The subject matter of the present application pertains to the field of non-reversing image mirrors. It is particularly related to a non-reversing image mirror mounted within a cabinet or similar structure and rotatable between an open/viewing state and a non-viewing state.
A non-reversing image mirror (referred to hereinafter as “NRIM”), also commonly referred to as a non-reversing mirror, is used to orient a reflected image in the same manner that it is viewed by others. In other words, for a person using such a mirror, the reflected image is not flipped in the sagittal plane. Two mirror panels are placed orthogonally to each other to form the NRIM while the viewer faces the intersection of the mirror panels. The two mirror panels both extend at about 45 degree angles relative to a viewer. Therefore, a NRIM takes up more space than a typical flat mirror (usually provided as a second-surface mirror). This additional space may be undesirable at times when not in use, for example when in a small room. Likewise, aesthetically, the additional space of a NRIM may be considered inelegant or not streamlined. However, if a NRIM were fully recessed within a wall or cabinet, it would be difficult to view and access and would be susceptible to poor lighting.
Superior reflected images are produced by NRIM assemblies. However, there is not an easy, convenient way to view oneself in a conventional flat panel reverse image mirror and then simply and quickly switching to a non-reversing image system. With this disclosure, alternating between both mirror systems is as effortless as opening and closing a medicine cabinet door.
Additionally, this disclosure greatly improves the issues of considerable depth and substantial bulkiness associated with static NRIM assemblies by incorporating unequal width mirror panels that smoothly rotate about a strategically located pivot point, thus situating the non-reversing image mirror system in the center of the cabinet enclosure and displaying the non-reversed image significantly closer to the user. The distance between the intersection of the mirror panels and the front opening of the cabinet is consequently reduced relative to the distance found in static models.
The rotating mirror system of the present disclosure is secured and contained within a cabinet that is easily surface mounted on a wall or partition or alternatively in a semi-recessed or fully-recessed installation at the preferred eye level of the user. The cabinet may also be placed on appropriate horizontal surfaces. In both vertical and horizontal placements, the cabinet may be inverted to better serve right-handed or left-handed viewers.
Furthermore, the individual mirror panels of the non-reversing image assembly are fixed within their corresponding frames. The placement of adjustment components allows the user to easily and conveniently readjust the mirror assembly as may become necessary. Both mirror panels incorporate safety films and coatings to protect users and the reflective coatings of the first-surface mirrors.
When combined with a variety of adjoining storage component options, this Cabinet is a practical and improved alternative to standard wall-mounted residential style medicine cabinets with mirrored doors as well as countertop and vanity arrangements. Separately, this Cabinet system can serve medical professions such as physicians, plastic surgeons, dermatologists, optometrists and ophthalmologists, dentists and orthodontists. Other commercial enterprises that use mirrors, for instance, jewelers, boutiques, hair salons and barber shops, cosmetic sales counters, hotels, restaurants and apartments benefit from the ability to substitute advertising, artwork, smart mirrors, electronic displays, logos, trademarks and photographs on the outside flat panel in order to promote their products and services.
A NRIM may be more likely to be accidentally damaged or sullied due to its shape and/or construction. A NRIM may be formed of a first-surface mirror, that is, a mirror with the reflective surface being above a backing, as opposed to the conventional, second-surface mirror with the reflective surface behind a transparent substrate (such as glass or acrylic). A first-surface mirror can produce a clearer and more precise reflected image than a second-surface mirror. However, due to the lack of transparent substrate, first-surface mirrors may be more susceptible to damage from abrasion than typical second-surface mirrors.
The present disclosure is directed to overcoming one or more problems of the prior art, such as bulk, aesthetics, and lack of storage. Additionally, the present disclosure is directed to a convenient manner of use and access to a NRIM.
In one aspect, the present disclosure is directed to a mirror cabinet having a NRIM pivotably disposed within a cabinet. The NRIM includes a first front-surface mirror, a second front-surface mirror, and a pivot. The first front-surface mirror is connected to the second front-surface mirror. The second front-surface mirror is disposed at an angle of about 90 degrees to the first front-surface mirror to create a non-reversing image viewing plane. The pivot is attached to the second front-surface mirror between a first side wall and a second side wall of the second front-surface mirror. The second front-surface mirror has a width greater than a width of the first front-surface mirror. The cabinet includes a front opening and a pivot counterpart. The pivot is connected to the pivot counterpart such that the NRIM is pivotable between a closed position and an open position. A back side of the second front-surface mirror substantially covers the front opening in the closed position. The non-reversing image viewing plane is visible through the front opening in the open position.
The foregoing summary and the following detailed description will be better understood when read in conjunction with the appended drawings, which illustrate a preferred embodiment of the invention. In the drawings:
Certain terminology is used in the following description for convenience only and is not considered limiting. Words such as “front”, “back”, “top” and “bottom” designate directions in the drawings to which reference is made. This terminology includes the words specifically noted above, derivatives thereof and similar words. Additionally, the terms “a” and “one” are defined as including one or more of the referenced item unless specifically noted. The phrase “at least one” followed by a list of two or more items (such as A, B, or C) means any individual one of A, B or C as well as any combination thereof. The term “substantially” means within ±5% of a given value or ±5 degrees from a given angle, as appropriate. The terms “about” and “generally” mean within ±10% of a given value or ±10 degrees from a given angle, as appropriate.
At the outset, it is understood that this invention is not limited only to the particular embodiments, methodology, materials, and modifications described herein, and as such may vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the present invention, which is limited only by the appended claims.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the following example methods, devices, and materials are now described.
The NRIM 2 is formed of a first front-surface mirror 30 and a second front-surface mirror 50 disposed at an angle 4 and intersecting at an intersection 6 with a T-shape, that is, one of the first or second front-surface mirrors 30, 50 extends beyond the front surface of the other of the front-surface mirrors. Other types of mirrors are applicable, but front-surface mirrors produce the projected non-reversed viewing plane or image while minimizing or eliminating the appearance of a vertical line between the mirrors. The angle 4 is fixed at least at generally 90 degrees to produce a non-reversed image. In some embodiments, the angle 4 is exactly 90 degrees.
In the illustrated embodiments, the intersection 6 has the first and second front-surface mirrors 30, 50 in contact in a T-shape, although in other embodiments they may meet and mutually terminate with an L-shape, be slightly spaced apart, or have an intervening pad, such as a rubber strip or elastomeric coating. The spaced-apart placement or intervening pad may be on a microscopic scale, so as to not affect the non-reversed viewing plane or image. In other embodiments, the first and second front-surface mirrors 30, 50 may be formed from one continuous flexible reflective surface, with the intersection 6 replaced with a rounded corner.
An upper pivot assembly 8 and an optional lower pivot assembly 9 connect the NRIM 2 to the cabinet 10 and allow the NRIM 2 to rotate between an open position (shown in
As shown in
As shown in
Returning to
The second front-surface mirror 50 includes a top 52, right side 54, bottom side 56, and a left side 58 coextensive with the intersection 6. The second front-surface mirror 50 defines a width 60. The width 60 may be approximately twice the width 40 of the first front-surface mirror 30. In some embodiments, the width 60 may be about 12 inches. The width 60 is less than the width 23 of the cabinet 10, so as to fit between the cabinet sidewalls 16, 20. As shown in
As shown in
The lower pivot assembly 9 may be constructed from a similar arrangement of components as the upper pivot assembly 8, such as a pivot pin 64 on the second front-surface mirror 50 and a socket 27 formed in the bottom wall 18 of the cabinet 10. The upper pivot assembly 8 and the lower pivot assembly 9 are offset from a midpoint 25 of the width 23 of the opening 12. Because the intersection 6 in the open position is located generally or substantially at the midpoint 25 of the width 23 of the opening 12, the upper and lower pivot assemblies 8, 9 are also offset in the widthwise direction from the intersection 6. In other words, the upper and lower pivot assemblies 9 are not equidistant between the side walls 16, 20 of the cabinet 10.
The upper and lower pivot assemblies 8, 9 are arranged to position the intersection 6 of the NRIM 2 generally or substantially at the midpoint 25 of the width 23 of the cabinet 10 when in the open position. By this arrangement, a projected non-reversed image of the NRIM 2 appears to fit in the cabinet 10 as it would for a typical flat mirror; in other words, the projected non-reversed image appears similar to a reflection in flat mirror 28 when in the closed position of
As mentioned above, first surface mirrors are particularly delicate and therefore features may be added to provide additional protection to the first and second front surface mirrors 30, 50. For example, dampening mechanisms may be built into the pivot 8, 9 or into the cabinet 10 to engage the NRIM 2 as it approaches each of the open and closed positions. A dashpot, gas spring, coil spring, damper, or the like may be employed for this purpose.
As shown in
Turning to
As further shown in
In lieu of the flat mirror 28, the second panel 66 or 68 may mount other decorative features such as artwork or an advertisement. A flat screen television (preferably LED) may be mounted in lieu of the flat mirror 28, which is especially useful in commercial applications.
In some embodiments such as shown in
This distance X also defines the distance that the intersection 6 is recessed back from the front opening 12 of the cabinet 10. In the preferred embodiment shown in
As shown in
The NRIM 2 and cabinet 10, 70 may be provided with lighting fixtures 80 to aid viewing. As shown in
One skilled in the art should recognize that the depth 24 of the cabinet 10 is generally equal to the width 40 of the first front-surface mirror 30 and likewise the width 23 of the front opening 12 of the cabinet 10 is generally equal to the width 60 of the second front-surface mirror 50, while allowing clearance to pivot as shown in
Also shown in
The NRIM 2 of the present disclosure provides several factors of convenience. Because the first and second front-surface mirrors 30, 50 extend forward from the cabinet, there is minimal obstruction directly above and below the mirrors, which allows a user to easily hold their face close up to the mirror. Moreover, the first and second front-surface mirrors 30, 50 (and especially the second front-surface mirror) are large enough that a user can simply turn directly toward a selected mirror and use it in the same manner as a typical reversed-image mirror. The cabinet 10 of the present disclosure may be installed upside-down to allow rotation/operation in reverse (that is, if the disclosed embodiments are installed upside-down, the second front-surface mirror 50 can be pulled/rotated forward by being grasped at the right side of the cabinet).
In alternative embodiments, the widths 40, 60 of the first and second front-surface mirrors 30, 50 may be substantially equal. The depth 24 of the first and second front-surface mirrors 30, 50 may be substantially equal to the width, resulting in a cabinet 10 that is cuboid. Such symmetrical alternatives may be desirable in portable “table-top” versions of the cabinet 10.
The second front-surface mirror 50 and the flat mirror 28 may be designed so as to minimize their thickness. The second front-surface mirror 50 and the flat mirror 28 may be provided as a single mirror panel without an intervening panel. If a panel is used, the back side 29 of the panel may be directly coated with the reflective material used in forming the flat second-surface mirror 28.
As shown in
Having thus described the presently preferred embodiments in detail, it is to be appreciated and will be apparent to those skilled in the art that many physical changes, only a few of which are exemplified in the detailed description of the invention, could be made without altering the inventive concepts and principles embodied therein. It is also to be appreciated that numerous embodiments incorporating only part of the preferred embodiments are possible which do not alter, with respect to those parts, the inventive concepts and principles embodied therein. For example, the walls 14-20 of the cabinet 10 could be omitted and the NRIM 2 (including first front-surface mirror 30, second front surface mirror 50, and pivot assemblies 8, 9) could be installed in a cavity of a building wall or as part of a vanity unit. The cabinet 10 could also be installed directly on a wall surface. Likewise the cabinet 10 could be a freestanding unit, and sized for portability. The present embodiments and optional configurations are therefore to be considered in all respects as exemplary and/or illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all alternate embodiments and changes to this embodiment which come within the meaning and range of equivalency of said claims are therefore to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
1966800 | Katzman | Jul 1934 | A |
1991054 | Hampke | Feb 1935 | A |
2678252 | Swearingen | May 1954 | A |
3909091 | Tantillo | Sep 1975 | A |
4235524 | Lechter et al. | Nov 1980 | A |
4268121 | Peskin | May 1981 | A |
4580880 | Watson | Apr 1986 | A |
4720184 | Watson | Jan 1988 | A |
4884176 | Palka | Nov 1989 | A |
5357377 | Payne, Jr. et al. | Oct 1994 | A |
5430578 | Reagan | Jul 1995 | A |
5521744 | Mazurek | May 1996 | A |
5625501 | Taggert | Apr 1997 | A |
6293681 | Frank | Sep 2001 | B1 |
6322222 | Kobayashi | Nov 2001 | B1 |
20090052072 | Egosi | Feb 2009 | A1 |
20100128374 | Zaglin et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
101620546 | May 2016 | KR |
9630785 | Oct 1996 | WO |
2010130859 | Nov 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20200015607 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62697806 | Jul 2018 | US |