The present invention relates to a cabinet catch for use in a cabinet latch assembly, and to a method for making the cabinet catch.
A cabinet is a cupboard-like compartment fitted with shelves or drawers for storing articles and is usually closed by a hinged door. It is desirable to prevent the cabinet door when closed from easily opening to prevent the contents of the cabinet from falling out, especially if the cabinet is located in a movable structure such as a camper or a boat. A closed cabinet door can be releasably secured to the cabinet by a cabinet latch assembly.
A known type of cabinet latch assembly consists of a catch and a latch for securing to the catch. The catch is a nine-component assembly. The time to assemble a nine-component cabinet catch is lengthy because of the large number of components. There is a need for a cabinet catch which consists of a minimum number of components to shorten manufacturing time, reduce assembly time, reduce assembly cost and improve reliability of operation.
A cabinet catch consists of a molded plastic bracket for mounting to a portion of a cabinet structure. The clip is manufactured from a first plastic material. A plastic bracket is integrally molded with the clip. The clip is rotatable relative to the bracket about an axis of rotation. The bracket is formed from a second plastic material different from the first plastic material. The first and second plastic materials are dissimilar to each other so that they do not bond to each other.
A method of manufacturing the cabinet catch includes the steps of injection molding the clip of a first plastic material and then injection molding the bracket with a second plastic material different from the first plastic material so that the clip and bracket are integrally molded together.
The foregoing and other features of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:
a is a perspective view of the underside of the second mold part of
b is a perspective view of the first mold part of
a is a perspective view of the underside of the third mold part of
b is a perspective view of the first mold part of
The bracket 12 (
The first leg 16 defines an elongated slot 34 having a generally oval shape. The slot 34 has a length which is longer than its width. The length of the slot 34 is shorter than the length of the first leg 16. The width of the slot 34 is shorter than the width of the first leg 16. The slot 34 is located approximately in the center of the first leg 16. The slot 34 is for receiving a fastener (
The second leg 18 is a mirror image of the first leg 16 and as such the same reference numerals are used to identify the parts of the second leg that were used with regard to the first leg. The second leg 18 has a generally rectangular shape. The length of the second leg 18 is longer than its width. The second leg 18 has a top surface 22, a bottom surface 24, and four side surfaces 26, 28, 30, 32 which are located between and which interconnect the top and bottom surfaces in an overlying and spaced apart relationship. The side surfaces 26, 28, 30, 32 define the thickness of the second leg 18.
The second leg 18 defines an elongated slot 34 having a generally oval shape. The slot 34 has a length which is longer than its width. The length of the slot 34 is shorter than the length of the second leg 18. The width of the slot 34 is shorter than the width of the second leg 18. The slot 34 is located approximately in the center of the second leg 18.
The bracket 12 includes a first side wall 36 extending perpendicularly from the top surface 22 of the first leg 16 at a location adjacent to side surface 32. The first side wall 36 has a length which is equal to the length of the first leg 16. The first side wall 36 has a first sloped surface 38 and a second sloped surface 40. The first sloped surface 38 slopes upward away from the top surface 22 of the first leg 16 at an angle of approximately 25-35° relative to the top surface of the first leg. The second sloped surface 40 extends from the first sloped surface 38 to an end point 42. The angle of the second sloped surface 40 is approximately 65-70° relative to the top surface 22 of the first leg 16.
The first side wall 36 includes a front surface 44 and a back surface 46. The front and back surfaces 44, 46 extend perpendicularly upward (as viewed in
The first and second sloped surfaces 38, 40 define a thickness of the first side wall 36 which is approximately equal to the thickness of the first leg 16. The height of the first side wall 36 varies along the length of the first side wall. The height of the first side wall 36 is smallest at the first sloped surface 38 bordering the top surface 22. The height of the first side wall 36 gradually increases and is greatest at the end point 42 of the second sloped surface 40.
The bracket 12 includes a second side wall 48. The second side wall 48 is a mirror image of the first side wall 36 and as such the same reference numerals are used to identify the parts of the second side wall that were used with regard to the first side wall. The second side wall 48 extends perpendicularly from the top surface 22 of the second leg 18 at a location adjacent the side surface 32. The second side wall 48 has a length which is equal to the length of the second leg 18.
The second side wall 48 has a first sloped surface 38 and a second sloped surface 40. The first sloped surface 38 slopes upward away from the top surface 22 of the second leg 18 at an angle of approximately 25-35° relative to the top surface of the second leg. The second sloped surface 40 extends from the first sloped surface 38 to an end point 42. The angle of the second sloped surface 40 is approximately 65-70° relative to the top surface 22 of the second leg 18.
The second side wall 48 includes a front surface 44 and a back surface 46. The front and back surfaces 44, 46 extend perpendicularly and upward (as viewed in
The first and second sloped surfaces 38, 40 define a thickness of the second side wall 48 which is approximately equal to the thickness of the second leg 18. The height of the second side wall 48 varies along the length of the second side wall. The height of the second side wall 48 is smallest at the first sloped surface 38 bordering the top surface 22. The height of the second side wall 48 gradually increases and is tallest at the end point 42 of the second sloped surface 40.
The bracket 12 includes a back wall 50. The back wall 50 interconnects the first and second side walls 36, 48 in a spaced apart relationship. The back wall 50 has a generally square shape. The back wall 50 is configured as a frame having a top border 52 and a bottom border 54 interconnected by first and second side borders 56, 58. The four borders define a central opening 76 of the back wall 50.
The first side border 56 extends perpendicularly from the back surface 46 of the first side wall 36 and from the side wall 32 of the first leg 16. The first side border 56 has a surface (not shown) defining the thickness of the first side border. The first side border 56 has a height which is taller than its width. The height of the first side border 56 is equal to the sum of the height of the first side wall 36 plus the height of the side wall 32 of the first leg 16. The first side border 56 extends generally vertically as viewed in
The second side border 58 extends perpendicularly from the back surface 46 of the second side wall 48 and from the side wall 32 on the second leg 18. The second side border 58 has a surface 62 (
The top border 52 extends between upper end portions of the first and second side borders 56, 58. The bottom border 54 extends between lower end portions of the first and second side borders 56, 58. The top and bottom borders 52, 54 also have surfaces 64 and 65 which define the thickness of the top and bottom borders.
A solid cylindrical body 68 extends between the top and bottom borders 52, 54 of the back wall 50, at a location centered laterally in the central opening 76. The cylindrical body 68 is formed as one piece with and interconnects the top and bottom borders 52, 54. The diameter of the cylindrical body 68 is greater than the thickness of the top and bottom borders 52, 54. A vertical axis of rotation 20 extends through an opening 21 in the center of the cylindrical body 68. The legs 16, 18 extend perpendicularly to the vertical axis of rotation 20.
The cylindrical body 68 has an upper end portion 72 which interconnects with the top border 52. At this interconnecting upper end portion 72, half of the cylindrical body 68 protrudes outward from the top border 52 in the direction away from the back wall 50. Similarly, the cylindrical body 68 has a lower end portion 74 which interconnects with the bottom border 54. At this interconnecting lower end portion 74, half of the cylindrical body 68 protrudes outward from the bottom border 54 in the direction away from the back wall 50.
The bracket 12 is formed as one piece, preferably molded, so that all the surfaces of the bracket are continuous with one another. The overall size of the bracket 12 is within the range of one-quarter to three-quarter inches long and one-half to one and one-quarter inches wide.
The clip 14 (
A neck portion or protrusion 80 of the clip 14 protrudes from the outer surface of the hollow cylindrical member 78 in a direction away from the back wall 50 and between the first and second side walls 36, 48. The neck portion 80 has first and second side surfaces 82, 84, a top surface 86, and a bottom surface (not shown). The height of the neck portion 80 is identical to the height of the hollow cylindrical member 78. The width of the neck portion 80 is considerably less than the diameter of the hollow cylindrical member 78. The width of the neck portion 80 is approximately the same as the thickness of the first and second legs 16, 18 of the bracket 12. The neck portion 80 extends only a small length from the outer surface of the hollow cylindrical member 78. The length of the neck portion 80 is approximately equal to its width.
The clip 14 has first and second flexible arms 90, 92 that extend from the neck portion 80. The arms 90 and 92 have first end portions 94 that are joined together at the neck portion 80.
The height of the first arm 90 is equal to the height of the neck portion 80. The thickness of the first arm 90 is equal to the thickness of the neck portion 80. The length of the first arm 90 is approximately one and one-half times the length of the bracket 12.
The first arm 90 has an outer surface 96 and an inner surface 98 overlying the outer surface. The first arm 90 has top and bottom surfaces 100, 102 which are located between and interconnect the outer and inner surfaces 96, 98 in an overlying and spaced apart relationship.
The first arm 90 has a zigzag or flattened Z-shaped configuration. The outer surface 96 of the first arm includes three continuous surface portions 104, 106, 108. When viewed in
The first and second surface portions 104, 106 of the outer surface 96 of the first arm 90 define a first arched portion 110 of the first arm 90. The first arched portion 110 has a first apex 112 cambered in a first direction. As viewed in
Similarly, the inner surface 98 of the first arm 90 comprises three continuous surface portions 120, 122, 124. When viewed in
The first and second surface portions 120, 122 of the inner surface 98 define a first arched portion 126 of the first arm 90. The first arched portion 126 has an apex 128 which is cambered in the first direction. As viewed in
The second arm 92 is a mirror image of the first arm 90 and as such the same reference numerals are used to identify the parts of the second arm that were used with regard to the first arm. The height, the thickness, and the length of the second arm 92 is equal to the height, the thickness, and the length of the first arm 90.
The second arm 92 has an outer surface 96 and an inner surface 98 overlying the outer surface. The second arm 92 has top and bottom surfaces 100, 102 which are located between and interconnect the outer and inner surfaces 96, 98 in an overlying and spaced apart relationship.
The second arm 92 has a zigzag or Z-shaped configuration in a pattern opposite the first arm 90. The outer surface 96 of the second arm 92 includes three continuous surface portions 104, 106, 108. When viewed in
As viewed in
Similarly, the inner surface 98 of the second arm 92 includes three continuous surface portions 120, 122, 124. When viewed in
The first and second surface portions 120, 122 define a first arched portion 126 of the second arm 92. The first arched portion 126 has an apex 128 cambered in the second direction. The second and third surface portions 122, 124 define a second arched portion 130 of the second arm 92. The second arched portion 130 has an apex 132 cambered in the first direction. The first and second arched portions 110, 114, 126, 130 of the outer and inner surfaces 96, 98 of the second arm 92 overlie each other.
The first and second surface portions 120, 122 of the inner surfaces 98 of the first and second arms 90, 92 define a diamond shaped cavity 134. The cavity 134 has an opening or entrance 136 defined by the second apexes 132, the third surface portions 124 of the inner surfaces 98, and the end points 138 of the first and second arms 90, 92.
The clip 14 is made from a resilient material so that the arms 90 and 92 of the clip 14 are resilient. When the clip 14 is in a free condition as shown in
The overall size of the clip 14 is one to one and one-half inches long and one-quarter to one-half inches wide. In the embodiment shown in
Instead of the clip 14 being made from POM, the clip can be made from another suitable material. Other suitable materials include but are not limited to polycarbonate, polypropylene, ABS a.k.a. Acrylonitrile Butadiene Styrene or a blend of polycarbonate and ABS. Instead of the bracket 12 being made from PA6, the bracket can be made from another suitable material. Other suitable materials include but are not limited to PA66, a.k.a. Polyamide (nylon) 66 or PBT, a.k.a. Polybutylene Terephthalate. The group of materials used to make the clip 14 can be wholly interchanged with the group of materials used to make the bracket 12.
The cabinet latch assembly 11 also includes a cabinet latch 146 (
The cabinet latch 146 includes a protrusion 154 (
In order to prevent the protrusion 154 from bending along the linearly extending portion 156 relative to the base 148, the latch 146 includes two support flanges 164 and 166. The support flanges 164 and 166 are triangular in shape and are formed integrally with the other portions of the latch 146. The support flanges 164 and 166 extend between the base 148 and the portion 156 of the protrusion 154.
The cabinet catch 10 is mounted to the cabinet (
Engagement of the cabinet catch 10 with the cabinet latch 146 is effected by closing the cabinet door 144 so that the diamond-shaped end portion 158 of the cabinet latch is inserted in the opening 136 of the clip 14. If the catch 10 and the latch 146 are not lined up exactly, force from the latch 146 causes the clip 14 to rotate slightly relative to the bracket 12 about the axis of rotation 20, in the space between the first and second side walls 36 and 48 to line up exactly with the latch 146.
The diamond-shaped end portion 158 of the cabinet latch 146 enters the opening 136 in the clip 14 and engages the arms 90 and 92 of the clip. The force exerted by the latch 146 on the arms 90 and 92 is greater than the predetermined force. The arms 90 and 92 separate, allowing the end portion 158 of the latch 146 to enter the cavity 134 (
After the end portion 158 of the cabinet latch 146 is completely inside the cavity 134, the first and second arms 90, 92 resiliently return to the initial or free position (
The cabinet latch assembly 11 holds the door 144 of the cabinet closed onto the cabinet structure 140 until it is desirable to open the cabinet door. When the cabinet door 144 is opened, the end portion 158 of the cabinet latch 146 is pulled outward from the catch 10, with a force that exceeds the predetermined force. The force from the latch 146 spreads the first and second arms 90, 92 of the clip 14 outward away from each other, allowing the latch to be removed from the catch through the opening 136.
The cabinet catch 10 is made by an in mold assembly technique known as two-shot injection mold technology. The clip 14 and the bracket 12 of the cabinet catch 10 are integrally molded by this technique.
The clip 14 is injection molded first (
The first mold part 200 is associated either with a second mold part 210 or a third mold part 220. The second mold part 210 (
The clip 14 is injection molded first. The first and second mold parts 200, 210 and the slide 202 are closed together (right half of
A second plastic molding material is injected into the an opening (not shown) in the third mold part 220. The bracket 12 is integrally molded with the clip 14 by injection molding the solid cylindrical member 68 of the bracket through the hollow cylindrical member 78 of the clip 14. The closed first and third mold parts are subsequently opened (
The plastic material used to mold the clip 14 is dissimilar to the plastic material used to mold the bracket 12. The plastic materials used to mold the clip 14 and the bracket 12 have dissimilar properties in that the plastic material of the clip does not adhere to or bond with the plastic material of the bracket during the molding process of forming the integral clip and bracket portions of the catch 10.
Plastic materials have inherent shrinkage properties during molding processes and specifically during when the plastic material cures. During the injection molding process of the present invention, the material of the clip 14 is injection molded first and forms an opening 21 which is predefined by a geometry in mold part 210 and slide 202. The opening 21 defines a boundary into which the plastic material of the bracket is subsequently injected (
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications in the invention. For example, the cabinet catch 10 can be used as an apparatus for releasably securing two structures together in an overlying relationship, and is not necessarily limited to securing cabinet doors to cabinet structures. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.