This disclosure relates to a jig for assembling furniture. More specifically, this disclosure relates to a jig that, in some embodiments, can be used by a single worker to assemble a cabinet.
Cabinets, or other types of furniture, can be constructed from one or more individual panels attached together. For example, a cabinet can include a front panel, two side panels, a back panel, and a bottom panel, among others. Assembling these panels into a cabinet often requires positioning the panels relative to each other and then attaching the panels to each other, using adhesive and/or mechanical fasteners. It can be difficult for a single worker to both position the panels relative to each other and attach the panels.
The embodiments of jigs and methods of use disclosed herein each have several aspects, no single one of which is solely responsible for the disclosure's desirable attributes. Without limiting the scope of this disclosure, its more prominent features will now be briefly discussed. After considering this discussion, and particularly after reading the section entitled “Detailed Description,” one will understand how the features of the embodiments described herein provide advantages over existing systems, devices, and methods.
In one aspect, a jig for assembling a cabinet is disclosed. The jig includes a clamp assembly pivotally attached to a base. The clamp assembly includes a first holder, such as a gripper, which may be a first jaw, and a second holder, such as a gripper, such as a second jaw, configured to apply a clamping force therebetween. The clamp assembly is configured to move, such as by pivoting, between a first position, wherein a front support plate of the clamp assembly is oriented vertically, and a first inclined position which is at a first angle with respect to said first position. Desirably, the first angle is less than 90 degrees is formed between the front support plate and a support surface on which the base rests.
In some embodiments, the first angle is between 15 and 60 degrees, between 15 and 45 degrees, between 25 and 35 degrees, at least 10 degrees, at least 15 degrees, at least 20 degrees, at least 30 degrees, at least 40 degrees, at least 45 degrees, 15 degrees, 30 degrees, or 45 degrees. In some embodiments, the clamp assembly is further configured to pivot to a second inclined (or more reclined) position, wherein a second angle less than the first angle is formed between the front support plate and the support surface. In some embodiments, the second angle is between 15 and 60 degrees less than the first angle, between 15 and 45 degrees less than the first angle, between 25 and 35 degrees less than the first angle, at least 15 degrees less than the first angle, at least 20 degrees less than the first angle, at least 30 degrees less than the first angle, at least 40 degrees less than the first angle, at least 45 degrees less than the first angle, 15 degrees less than the first angle, 30 degrees less than the first angle, or 45 degrees less than the first angle. In some embodiments, in the second inclined position, a bottom of the clamp assembly is raised by a vertical distance of at least ¾, of at least ½, of at least ¼, or of at least ⅛ a total height of the clamp assembly relative to the first inclined position.
In some embodiments, the jig further comprises a linear actuator extending between the base and the clamp assembly. In some embodiments, actuation of the linear actuator causes the clamp assembly to move, such as by pivoting between the first position and the first inclined position. In some embodiments, the clamp assembly further includes a first side support surface, such as a plate, attached to the first jaw, the first side support plate extending normal to the front support plate, and a second side support surface, such as a second plate attached to the second jaw, wherein the second jaw is movable between a closed position, wherein the second side support plate extends normal to the front support plate, and an open position. In some embodiments, in the open position of the second jaw, the second side support plate extends parallel to the front support plate. In some embodiments, the jig further comprises a conveyor system mounted on the base. In some embodiments, the conveyor system is configured to move between an extended position and a retracted position. In some embodiments, when the clamp assembly is in the first position and the conveyor system is in the extended position, the conveyor system is positioned below the clamp assembly. In some embodiments, when the clamp assembly is in the first position and the conveyor system is in the extended position, the jig is configured to deposit an assembled cabinet onto the conveyor system by moving the second jaw to the open position. In some embodiments, the jig is operable by a single worker to assemble a cabinet.
In some embodiments, the clamping assembly further comprises a pair of rods configured to move between an extended state, wherein the pair of rods extends through the front support plate, and a retracted state. In some embodiments, each of the first jaw and the second jaw include a pair of rods configured to move between an extended state, wherein the pair of rods extends through the first and second side support plates, respectively, and a retracted state. In some embodiments, each of the first jaw and the second jaw include an end clamp positioned at the distal end of the first jaw and the second jaw, the end clamp configured to rotate between an open position and a closed position, wherein, in the closed position, the end clamp provides a clamping force in a direction parallel to the first and second side support plates. In some embodiments, each of the first jaw and the second jaw include a toe kick panel support assembly positioned at a lower proximal corner of the first and second side support surfaces, respectively, each toe kick panel support assembly including a toe kick support surface configured to rotate between an extended configuration, wherein the toe kick support surface is normal to the first and second side support plates, and a retracted position.
In another aspect a jig for assembling a cabinet is disclosed. The jig includes a base and a clamp assembly pivotally attached to the base. The clamp assembly includes a first jaw and a second jaw configured to apply a clamping force therebetween. The jig also includes a conveyor system mounted on the base. The conveyor system is configured to move between an extended position and a retracted position.
In some embodiments, the clamp assembly further includes a front support plate, a first side support plate attached to the first jaw, the first side support plate extending normal to the front support plate, and a second side support plate attached to the second jaw, wherein the second jaw is movable between a closed position, wherein the second side support plate extends normal to the front support plate, and an open position. In some embodiments, in the open position of the second jaw, the second side support plate extends parallel to the front support plate. In some embodiments, the clamp assembly is configured to pivot between a first position, wherein the front support plate is oriented vertically, and a first inclined position, wherein a first angle less than 90 degrees is formed between the front support plate and a support surface on which the base rests. In some embodiments, the clamp assembly is further configured to pivot to a second inclined position, wherein a second angle less than the first angle is formed between the front support plate and the support surface. In some embodiments, when the clamp assembly is in the first position and the conveyor system is in the extended position, the conveyor system is positioned below the clamp assembly. In some embodiments, the clamping assembly further comprises a pair of rods configured to move between an extended state, wherein the pair of rods extends through the front support plate, and a retracted state. In some embodiments, each of the first jaw and the second jaw include a pair of rods configured to move between an extended state, wherein the pair of rods extends through the first and second side support plates, respectively, and a retracted state. In some embodiments, each of the first jaw and the second jaw include an end clamp positioned at the distal end of the first jaw and the second jaw, the end clamp configured to rotate between an open position and a closed position, wherein, in the closed position, the end clamp provides a clamping force in a direction parallel to the first and second side support plates. In some embodiments, each of the first jaw and the second jaw include a toe kick panel support assembly positioned at a lower proximal corner of the first and second side support surfaces, respectively, each toe kick panel support assembly including a toe kick support surface configured to rotate between an extended configuration, wherein the toe kick support surface is normal to the first and second side support plates, and a retracted position.
In another aspect, a method for assembling a cabinet using a jig is disclosed. The method includes: with a jig positioned in a first configuration, supporting a cabinet during a first portion of the assembly of the cabinet with the jig; transitioning the jig from the first configuration to a second configuration, wherein, in the second configuration, a clamp assembly of the jig is more reclined than in the first configuration; and with the jig positioned in the second configuration, supporting the cabinet during a second portion of the assembly of the cabinet with the jig.
In some embodiments, the method further includes transitioning the jig from the second configuration to a third configuration, wherein, in the third configuration, the cabinet is positioned over a conveyor system; and depositing the cabinet on the conveyor system. In some embodiments, supporting a cabinet during a first portion of the assembly comprises: supporting a front panel of the cabinet with front support surface of the jig; supporting a first side panel of the cabinet with a first side support surface of a first jaw of the jig; supporting a second side panel of the cabinet with a second side support surface of a second jaw of the jig; and supporting a bottom panel between the first side panel and the second side panel. In some embodiments, the method further includes, with the jig positioned in the first configuration, applying pressure to the first portion of the cabinet with the jig by moving the first jaw toward the second jaw. In some embodiments, transitioning the jig from the first configuration to a second configuration comprises retracting rods which extend through the first and second support surfaces, the rods configured to support the first and second panels of the cabinet when extended. In some embodiments, transitioning the jig from the first configuration to a second configuration comprises extending a toe kick support. In some embodiments, supporting the cabinet during a second portion of the assembly of the cabinet comprises installing a toe kick panel of the cabinet. In some embodiments, transitioning the jig from the second position to the third configuration comprises: rotating the clamp assembly from the more reclined position of the second configuration to a vertical position; extending the conveyor system below the clamp assembly; and opening the second jaw. In some embodiments, the method further includes driving the conveyor assembly to move the cabinet away from the jig.
In another aspect, an assembly, such as an assembly cell, is disclosed. The assembly may include two of the jigs described herein. In some embodiments, the assembly includes a system or assembly of conveyors to move assembled cabinets from the two jigs. In some embodiments, sensors control the conveyors.
The features of the present disclosure will become more fully apparent from the following description, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only some embodiments in accordance with the disclosure and are not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings. The drawings may not be to scale.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description and drawings are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, may be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and made a part of this disclosure
As noted above,
The base 111 can comprise a frame structure 117. The frame structure 117 can include a plurality of connected supports 119. The supports 119 can comprise interconnected beams and/or tubes. The supports 119 can have square, circular, or any other cross-sectional shape. In some embodiments, the supports 119 are welded together to form the frame structure 117. In some embodiments, other methods for joining the supports 119 are used, such as mechanical fasteners, for example. In some embodiments, the supports 119 comprise steel, although use of other materials (including other metals and non-metal materials) is also possible and within the scope of this disclosure.
The base 111 is configured to support the clamp assembly 113. For example, in the illustrated embodiment, the clamp assembly 113 is pivotally connected to the base 111 at a joint 121 (as best seen in the right side view of
The base 111 also is configured to support the conveyor system 115. For example, the base 111 can include rails 125 on which the conveyor system 115 is mounted. As will be described below, the conveyor system 115 can slide along the rails 125 to move between a retracted configuration (for example, as shown in
The base 111 can also define a portion or portions having a lower surface which define a support plane. For example, the portions may include feet 129. In use, the lower surface of the feet 129 may contact a support surface on which the base 111 rests. In this instance, the support plane essentially includes the support surface. In some embodiments, the support surface is the ground or the floor. The base 111 can also support a box 131. The box 131 can be attached to a back portion of the base 111, although other positions for the box 131 on the base 111 are possible. In some embodiments, the box 131 is configured to enclose one or more of the electrical (or other types of) components of the jig 100. The box 131 can include a door 133 that allows access to the interior of the box 131. Although a specific embodiment of the base 111 is illustrated in the figures, this disclosure is not intended to be limited to only the illustrated embodiment of the base 111. The base 111 can be embodied in a wide variety of configurations that achieve the functionality disclosed herein, all of which are intended to be within the scope of this disclosure.
The clamp assembly 113 is configured to support, clamp, and orient (relative to the worker operating the jig 100) the various panels that form the cabinet. In the illustrated embodiment, the clamp assembly 113 includes a frame 135. The frame 135 can comprise a plurality of interconnected supports 137. The supports 137 can comprise beams and/or tubes. The supports 137 can have square, circular, or any other cross-sectional shape. In some embodiments, the supports 137 are welded together to from the frame 135. In some embodiments, other methods for joining the supports 137 are used, such as mechanical fasteners. In some embodiments, the supports 137 comprise steel, although use of other materials (including other metals and non-metal materials) is also possible and within the scope of this disclosure.
In the illustrated embodiment, the clamp assembly 113 includes two front support plates 139 mounted on the frame 135. Although two front support plates 139 are included in the illustrated embodiment, other numbers of front support plates 139 can be used, including one, two, three, four, five, or more front support plates 139. In some embodiments, the front support plates 139 provide a substantially planar surface against which the front panel (or fascia) of a cabinet can be placed during assembly (see, for example,
In the illustrated embodiment, the rightmost front support plate 139 (designated 139r in
In the illustrated embodiment, each front support plate 139 includes an opening 143 through which a rod 141 extends. In a preferred embodiment, the rods 141 have a circular cross-section, although other cross-sections (e.g., square, oval, etc.) are possible. In some embodiments, each of the openings 143 and the rods 141 are positioned on the front support plates 139 so as to be at the same vertical level relative to each other. The rods 141 are configured to support the bottom of the front panel of the cabinet when placed into the jig 100. That is, a worker can position the front panel of the cabinet against the front support plates 139 and the front panel of the cabinet can be supported from below by the rods 141 (see
The clamp assembly 113 also includes a first gripper, such as a first jaw 153, and a second gripper, such as a second jaw 155. The first jaw 153 and the second jaw 155 can each supported by the frame 135. In the illustrated embodiment, the first jaw 153 includes a side support plate 157. In some embodiments, the side support plate 157 provides a substantially planar surface against which a side panel of a cabinet can be placed during assembly (see, for example,
In the illustrated embodiment, the side support plate 157 is further supported by rails 163 which are attached to the rightmost front support plate 139r. For example, the side support plate 157 can be attached to carriages 165 by brackets 167. The carriages 165 can be moveably mounted on the rails 163. The carriages 165 can slide along the rails 163 as the actuators 161 move the side support plate 157 backward and forward. Because the rails 163 are attached to the front support plate 139r, the rails 163 move with the front support plate 139r along the rails 149. In some embodiments, the brackets 167 support the side support plate 157 at a 90-degree angle relative to the frame 135 and the front support plates 139. In some embodiments, the side support plate 157 of the first jaw 153 is fixed at the 90-degree angle.
In the illustrated embodiment, the actuators 161 are supported by brackets 169. In the illustrated embodiment, the brackets 169 are attached to the rear surface of the rightmost front support plate 139r. Thus, the brackets 169, actuators 161, and side support plate 157 move with the front support plate 139r along the rails 149. In some embodiments, this allows a distance D (as shown in
The second jaw 155 also includes a side support plate 170. In some embodiments, the side support plate 170 provides a mating surface or surfaces, such as a substantially planar surface, against which a side panel of a cabinet can be placed during assembly (see, for example,
In the illustrated embodiment, the jig 100 includes actuators 177 operable to cause the second jaw 155 to pivot around the joint 175. In some embodiments, the actuators 177 are linear actuators. In some embodiments, the actuators 177 are electro-mechanical actuators, pneumatic actuators, or hydraulic actuators. In some embodiments, the actuators 177 comprise solenoids. In some embodiments, the actuators 177 extend between brackets 179 that are attached to the frame 135 and the frame 171 of the second jaw 155.
In the illustrated embodiments, the first jaw 153 and the second jaw 155 each include end clamps 181 and an end clamp bar 183. In the illustrated embodiment, each of the first jaw 153 and the second jaw 155 includes three end clamps 181, although, in other embodiments, other numbers of end clamps 181 can be used, for example, one, two, three, four, five, or more end clamps 181. The end clamps 181 are positioned along the distal end of the first jaw 153 and the second jaw 155. Each of the end clamps 181 is attached to an end clamp bar 183. The end clamps 181 are operable to apply a clamping force with the end clamp bar 183 in a direction that is parallel to the side support plates 157, 170 and towards the frame 135 and front support plates 139 (see, for example,
Returning to the embodiment illustrated in
In the illustrated embodiment of the jig 100, the first jaw 153 and the second jaw 155 each include a carton clamp 195. The carton clamp 195 is positioned on the first jaw 153 and the second jaw 155 just above the rods 191. The carton clamp 195 of the second jaw 155 is shown in the detail view of
With reference again to
With reference to
As noted previously,
In the illustrated embodiment, the front panel 302 includes side grooves 314, 316 and a bottom groove 318 formed into the back surface of the front panel 302. The side grooves 314, 316 can be configured to receive the front edges 322, 324 of the side panels 304, 306, respectively, when assembled. The bottom groove 318 can be configured to receive a front edge 326 of the bottom panel 308 when assembled. In some embodiments, the front panel 304 is preassembled with doors 312, openings for drawers, or other features. Each side panel 304, 306 also includes a groove 330, 332 on its inner face that is configured to receive the side edges 334, 336 of the bottom panel when assembled. Back edges 338, 340 of the side panels 304, 306 include grooves 342, 344 that are configured to mate with corresponding grooves 346, 348 on the side edges 340, 342 of the back panel 310. The inside surface of the back panel 310 also includes a groove 350 for receiving the back edge 352 of the bottom panel 308. Each of the side panels 304, 306 also include cutouts 354, 356 for receiving the toe kick panel 328.
In some embodiments, each of the front panel 302, two side panels 304, 306, bottom panel 308, back panel 310, and toe kick panel 328 are formed (i.e., manufactured, prepared, etc.) as described above before arriving at the jig 100 for assembly. In some embodiments, an adhesive, such as glue, may be pre-applied to the various grooves described above prior to assembly with the jig 100.
The method 400 begins at step 401, where the jig 100 moves to the first configuration (for example, the configuration as shown in
At step 402, the worker 1 positions the front panel 302 of the cabinet 300 into the jig 100. For example, the worker 1 can position the front surfaces of the front panel 302 against the front support plates 139 of the jig 100. The bottom edge of the front panel 302 can be supported by the rods 141. An example of step 402 is shown in
Next, at step 404, the worker 1 positions the side panels 304, 306 into the jig 100. This can include positioning the first side panel 304 against the side support plate 157 of the first jaw 153 and positioning the second side panel 306 against the side support plate 170 of the second jaw 155. The front edges 322, 324 of the side panels 304, 306 are positioned within the side grooves 314, 316 on the inner surface of the front panel 302. The bottom edges of the side panels 304, 306 can be supported by the rods 191, which can be in the extended configuration.
After the side panels 304, 306 are positioned in the jig 100, the worker 1 then actuates the jig 100. In some embodiments, actuating the jig 100 includes pressing a button on a control panel (not shown). The control panel can be located near the jig 100. In some embodiments, the control panel includes two buttons that must be actuated at the same time using both hands to actuate the jig 100. This can help ensure that the worker 1 is clear of the jig 1 at the time the jig 100 is actuated.
When the worker 1 actuates the jig 100 at step 406, the jig 100 can rotate the end clamps 181 to the closed position at step 407.
When the worker 1 actuates the jig 100 at step 410, the end clamps 181 rotate back to the open position at step 411. Next, at step 412, the worker 1 installs the bottom panel 308. The bottom panel 308 can be inserted into the grooves 330, 332 on the inner surfaces of the side panels 304, 306 and into the bottom groove 318 on the inner surface of the front panel 302.
Upon actuation, the first jaw 153 can move towards the second jaw 155 to apply clamping pressure to the cabinet 300 at step 415. In some embodiments, moving the first jaw 153 includes operating the actuators 161 as described above. In this configuration, the jig 100 applies clamping pressure that presses the first and second sides 304, 306 tightly against the bottom panel 308. Next, at step 416, the worker 1 installs the back panel 310. An example of the worker 1 installing the back panel 310 is illustrated in
The method 400 continues in
In some embodiments, transitioning from the first configuration to the second configuration can include: pivoting the clamp assembly 113 to the angle α2, retracting the rods 141, 191, and/or extending the toe kick support assembly 201.
With the jig 100 in the second configuration, the worker 1 can install the toe kick panel 328 at step 422. Installing the toe kick panel 328 can include positioning the toe kick panel 328 on the toe kick supports 203 as shown in
Next, at step 424 the worker 1 again actuates the jig 100 in the manner described above. Upon actuation, at step 454, the toe kick supports 203 retract. At step 426, the worker 1 then installs a protective carton 350 over the bottom of the cabinet 300. The protective carton 350 can comprise a cardboard box configured to fit over the bottom of the cabinet 300.
Next, at step 431, the jig 100 transitions to the third configuration (for example, the configuration as shown in
The method 400 can then be repeated to assemble another cabinet 300.
In the illustrated embodiment, the cell 500 includes two jigs 100a, 100b. The jigs 100a, 100b can be similar to the jig 100 described above. Each jig 100a, 100b, includes a conveyor system 115a, 115b, a first jaw 153a, 153b, and a second jaw 155a, 155b, among other features. In operation a single worker operates each jig 100a, 100b.
In some embodiments, an additional worker can prepare the panels of the cabinets to be assembled. For example, the additional worker can apply an adhesive, such as glue, to the grooves or other joints of the panels. The additional worker can also stack the panels in the order in which they will be loaded into the jigs 100a, 100b. For example, the additional worker can prepare a stack of panels with the front panel on top, followed by the side panels, bottom panel, and back panel below. In some embodiments, the additional worker loads the stacks of panels onto a conveyor 512. In some embodiments, the conveyor 512 is a non-motorized roller conveyor. The additional worker can load the stacks of panels at a load point 514, which can be approximately in the middle of the conveyor 512, and then alternatingly push the stacks of panels towards opposite ends 516, 518 of the conveyor 512. That is, the additional worker can prepare a first stack of panels, load it onto the conveyor 512 at load point 514, and push it towards the first end 516, and then, prepare a second stack of panels, load it onto the conveyor at load point 514, and push it towards the second end 518.
As shown in
In some embodiments, the conveyor 524 is driven by a motor 526. In some embodiments, the motor 526 is connected to the jig 100a, such that the motor 526 drives the conveyor 524 simultaneously with the operation of the conveyor system 115a. A sensor 528 can be positioned at the end of the conveyor 524. In some embodiments, the sensor 528 is a proximity sensor. The sensor 528 can include, for example an infrared beam. Use of other types of sensors is possible. The sensor 528 can provide a signal that indicates when the assembled cabinet reaches the end of the conveyor 524. The signal can be used to start or stop conveyor 524 or another conveyor, such as an adjacent conveyor 530.
The conveyor 530 can be driven by a motor 534. A sensor 532 can be positioned at a first end of the conveyor 530 and a sensor 536 can be positioned at a second end of the conveyor 530. The sensors 532, 536 can be of the type previously described. The sensors 532, 536 provide a signal that indicates when an assembled cabinet passes the sensors 532, 536. The signals from the sensors 532, 536 can be used to stop and/or start the conveyor 530, or any other conveyor. The conveyor 530 move the assembled cabinet onto a glide plate 538.
In some embodiments, the glide plate 538 includes a surface with a low coefficient of friction that allows the assemble cabinets to slide thereon. A sensor 540 is positioned to provide a signal that indicates that an assembled cabinet has been loaded onto the glide plate 538. The sensor 540 can be of the type previously described. In some embodiments, the sensor 540 provides a signal that activates a push arm 542. The push arm 542 can push an assembled cabinet that is on the glide plate 538 in the direction of arrow 544. The push arm 542 can push the assembled cabinet onto another conveyor 546.
In some embodiments, the conveyor 546 is a motorized conveyor. The conveyor 546 can include sensors 548, 550 at each end. The sensors 548, 550 can provide signals that control the operation of the motor of the conveyor 546. The sensors 548, 550 can be of the type previously described. In some embodiments, the conveyor 546 is a non-motorized conveyor, such as a roller conveyor. In the illustrated embodiment, a final conveyor 552 is positioned at the end of the conveyor 556. The conveyor 556 can be motorized or non-motorized.
Returning to the conveyor 512, the second end 518 can be located near the second jig 100b, a preparation stand 554, and a tool stand 556. In some embodiments, the worker operating the second jig 100b can receive the stack of panels from the second end 518 of the conveyor 512 and move them to the preparation stand 554. The tool stand 556 can hold various tools that are used by the worker in the assembly of the cabinet, including, for example, one or more staplers or other tools. The worker can then assemble the cabinet from the panels using the jig 100b in the manner previously described. Once assembled, the jig 100b deposits the cabinet onto the conveyor system 115b and opens the second jaw 155b. The jig 100b can be configured to drive the conveyor system 115b to move the assembled cabinet onto an adjacent conveyor 558.
In some embodiments, the conveyor 558 is driven by a motor 560. In some embodiments, the motor 560 is connected to the jig 100b, such that the motor 560 drives the conveyor 558 simultaneously with the operation of the conveyor system 115b. A sensor 562 can be positioned at the end of the conveyor 558. The sensor 562 can be of the type previously described. The sensor 562 can provide a signal that indicates when the assembled cabinet reaches the end of the conveyor 558. The signal can be used to start or stop conveyor 558 or another conveyor, such as an adjacent conveyor 564.
The conveyor 564 can be driven by a motor 568. A sensor 566 can be positioned at a first end of the conveyor 564 and a sensor 570 can be positioned at a second end of the conveyor 564. The sensors 566, 570 can be of the type previously described. The sensors 566, 570 provide a signal that indicates when an assembled cabinet passes the sensors 566, 570. The signals from the sensors 566, 570 can be used to stop and/or start the conveyor 564, or any other conveyor. The conveyor 564 move the assembled cabinet onto the glide plate 538.
A sensor 576 is positioned to provide a signal that indicates that an assembled cabinet has been loaded onto the glide plate 538 from the conveyor 564. The sensor 576 can be of the type previously described. In some embodiments, the sensor 576 provides a signal that activates the push arm 542. The push arm 542 can push the assembled cabinet onto another conveyor 546. As before, the assembled cabinet can then move on conveyors 546, 552.
In some embodiments, the sensor 536 and/or sensor 540 and the sensor 570 and/or sensor 572 can be used to index the cabinets coming from the first jig 100a and the second jig 100b. The sensors can index the cabinets so that the conveyors alternatingly load cabinets from each jig 100a, 100b on the glide plate 538.
It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the inventions are susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the inventions are not to be limited to the particular forms or methods disclosed, but to the contrary, the inventions are to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication.
Any ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately,” “about,” and “substantially” as used herein include the recited numbers, and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately,” “about,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. Features of embodiments disclosed herein preceded by a term such as “approximately,” “about,” and “substantially” as used herein represent the feature with some variability that still performs a desired function or achieves a desired result for that feature.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
It will be understood by those within the art that, in general, terms used herein, are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced embodiment recitation is intended, such an intent will be explicitly recited in the embodiment, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the disclosure may contain usage of the introductory phrases “at least one” and “one or more” to introduce embodiment recitations. However, the use of such phrases should not be construed to imply that the introduction of an embodiment recitation by the indefinite articles “a” or “an” limits any particular embodiment containing such introduced embodiment recitation to embodiments containing only one such recitation, even when the same embodiment includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce embodiment recitations. In addition, even if a specific number of an introduced embodiment recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, embodiments, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
Although the present subject matter has been described herein in terms of certain embodiments, and certain exemplary methods, it is to be understood that the scope of the subject matter is not to be limited thereby. Instead, the Applicant intends that variations on the methods and materials disclosed herein which are apparent to those of skill in the art will fall within the scope of the disclosed subject matter.
This application is a continuation of U.S. patent application Ser. No. 17/937,559, filed Oct. 3, 2022, which is a continuation of U.S. patent application Ser. No. 17/384,524, filed Jul. 23, 2021, which is a continuation of U.S. patent application Ser. No. 16/839,679, filed Apr. 3, 2020, which is a division of U.S. patent application Ser. No. 15/446,957, filed Mar. 1, 2017, which claims priority to U.S. Provisional Patent Application No. 62/302,682, filed Mar. 2, 2016, each of which is incorporated herein by reference in its entirety. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 C.F.R. § 1.57.
Number | Name | Date | Kind |
---|---|---|---|
3665986 | Johnson | May 1972 | A |
4485539 | Blaine | Dec 1984 | A |
4819922 | Boike | Apr 1989 | A |
5107577 | Jackson et al. | Apr 1992 | A |
5722646 | Soderberg et al. | Mar 1998 | A |
7661181 | Whitfield | Feb 2010 | B1 |
10646979 | Schiveley et al. | May 2020 | B1 |
11103978 | Schiveley et al. | Aug 2021 | B2 |
11478904 | Schiveley et al. | Oct 2022 | B2 |
11897089 | Schiveley et al. | Feb 2024 | B2 |
20070262505 | Tonnigs | Nov 2007 | A1 |
20090007407 | Hamilton | Jan 2009 | A1 |
20140026389 | Green et al. | Jan 2014 | A1 |
20160021982 | Davis | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
2453808 | Jul 1975 | DE |
2553814 | Jun 1976 | DE |
3916013 | Nov 1989 | DE |
1046481 | Oct 2000 | EP |
1046482 | Oct 2000 | EP |
1329296 | Jul 2003 | EP |
2356163 | May 2001 | GB |
447264 | Oct 1974 | SU |
504650 | Feb 1976 | SU |
1311935 | May 1987 | SU |
Entry |
---|
Cabinet Assembly Jig, U.S. Appl. No. 15/446,957, U.S. Pat. No. 10,646,979. |
Cabinet Assembly Jig, U.S. Appl. No. 17/384,524, U.S. Pat. No. 11,478,904. |
Cabinet Assembly Jig, U.S. Appl. No. 17/937,559, U.S. Pat. No. 11,897,089. |
Cabinet Assembly Jig, U.S. Appl. No. 16/839,679, U.S. Pat. No. 11,103,978. |
Number | Date | Country | |
---|---|---|---|
20240308031 A1 | Sep 2024 | US |
Number | Date | Country | |
---|---|---|---|
62302682 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15446957 | Mar 2017 | US |
Child | 16839679 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17937559 | Oct 2022 | US |
Child | 18399533 | US | |
Parent | 17384524 | Jul 2021 | US |
Child | 17937559 | US | |
Parent | 16839679 | Apr 2020 | US |
Child | 17384524 | US |