyde having a polyene dialdehyde structure using the same and C30 and C40 apo-carotene dialdehyde compounds homologous thereto, and a method of synthesizing lycopene using sulfone synthesis.
In regard thereto, the following method is known. Specifically, a C5 Wittig salt having an acetal protecting group derived from neopentyl glycol is prepared, and then subjected to a Wittig reaction with crocetin dialdehyde, yielding a polyene dialdehyde compound homologous thereto (Cited Reference). However, this case is problematic because the reaction has to be carried out for about 20 min at high temperature using microwaves, the Z-double bond configuration is mainly formed due to the use of the Wittig salt that is difficult to purify, and phosphine oxide that is difficult to remove is generated as a byproduct.
Accordingly, the present invention is intended to provide a novel C5 benzothiazolyl sulfone compound having an acetal protecting group derived from neopentyl glycol and a method of preparing the same. Also, the present invention is intended to provide a method of efficiently preparing homologous apo-carotene dialdehyde compounds by repetitively reacting the sulfone compound with polyene dialdehyde. Also, the present invention is intended to provide a method of efficiently preparing lycopene by subjecting crocetin dialdehyde to a double-bond formation reaction using benzothiazolyl geranyl sulfone.
The present invention provides a C5 benzothiazolyl sulfone compound represented by Chemical Formula 1 below.
In addition, the present invention provides a method of preparing the C5 benzothiazolyl sulfone compound represented by Chemical Formula 1.
This method comprises: (a) oxidizing isoprene (C5H8), thus synthesizing isoprene monoxide represented by Chemical Formula 2 below; (b) subjecting isoprene monoxide to a ring opening reaction using 2-mercaptobenzothiazole, thus synthesizing hydroxyallylic benzothiazolyl sulfide represented by Chemical Formula 3 below; (c) oxidizing allylic alcohol contained in hydroxyallylic benzothiazolyl sulfide, thus synthesizing an unsaturated aldehyde containing benzothiazolyl sulfide represented by Chemical Formula 4 below; (d) subjecting the aldehyde to an acetal formation reaction using neopentyl glycol, thus synthesizing an acetal containing benzothiazolyl sulfide represented by Chemical Formula 5 below; and (e) oxidizing benzothiazolyl sulfide of the acetal, thus synthesizing C5 benzothiazolyl sulfone represented by Chemical Formula 1.
Specifically, oxidizing in (a) may be performed in a single step using isoprene and peroxycarboxylic acid but position selectivity of oxidation for isoprene is poor, and thus N-bromosuccinimide (NBS) may be reacted in water, thus position-selectively forming a bromohydrine compound, which is then reacted with an alkaline aqueous solution such as NaOH (Korean Patent No. 10-0398652).
The epoxide ring opening reaction in (b) may be performed by dissolving 2-mercaptobenzothiazole in a dimethylformamide (DMF) solvent and using a monovalent copper salt (CuCl, CuBr, CuI, or CuCN) as a catalyst (0.01˜0.05 equivalents) (Korean Patent No. 10-0398652). As such, the sulfide represented by Chemical Formula 3 is selectively obtained, and E:Z selectivity of the double bond is 5:1 or higher.
Oxidizing the alcohol in (c) is performed in the absence of water, and PDC (pyridinium dichromate), PCC (pyridinium chlorochromate), MnO2 or the like may be used by being dispersed in a CH2Cl2 solvent. To facilitate work-up of the reaction, silica gel may be added.
The acetal formation reaction in (d) may be performed using ethylene glycol, propylene glycol, and neopentyl glycol. Taking into consideration the stability of the compound, neopentyl glycol is preferably useful. The acetal formation reaction is implemented by adding p-TsOH in a catalytic amount (0.05 equivalents or less) in the presence of a benzene or toluene solvent and removing the produced water using a Dean-Stark column.
Selective oxidation of the sulfide into sulfone in (e) may be performed under known reaction conditions, including using hydrogen peroxide (H2O2) in the presence of any metal oxide catalyst, or using oxone, peroxycarboxylic acid, etc. Preferably, hydrogen peroxide is adsorbed to urea and then reacted with phthalic anhydride to give mono-perphthalic acid that is then reacted in the presence of an acetonitrile solvent.
These steps may further include dilution with an organic solvent, washing with water, drying over anhydrous Na2SO4, filtration, and concentration under reduced pressure.
Also, purifying using column chromatography may be further carried out.
The column chromatography may be silica gel flash column chromatography.
In addition, the present invention provides a method of preparing polyene dialdehyde represented by Chemical Formula 7 below, comprising: binding the C5 benzothiazolyl sulfone compound represented by Chemical Formula 1 with polyene dialdehyde represented by Chemical Formula 6 below at a molar ratio of 2:1, and then performing acid treatment, thus removing an acetal protecting group. The compound represented by Chemical Formula 7 is configured such that the compound represented by Chemical Formula 6 is extended by 10 carbon chains.
The method of preparing polyene dialdehyde may include reacting the C5 benzothiazolyl sulfone compound represented by Chemical Formula 1 with C10 octatriene dialdehyde represented by Chemical Formula 6a below (in Chemical Formula 6, n=0) at a molar ratio of 2:1, and then performing acid treatment to remove an acetal protecting group, yielding C20 crocetin dialdehyde represented by Chemical Formula 7a below (in Chemical Formula 7, m=1).
Binding benzothiazolyl sulfone represented by Chemical Formula 1 with C10 dialdehyde represented by Chemical Formula 6a, which is known as Julia-Kocienski olefination, is carried out at a low temperature of −78° C. for about 1˜2 hr. During the binding reaction, Smiles rearrangement and removal of SO2 and 2-hydroxybenzothiazole may occur simultaneously, thus directly forming a double bond (Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetrahedron Lett. 1991, 32, 1175-1178). The binding reaction is performed using a base such as NaHMDS, KHMDS, or LiHMDS in THF solvent and the use of metal ion such as Na or K is preferable in terms of forming a trans-double bond compared to the use of Li (Pospisil, J. Tetrahedron Lett. 2011, 52, 2348-2352).
Meanwhile, 2,7-dimethyl-2,4,6-octatrienedial represented by Chemical Formula 6a is a material widely used for synthesis of a carotene compound using a Wittig reaction, and preparation thereof is reported in many reports (J. Org. Chem. 1999, 64, 8051; WO 2000027810 A1; U.S. Pat. No. 5,471,005 A; DE 102004006579 A1).
The acetal protecting group formed from neopentyl glycol may be easily removed in the presence of a solvent mixture of a 1 M HCl aqueous solution and THF, and the addition of oxalic acid enables more efficient reaction.
The reaction between the C5 benzothiazolyl sulfone compound represented by Chemical Formula 1 and C10 octatriene dialdehyde represented by Chemical Formula 6a may be equally applied to homologous polyene dialdehyde compounds, thus providing polyene dialdehyde increased by 10 carbon atoms per reaction. This may be regarded as a general chain extension method for synthesis of apo-carotene dialdehyde.
Also, the method of preparing polyene dialdehyde may include reacting the C5 benzothiazolyl sulfone compound represented by Chemical Formula 1 with C20 crocetin dialdehyde represented by Chemical Formula 6b (in Chemical Formula 6, n=1) at a molar ratio of 2:1, and then performing acid treatment to remove an acetal protecting group, yielding C30 tetracosaundecaene dialdehyde represented by Chemical Formula 7b below (in Chemical Formula 7, m=2).
Binding benzothiazolyl sulfone represented by Chemical Formula 1 with C20 crocetin dialdehyde represented by Chemical Formula 6b (in Chemical Formula 6, n=1) may be performed at a low temperature of −78° C. for about 1˜2 hr, and Smiles rearrangement and removal of SO2 and 2-hydroxybenzothiazole may occur simultaneously, thus directly forming a double bond. The binding reaction is conducted using a base such as NaHMDS, KHMDS, or LiHMDS in the presence of THF solvent, and the use of metal ion such as Na or K is preferable in terms of forming a trans-double bond compared to the use of Li.
The acetal protecting group formed from neopentyl glycol may be easily removed in the presence of a solvent mixture of a 1 M HCl aqueous solution and THF, and the addition of oxalic acid enables more efficient reaction.
Also, the method of preparing polyene dialdehyde may include reacting the C5 benzothiazolyl sulfone compound represented by Chemical Formula 1 with C30 tetracosaundecaene dialdehyde represented by Chemical Formula 6c (in Chemical Formula 6, n=2) at a molar ratio of 2:1, and then performing acid treatment to remove two acetal protecting groups, yielding C40 dotriacontapentadecaene dialdehyde represented by Chemical Formula 7c below (in Chemical Formula 7, m=3).
Binding benzothiazolyl sulfone represented by Chemical Formula 1 with C30 tetracosaundecaene dialdehyde represented by Chemical Formula 6c (in Chemical Formula 6, n=2) may be performed at a low temperature of −78° C. for about 1˜2 hr, and Smiles rearrangement and removal of SO2 and 2-hydroxybenzothiazole may take place simultaneously, thus directly forming a double bond. The binding reaction is performed using a base such as NaHMDS, KHMDS, or LiHMDS in the presence of THF solvent, and the use of metal ion such as Na or K is preferable in terms of forming a trans-double bond compared to the use of Li.
The acetal protecting group formed from neopentyl glycol may be easily removed in the presence of a solvent mixture of a 1 M HCl aqueous solution and THF, and the addition of oxalic acid enables more efficient reaction.
Finally, the present invention provides a method of preparing lycopene represented by Chemical Formula 9 below, comprising reacting C20 crocetin dialdehyde represented by Chemical Formula 7a below with a C10 benzothiazolyl geranyl sulfone compound represented by Chemical Formula 8 below at a molar ratio of 1:2. As such, C20 crocetin dialdehyde represented by Chemical Formula 7a may be obtained by reacting the C5 benzothiazolyl sulfone compound represented by Chemical Formula 1 with C10 octatriene dialdehyde represented by Chemical Formula 6a and then performing acid treatment to remove an acetal protecting group. Furthermore, reacting the C5 benzothiazolyl sulfone compound represented by Chemical Formula 1 with C10 octatriene dialdehyde represented by Chemical Formula 6a may be carried out at a molar ratio of 2:1.
Binding C10 benzothiazolyl geranyl sulfone represented by Chemical Formula 8 with C20 crocetin dialdehyde represented by Chemical Formula 7a may be performed at a low temperature of −78° C. for about 1˜2 hr, and Smiles rearrangement and removal of SO2 and 2-hydroxybenzothiazole may take place simultaneously, thus directly forming a double bond, yielding lycopene represented by Chemical Formula 9. The binding reaction is performed using a base such as NaHMDS, KHMDS, or LiHMDS in the presence of THF solvent, and the use of metal ion such as Na or K is preferable in terms of forming a trans-double bond compared to the use of Li.
The C10 benzothiazolyl geranyl sulfone compound represented by Chemical Formula 8 may be prepared by forming geraniol into methane sulfonate that is then reacted with 2-mercaptobenzothiazole, followed by oxidation of the sulfide into sulfone, based on the method known in literature (Charette, A. B.; Berthelette, C.; St-Martin, D. Tetrahedron Lett. 2001, 42, 5149-5153).
According to the present invention, olefination (Julia-Kocienski) between a benzothiazolyl sulfone compound and polyene dialdehyde can be efficiently carried out at a low temperature of −78° C. for about 1˜2 hr, compared to a Wittig reaction using a Wittig salt at a high temperature through microwave application, and also it is easy to form the E-double bond configuration. Also, the sulfone compound necessary for the reaction can be easily prepared and has high stability and high crystallinity, thus facilitating the separation and purification thereof.
According to the present invention, polyene dialdehyde compounds are apo-carotene compounds produced in the course of oxidizing a carotene compound, and possess biochemical activities and are useful for the synthesis of natural carotene compounds. Moreover, when polyene dialdehyde is introduced with a proper functional group at both terminals thereof, it can be utilized in electrical and electronic materials such as organic molecular wires, etc.
A better understanding of the present invention may be obtained via the following examples that are set forth to illustrate, but are not to be construed as limiting the present invention, as will be apparent to those skilled in the art.
In a cold bath (0˜4° C.), isoprene (25 mL, 17.03 g, 0.250 mol) was added with DMSO (4 mL) and H2O (80 mL) and stirred, and the resulting stirred solution was further added with N-bromosuccinimide (35.00 g, 0.197 mol). The reaction mixture was stirred for 2.5 hr, diluted with CH2Cl2, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining a yellow liquid bromohydrin (37.92 g) as a crude product. The crude product bromohydrin (37.92 g) was added with a 2.7 M NaOH solution (150 mL). The reaction mixture was stirred at room temperature for 1.5 hr. Thereafter, the upper organic layer was separated, yielding a crude product 2-methyl-2-vinyloxirane (15.60 g, 0.185 mol) (yield 94%).
Isoprene monoxide (2.64 g, 31.40 mmol) of Chemical Formula 2 was mixed with DMF (30 mL) and stirred, and the resulting stirred solution was added with 2-mercaptobenzothiazole (5.25 g, 31.40 mmol) and CuI (299 mg, 1.57 mmol). The reaction mixture was stirred at room temperature for 21 hr, and added with a 1 M HCl solution to terminate the reaction, and the resulting reaction product was diluted with CH2Cl2. The unreacted yellow starting material was removed using a porous glass funnel filter, and the filtrate was washed with a 1 M NaOH solution and H2O, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining a crude product. The crude product was analyzed with 1H-NMR, yielding a 1,2-addition product (0.68 g, 2.71 mmol, 9% yield, Rf=0.31/1:4 EtOAc/hexane), a 1,4-addition product (Z-configuration, 0.85 g, 3.38 mmol, 11% yield, Rf=0.24/1:4 EtOAc/hexane), and a 1,4-addition product (E-configuration, Chemical Formula 3, 3.40 g, 13.53 mmol, 43% yield, Rf=0.15/1:4 EtOAc/hexane) at a ratio of 1:1.25:5 from the sulfide.
Data for Chemical Formula 3:
1H NMR δ 1.76 (br s, 1H), 1.79 (s, 3H), 4.04 (d, J=8.0 Hz, 2H), 4.05 (s, 2H), 5.72 (tq, Jt=8.0, Jq=1.6 Hz, 1H), 7.29 (t, J=8.0 Hz, 1H), 7.41 (t, J=8.0 Hz, 1H), 7.50 (d, J=8.0 Hz, 1H), 7.87 (d, J=8.0 Hz, 1H) ppm; 13C NMR δ 13.6, 31.0, 67.2, 117.7, 120.8, 121.2, 124.1, 125.9, 135.0, 140.8, 152.9, 166.8 ppm; IR (KBr) 3338, 2922, 2845, 1669, 1467, 1429, 1326, 1250, 1087, 997, 856, 766, 727, 672 cm−1; HRMS (FAB+) calcd for C12H14NOS2 252.0517. found 252.0515.
Allylic alcohol (4.92 g, 19.58 mmol, 4:1 E/Z mixture) of Chemical Formula 3 was added with CH2Cl2 and stirred, and the resulting stirred solution was added with silica gel (11.0 g) and pyridinium dichromate (11.05 g, 29.37 mmol). The reaction mixture was stirred at room temperature for 21 hr, diluted with CH2Cl2, filtered with silica, and concentrated under reduced pressure, thus obtaining a pale brown liquid (yield 72%) as a crude product.
Data for Chemical Formula 4:
Rf=0.46 (hexane:EtOAc=4:1); 1H NMR δ 1.86 (s, 3H), 4.21 (d, J=7.6 Hz, 2H), 6.63 (t, J=7.6 Hz, 1H), 7.27 (dd, J=8.0, 7.6 Hz, 1H), 7.39 (dd, J=8.0, 7.6 Hz, 1H), 7.20 (d, J=8.0 Hz), 7.84 (d, J=8.0 Hz), 9.39 (s, 1H) ppm; 13C NMR δ 9.3, 30.5, 121.0, 121.5, 124.5, 126.1, 135.4, 141.2, 146.3, 152.8, 164.5, 194.5 ppm; IR (KBr) 1766, 1688, 1464, 1437, 1325, 1246, 1083, 999, 864, 757, 734, 678 cm−1; HRMS (CI+) calcd for C12H12NO2S2 282.0259. found 282.0257.
The compound of Chemical Formula 4 (1.98 g, 7.94 mmol) was added with benzene and stirred, and the resulting stirred solution was added with neopentyl glycol (1.24 g, 11.91 mmol) and p-TsOH (76 mg, 0.40 mmol). The reaction mixture was heated for 5 hr using a Dean-Stark column and then cooled to room temperature. The cooled mixture was diluted with diethyl ether, washed with a 1 M NaOH solution and H2O, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining a crude product. This crude product was purified using silica gel flash column chromatography, yielding a white solid (Chemical Formula 5, 2.34 g, 6.97 mmol) (yield 88%).
Data for Chemical Formula 5:
Rf=0.50 (hexane:EtOAc=4:1); 1H NMR δ 0.71 (s, 3H), 1.20 (s, 3H), 1.86 (s, 3H), 3.46 (d, J=10.8 Hz, 2H), 3.63 (d, J=10.8 Hz, 2H), 4.04 (d, J=8.0 Hz, 2H), 4.71 (s, 1H), 5.88 (t, J=8.0 Hz, 1H), 7.26 (dd, J=8.0, 7.6 Hz, 1H), 7.39 (dd, J=8.0, 7.6 Hz, 1H), 7.30 (d, J=8.0 Hz), 7.85 (d, J=8.0 Hz) ppm; 13C NMR δ 11.6, 21.8, 23.0, 30.2, 30.6, 77.2, 104.0, 120.9, 121.5, 122.7, 124.2, 126.0, 135.4, 138.1, 153.2, 166.5 ppm; IR (KBr) 2960, 2858, 1729, 1467, 1434, 1385, 1368, 1316, 1275, 1246, 1213, 1102, 1074, 1045, 1008, 984, 935, 865, 767, 731, 678 cm−1; HRMS (CI+) calcd for C17H22NO2S2 336.1092. found 336.1093.
Acetonitrile (50 mL) was mixed with urea-hydrogen peroxide (6.06 g, 64.6 mmol) and phthalic anhydride (4.77 g, 32.2 mmol) and stirred at room temperature for 2.5 hr, thus obtaining a clear solution. In a cold bath (0˜4° C.), the sulfide of Chemical Formula 5 (3.60 g, 10.73 mmol, in CH2Cl2 10 mL) was added, and the resulting reaction mixture was stirred at room temperature for 17 hr. Most of the solvent was removed under reduced pressure, followed by dilution with CHCl3, after which the undissolved white solid was filtered off. The filtrate was concentrated under reduced pressure, thus obtaining a crude product. This crude product was purified by silica gel flash column chromatography, yielding a white solid (Chemical Formula 1, 3.30 g, 8.99 mmol) (yield 84%).
Data for Chemical Formula 1:
Rf=0.20 (hexane:EtOAc=4:1); 1H NMR δ 0.71 (s, 3H), 1.14 (s, 3H), 1.67 (s, 3H), 3.43 (d, J=10.8 Hz, 2H), 3.58 (d, J=10.8 Hz, 2H), 4.30 (d, J=8.0 Hz, 2H), 4.68 (s, 1H), 5.77 (t, J=8.0 Hz, 1H), 7.59 (dd, J=8.0, 7.6 Hz, 1H), 7.64 (dd, J=8.0, 7.6 Hz, 1H), 8.01 (d, J=8.0 Hz), 8.22 (d, J=8.0 Hz) ppm; 13C NMR δ 12.1, 21.7, 22.9, 30.1, 54.0, 77.1, 102.8, 112.7, 122.3, 125.4, 127.6, 127.9, 137.0, 144.0, 152.6, 165.5 ppm; IR (KBr) 2971, 2865, 1710, 1674, 1480, 1403, 1326, 1156, 1115, 1030, 985, 912, 852, 730, 689, 641 cm−1; HRMS (CI+) calcd for C17H22NO4S2 368.0990. found 368.0992.
C5 benzothiazolyl sulfone (3.25 g, 8.85 mmol) of Chemical Formula 1 was dissolved in THF (50 mL) and stirred at −78° C., and the resulting stirred solution was added with a 1 M THF solution of NaHMDS (9.3 mL, 9.3 mmol) and thus turned blackish red. This mixture was stirred for 15 min and added with C10 octatrienedial (727 mg, 4.43 mmol in THF 10 mL) of Chemical Formula 6a. The reaction mixture was stirred at −78° C. for 3 hr and then further stirred at room temperature. This reaction mixture was added with H2O to terminate the reaction, and the reaction product was extracted with diethyl ether, washed with 1 M NaOH (30 mL×3), dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining an orange solid (3.29 g) as a crude product.
The crude product, the orange solid (3.29 g), was added with THF (30 mL), stirred, and mixed with a 1 M HCl solution (30 mL), giving a red mixture. This mixture was stirred for hr at room temperature in a dark room. The reaction product was diluted with diethyl ether, washed with H2O, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining a crude product. This was purified by silica gel flash column chromatography, yielding crocetin monoacetal (304 mg, 0.79 mmol) as an orange solid (yield 18%). Subsequently, crocetin dialdehyde (Chemical Formula 7a, 785 mg, 2.65 mmol) was obtained as a red solid (yield 60%). This was further purified by trituration with MeOH to give an analytical sample.
Data for Crocetindial (Chemical Formula 7a):
Rf=0.23 (hexane:EtOAc=4:1); 1H NMR δ 1.91 (s, 6H), 2.03 (s, 6H), 6.41-6.52 (m, 2H), 6.68-6.82 (m, 6H), 6.90-7.00 (m, 2H), 9.47 (s, 2H) ppm; 13C NMR δ 9.7, 12.8, 123.7, 132.0, 136.7, 137.1, 137.4, 145.4, 148.8, 194.5 ppm; IR (KBr) 3044, 2932, 2839, 2726, 1683, 1624, 1570, 1448, 1418, 1330, 1272, 1198, 982, 845, 747, 698, 645 cm−1; UV (CH2Cl2) λ(ε) 397 (24,944), 422 (51,422), 446 (78,763), 475 (77,058) nm; HRMS (CI %) calcd for C20H25O2 297.1855. found 297.1852.
C5 benzothiazolyl sulfone (0.62 g, 1.70 mmol) of Chemical Formula 1 was dissolved in THF (13 mL) and stirred at −78° C., and the resulting stirred solution was added with a 1 M THF solution of NaHMDS (2.0 mL, 2.0 mmol), thus obtaining a blackish red mixture. This mixture was stirred for 15 min and added with C20 crocetin dial (0.24 g, 0.81 mmol in THF 2 mL) of Chemical Formula 6b (or 7a). The reaction mixture was stirred at −78° C. for 2 hr. This reaction mixture was added with a 10% NH4Cl solution (5 mL) to terminate the reaction, and the reaction product was extracted with EtOAc, washed with H2O, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining a deep red solid (0.81 g) as a crude product. This was purified by silica gel (deactivated with 2 mL of Et3N) flash column chromatography, yielding C30 dial (0.24 g, 0.41 mmol) having a neopentyl glycol (diacetal) protecting group as a blackish red solid (yield 50%).
Subsequently, C30 dial (0.93 g, 1.55 mmol) having a neopentyl glycol (diacetal) protecting group was dissolved in THF (30 mL) and stirred, and the resulting stirred solution was added with a 1 M HCl solution (30 mL) and oxalic acid (0.28 g, 3.09 mmol). The reaction mixture was stirred for 3 hr at room temperature in a dark room, diluted with CH2Cl2, washed with 1 M HCl, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining a crude product. This was purified by silica gel flash column chromatography, yielding C30 polyene dial (0.25 g, 0.57 mmol) of Chemical Formula 7b as a deep violet solid (yield 37%). This was further purified by trituration with MeOH to give an analytical sample.
Data for Chemical Formula 7b:
Rf=0.24 (hexane:EtOAc=4:1); 1H NMR δ 1.91 (s, 6H), 2.01 (s, 6H), 2.03 (s, 6H), 6.32-6.39 (m, 2H), 6.44 (d, J=11.2 Hz, 2H), 6.50 (d, J=14.8 Hz, 2H), 6.65-6.74 (m, 2H), 6.68 (dd, J=15.2, 11.2 Hz, 2H), 6.70 (dd, J=14.8, 10.4 Hz, 2H), 6.75 (d, J=15.2 Hz, 2H), 6.94 (d, J=10.4 Hz, 2H), 9.46 (s, 2H) ppm; 13C NMR δ 9.7, 12.8, 12.8, 122.6, 124.9, 131.0, 134.5, 135.3, 136.7, 137.0, 137.6, 140.7, 146.0, 149.3, 194.5 ppm; IR (KBr) 3042, 2926, 2834, 1746, 1678, 1616, 1539, 1457, 1413, 1365, 1331, 1283, 1167, 999, 970, 840, 686 cm−1; UV (CH2Cl2) λ(ε) 480 (136,674), 526 (188,406), 550 (167,506) nm; HRMS (FAB+) calcd for C30H36O2 428.2715. found 428.2704.
C5 benzothiazolyl sulfone (80 mg, 0.20 mmol) of Chemical Formula 1 was dissolved in THF (8 mL) and stirred at −78° C., and the resulting stirred solution was added with a 1 M THF solution of NaHMDS (0.3 mL, 0.30 mmol). This mixture was stirred for 15 min and added with C30 dial (42 mg, 0.098 mmol in THF 2 mL) of Chemical Formula 6c (or 7b). The reaction mixture was stirred at −78° C. for 2 hr. This reaction mixture was added with a 10% NH4Cl solution (5 mL) to terminate the reaction, and the reaction product was extracted with EtOAc, washed with H2O, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining a violet solid (70 mg) as a crude product. This was purified by silica gel (deactivated with 2 mL of Et3N) flash column chromatography, yielding C40 dial (47 mg, 0.064 mmol) having a neopentyl glycol (diacetal) protecting group as a violet solid (yield 65%).
Subsequently, C40 dial (40 mg, 0.050 mmol) having a neopentyl glycol (diacetal) protecting group was dissolved in THF (15 mL) and stirred, and the resulting stirred solution was added with a 1 M HCl solution (15 mL) and oxalic acid (10 mg, 0.11 mmol). The reaction mixture was stirred for 2 hr at room temperature in a dark room, diluted with CH2Cl2, washed with 1 M HCl, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining a crude product. This was purified by silica gel flash column chromatography, yielding C40 dial (8.4 mg, 0.015 mmol) of Chemical Formula 7c as a violet solid (yield 30%). This was further purified by trituration with MeOH to give an analytical sample.
Data for Chemical Formula 7c:
Rf=0.30 (hexane:EtOAc=4:1); 1H NMR δ 1.91 (s, 6H), 2.00 (s, 6H), 2.01 (s, 6H), 2.03 (s, 6H), 6.28-6.38 (m, 2H), 6.44 (d, J=10.8 Hz, 2H), 6.49 (dd, J=14.8, 11.2 Hz, 2H), 6.51 (d, J=14.8 Hz, 2H), 6.63-6.73 (m, 2H), 6.66 (dd, J=14.8, 10.8 Hz, 2H), 6.68 (d, J=11.2 Hz, 2H), 6.70 (dd, J=14.8, 10.8 Hz, 2H), 6.71 (d, J=14.8 Hz, 2H), 6.75 (d, J=14.8 Hz, 2H), 6.95 (d, J=10.8 Hz, 2H), 9.45 (s, 2H) ppm; IR (KBr) 2927, 2860, 1748, 1677, 1619, 1548, 1455, 1384, 1318, 1256, 1189, 1109, 972, 901, 839, 773, 737, 688 cm−1; UV (CH2Cl2) λ(ε) 489 (39,768), 523 (52,517), 556 (47,154) nm; HRMS (FAB+) calcd for C40H48O2 560.3654. found 560.3646.
Benzothiazol-2-yl geranyl sulfone (90 mg, 0.27 mmol) of Chemical Formula 8 was dissolved in THF (5 mL) and stirred at −78° C., and the resulting stirred solution was added with a 1 M THF solution of NaHMDS (0.3 mL, 0.30 mmol), thus obtaining an orange mixture. This mixture was stirred for 15 min, and mixed with C20 crocetin dial (40 mg, 0.13 mmol in THF 5 mL) of Chemical Formula 7a. The reaction mixture was stirred at −78° C. for 1.5 hr. This reaction mixture was added with a 10% NH4Cl solution (5 mL) to terminate the reaction, after which the reaction product was extracted with diethyl ether, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure, thus obtaining a crude product. This crude product was recrystallized with MeOH/THF, yielding all-(E)-lycopene (104 mg, 0.19 mmol) as a red solid (yield 72%).
Data for Chemical Formula 9:
Rf=0.92 (hexane:EtOAc=4:1); 1H NMR δ 1.61 (s, 6H), 1.68 (s, 6H), 1.82 (s, 6H), 1.96 (s, 12H), 2.11 (br s, 8H), 5.11 (br s, 2H), 5.95 (d, J=10.8 Hz, 2H), 6.18 (d, J=12.1 Hz, 2H), 6.24 (d, J=14.9 Hz, 2H), 6.20-6.30 (m, 2H), 6.35 (d, J=14.8 Hz, 2H), 6.49 (dd, J=14.9, 10.8 Hz, 2H), 6.63 (dd, J=14.8, 12.1 Hz, 2H), 6.55-6.70 (m, 2H) ppm; 13C NMR δ 12.8, 12.9, 17.0, 17.7, 25.7, 26.7, 40.2, 123.9, 124.8, 125.1, 125.7, 130.1, 131.5, 131.8, 132.6, 135.4, 136.2, 136.5, 137.3, 139.5 ppm.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0080647 | Jun 2014 | KR | national |
Entry |
---|
The Longest Polyene; Muhammad Zeeshan et al; Org. Lett., 2012,14 (21), pp. 5496-5498 (1 page). |
Korean application No. 10-2014-0080647; Jun. 30, 2014 (34 pages). |
“Synthesis of Symmetrical Carotenoids by a Two-Fold Stille Reaction”; Org. Chem. Jul. 2002. vol. 67, No. 14, (pp. 5040-5043); 4 pages, Vaz et al., J. Org. Chem., 2002. |
“Efficient Total Synthesis of Lycophyll”; Org. Process Res. Dev., Sep. 2005., vol. 6, (pp. 830-836); 7 pages, Jackson et al. |
Number | Date | Country | |
---|---|---|---|
20150376175 A1 | Dec 2015 | US |