Cable actuated downhole smart pump

Information

  • Patent Grant
  • 6497281
  • Patent Number
    6,497,281
  • Date Filed
    Monday, July 23, 2001
    23 years ago
  • Date Issued
    Tuesday, December 24, 2002
    22 years ago
  • Inventors
  • Examiners
    • Neuder; William P.
    Agents
    • Bates; Marcus L.
Abstract
Improvements in method and apparatus for producing hydrocarbons from marginal oil wells, especially wells that previously used standard pump jacks. Substitution of the present invention for prior art production equipment solves many common problems found in the prior art, such as a well pump that experiences gas lock and pounding, which is a hindrance to efficient production in other known pump systems but is advantageous when using the Smart Pump of this disclosure. Disclosed herein is a pump assembly which senses when fluid is pumped uphole at a rate different than the rate that fluid is produced from the formation, by continually adjusting the time interval of one cycle of operation to coincide with the production history of the well. Stored data related to the production history of the well enables determination of the quantity of fluid that should be contained within the pump barrel each cycle of operation and changes the time interval for successive cycles of operation so as to continually adjust the next time interval to coincide with the rate of production of the formation whereby the optimum rate of production is always attained by this method of operation of the apparatus disclosed herein. These and many other unforseen advantages are realized by this disclosure that can change an unprofitable well into a profitable well, often at no additional cost.
Description




BACKGROUND OF THE INVENTION




The present invention relates to improvements in downhole production pumps and operating systems therefor for use in pumping fluids from boreholes and especially an oil well production system for stripper wells wherein crude oil is removed from the borehole as fast as it comes into the well.




Marginal oil wells, also called stripper wells, are usually uneconomical for the major oil companies to operate because the labor and pumping costs are close to the revenue from the hydrocarbon sales. Every day many of these unprofitable stripper wells are being shut in, plugged, and abandoned. But there is a type of oil field hand that loves to get possession of these marginal wells because he has the where-with-all to scrounge up enough equipment to maintain and operate these wells at a small profit.




Many of these stripper wells in the U.S.A. produce only about 10 barrels or less, of hydrocarbons/day. These wells are important to the U.S. economy, especially during times of political unrest when they become vital to our national defense. After all, just one days production at a rate of 10 barrels, or 440 gal, of oil/day will operate a small auto several thousand miles after the crude oil has been refined into fuel.




Accordingly, it is desirable to make available novel oil well production equipment that is relatively inexpensive and can be assembled from mostly commercially available material and thereby increase the profit gleaned from a stripper well. Additionally, the novel equipment should be easy to work on and have low cost maintenance and operation. Further, the novel equipment should operate the well in such a manner that the production rate can be increased from marginal to profitable. When all of these and several other desirable attributes are considered, it is easy to see that they add up to a novel well production system that provides the unexpected result of changing an unprofitable situation into one that is profitable.




Most oil wells in West Texas are produced by a pump-jack unit that reciprocates a bottom hole pump. The pump-jack usually operates cyclically for time intervals selected to avoid reaching a pump-off condition which starts a destructive condition known as fluid pounding, or gas lock. This situation is evidenced by the hundreds of issued US Patents which address this problem. One simply never pumps-off a well.




Fluid pounding is encountered when a pump-off condition is reached due to the attempt to remove downhole fluid from the borehole faster than it can accumulate. This introduces compressible gas into the variable chamber of the downhole pump, causing the plunger to accelerate and “pound” the bottom of the pump as the liquid supported by the plunger impacts the stationary valve assembly at the bottom of the pump barrel. Fluid pounding is destructive for it can result in accelerated wear and tear on the entire production equipment. Therefore, in most reciprocating downhole production pumps, a lot of consideration is given to avoiding a pump-off condition of the downhole pump.




Contrary to the prior art method of producing a well, the production system of the present invention is operated in a continually pumped-off condition by removing the formation fluid from the bottom of the well just as fast as it enters through the casing perforations of the borehole, thereby reducing the hydrostatic pressure against the pay zone to a minimum. This allows the oil bearing formation to produce at its maximum, but at the same time it is bound to ingest compressible gas into the bottom of the pump barrel, where it would be expected to cause fluid pounding, especially if provision is not made to avoid this occurrence. Accordingly, a purpose of this invention is the provision of a novel downhole pump and system that can accommodate the pumping of mixed hydrocarbon fluids (gas and liquid) and thereby change the problem of encountering a pump-off condition into an asset, while avoiding the dangers of fluid pounding. This is achieved in accordance with the present invention by the provision of a downhole pump assembly having a very long barrel that lifts both gas and liquid uphole every up-stroke of the pump plunger so that the pump chamber does not accumulate compressible fluids therewithin, but instead exhausts all gases along with the liquid each upstroke of the pump.




In addition to avoiding fluid pounding, this novel feature of this invention also has the unexpected advantage of enhancing pumping efficiency by using the gas expelled from the pump into the production tubing to provide additional lifting power in the manner similar to a well that uses a gas or air lift to produce liquid therefrom. Hence, gas that flows into the pump apparatus of this disclosure is slowly exhausted from the top of the variable chamber each upstroke of the pump plunger, and consequently there is no means by which the gas from a previous stroke can accumulate in the pump barrel for another stroke because the gas is removed from the pump apparatus at the end of each upstroke. Accordingly, fluid pounding is never encountered.




Further, the exceedingly long stroking pump plunger, together with the unusually slow time interval of the upstroke each cycle of operation, provides the necessary time delay for any gas that flows into the pump chamber to separate from the fluid and accumulate at the top of the barrel. During the slow plunger up-stroke the accumulated gas is slowly expelled from the pump variable chamber and enters the bottom of the production string at a very slow rate, which reduces the density of the contents of the tubing.




During the upstroke, the slow traveling pump plunger is acting against a constant lifting force and therefore does not accelerate significantly due to the differences in design between the system of this invention and the prior art production pumps, as will be more fully appreciated later on as this disclosure is more fully digested. Stated differently, there is not enough plunger speed and built-in inertia force in the present system as compared to the massive rotating parts of a prior art pumpjack operation to effect fluid pounding. Further, the low pumping speed of this novel cyclic operation along with the low bottom hole pressure at the perforations prevents accumulation of gases within the pump barrel for more than one cycle of operation, and this is a situation in which fluid pounding cannot be brought about.




Another novel feature of this disclosure is the provision of a method which reduces the oil/water ratio to a minimum by skimming the oil from above the oil/water interface of the formation fluid accumulated in the bottom of the well. The amount of water produced can be reduced until the desired crude production is achieved, or the desired oil/water ratio is achieved.




Other advantages of this disclosure over rod type downhole pumps is that the downhole production pump apparatus claimed herein can be pulled from the tubing by using the operating cable for reeling the lifting cable uphole until the pump apparatus surfaces. Then the entire pump apparatus can be serviced, as required, with change out of desired parts, and thereafter run back downhole into the borehole by unspooling the cable. Both method and apparatus that achieves the above desirable results are the subject of this invention and for which patent protection is sought.




In the prior art, it is noted that Coberly, U.S. Pat. No. 1,970,596, discloses a cable actuated long stroke pumping mechanism having a cable drum that includes a mechanical speed and switching control means associated therewith. The cable drum is rotated such that it accelerates the rate of travel of the plunger at the end of each stroke.




Mayer, et al, U.S. Pat. No. 4,761,120, measures a load on the rod string to provide automatic shutdown of a pumping unit.




London, et al, U.S. Pat. No. 5,372,482, controls the filling of a well pumping device by an arrangement in which the motor current is measured and compared to rod position using a computer to process the signals.




McKee, U.S. Pat. No. 4,973,226 discloses a pumpjack reciprocating a sucker rod string for actuating a downhole pump by measuring load on the rod string during a downstroke position of the walking beam to provide a signal which is stored and processed by a computer to determine the filling of a pump barrel. The electrical power to the pump jack motor is controlled by the computer to control stroke speed which keeps the pump barrel full by comparing instantaneous computer generated data with previous data and to continuously correct the filling of the barrel.




BRIEF SUMMARY OF THE INVENTION




Improvements in downhole production pumps and operating systems therefor for use in pumping fluids from boreholes, and especially an oil well production system for stripper wells wherein crude oil is removed from the borehole as fast as it comes into the well. This system includes weight indicators, downhole sensing devices, including fluid level detecting devices, bottom hole pressure measurement, detection of oil/water contact or interface, and a cable actuated downhole production pump that can handle both oil and gas. All of these system parts are assembled and programmed to operate a novel downhole production pump at a production rate equal to the flow rate of the produced oil flowing into the well bore from the casing perforations. This keeps the hydrostatic head at the perforations at a minimum value which can be substantially zero, so that the downhole hydrostatic pressure imposed on the production zone is relatively low, which is a condition that achieves maximum production of oil from an oil well.




Reduced power consumption is realized by the incorporation of a very long pump barrel having a special cable actuated lifting plunger received therein that is slowly reciprocated uphole and then lowered back into the well 24 hours per day. This novel lifting system is designed for maximum efficiency as well as increased recovery of oil from old stripper wells; especially old wells that have declined in yearly production to only 10 barrels of oil per day or less, for example, when using conventional pump systems. Properly installed, the system set forth in this disclosure could significantly increase present production in old stripper wells while at the same time reducing the cost of operation.




Sensing devices are employed to control the action of the production apparatus which enables the speed of the operation to be controlled to match the rate of fluid input into the well bore at the casing perforations, thereby saving energy by allowing the pump to operate in a timed cyclic mode which upstrokes after there is a predetermined accumulation of production fluid in the pump barrel ready to be removed from the bottom of the borehole.




Accordingly, each time the operating cable is lowered into the borehole, diagnosis by the surface equipment determines the downhole fluid level, and, when there is less than a full pump barrel of formation fluid available to be transferred into the pump barrel, the timing of the next operating cycle is modified to coincide with the formation production rate so that a full pump barrel is attained prior to each upstroke. This additional cycle time provides sufficient time for the well to make the additional fluid needed to completely fill the pump barrel with the accumulated well fluid and further keeps a minimum hydrostatic head at the perforations.




Many unprofitable stripper wells can be operated profitably by judiciously diagnosing the operating history of the well and carrying out any future operation of the well in accordance with this invention.




Therefore, a primary object of the present invention is the provision of both method and apparatus of a pump system made in accordance with this disclosure that employs a cyclicly continuously operated slow moving, long stroking plunger on the upstroke and on the downstroke to save power by moving a relatively large column of fluid uphole each upstroke of the plunger as contrasted to a short stroking pump, such as a pumpjack, which has a fast moving short stroking plunger on both the upstroke and downstroke.




Another object of the present invention is the provision of a cable actuated downhole pump assembly that forces an unusual quantity of fluid uphole on the upstroke while overcoming inertia one time instead of several times for the same quantity of production fluid.




A further object of the present invention is the provision of a cable actuated downhole pump assembly that easily can be pulled for servicing by reeling or spooling the lifting cable uphole until the pump barrel surfaces and then, after changing out various parts, the pump easily is run back into the hole on the operating cable; thus avoiding the necessary expense of using a pulling unit.




Another and still further object of this invention is the provision of a downhole pump assembly having a unique bypass valve device that is opened in response to the pump barrel initially being lifted uphole by the operating cable and thereby equalizes the pressure between the tubing and the casing annulus, and also washes debris from the lower end of the pump assembly in proximity of the hold-down, all of which avoids a stuck pump.




A still further object of the present invention is the provision of a downhole pump assembly having a plurality of sensor devices uniquely connected to an uphole controller to monitor the pumping operation and enable selection of the optimum time intervals for making a relative slow upstroke, followed by a downstroke of another timed interval; with this cyclic operation being modified by the controller each cycle of operation to maintain a continuous optimum production as conditions change.




A still further object of the invention is a pumping system that skims oil from a hydrocarbon producing well by allowing the pump plunger to descend through the oil phase in the pump barrel and stop at the oil/water interface, thereby producing or skimming hydrocarbons (oil and gas) without producing excessive water.




A still further object of the present invention is the provision of a downhole pump assembly operated in a manner to keep the hydrostatic head in front of each perforation at a minimum so that the fluid from the pay zone is free to flow into the wellbore without being held back by an excessive fluid hydrostatic head.




A still further object of the present invention is the provision of a downhole pump assembly operated in a manner whereby compressible fluid produced by the pay zone is admixed with liquid rather than vented up the casing string, and the mixed fluids are passed through the pumping chamber, and up the production tubing each upstroke of the pump.




A still further object of the present invention is the provision of a downhole pump assembly operated in a manner whereby fluid is pumped to the surface at the same rate that fluid is produced from a formation within a time interval of one cycle of operation calculated from stored data related to the production history of the well to determine the quantity of fluid contained within the pump each cycle of operation and to change the time interval for successive cycles of operation so as to continually adjust the time intervals to coincide with the rate of production of the formation whereby the optimum rate of production is attained and the cyclic operation continues until the well is shut down.




Another and still further object of this invention is the provision of a downhole pump assembly operated in a manner whereby there is no danger of fluid pounding, even though the well is always operated under severe pump-off conditions, because the gas ingested by the pump is slowly expelled up the production tubing each pump upstroke, and thereby enhances pumping efficiency.




A still further object of the invention is a pumping system that skims oil from a hydrocarbon producing well by allowing the pump plunger to descend through the oil phase in the pump barrel and stop adjacent the oil/water interface, thereby producing or skimming hydrocarbons (oil and gas) without producing excessive water, while the formation gas is flowed into the working chamber, and is expelled from an upper stationary valve with the production rate being held to a value that keeps the hydrostatic head in front of each perforation at a minimum so that the fluid from the pay zone is free to flow into the wellbore without being held back by an excessive fluid hydrostatic head.




A still further object of the present invention is the provision of a downhole pump assembly operated in a manner whereby compressible fluid produced by the pay zone is admixed with liquid and the mixed fluids are passed through the pumping chamber, and up the production tubing each upstroke of the pump assembly and becomes part of the fluid contained within the production tubing, thereby reducing the tubing hydrostatic pressure or fluid density and enhancing lift in a manner similar to a gas lift well.




A still further object of the present invention is the provision of a downhole pump assembly operated in a manner whereby the simplicity of design is reflected in lower initial cost and subsequent low operation maintenance, which, together with the enhanced production of the well, makes a marginal well into a profitable one.




These and various other objects and advantages of the invention will become readily apparent to those skilled in the art upon reading the following detailed description and claims and by referring to the accompanying drawings.




These and other objects are attained in accordance with the present invention by the provision of a method for use with apparatus fabricated and operated in a manner substantially as described herein.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS





FIG. 1

is a fragmentary, part cross-sectional, part diagrammatical, part schematical, side view of a wellbore formed into the earth, having apparatus made in accordance with this invention disclosed therewith; and by which the method of this invention can be practiced;





FIGS. 2 and 3

, respectively, are cross-sectional views taken along lines


2





2


and


3





3


, respectively, of

FIG. 1

, with some additional parts shown in

FIG. 3

;





FIG. 4

is an enlarged, fragmentary, part schematical, part cross-sectional side view showing part of

FIG. 1

in greater detail, with some additional parts shown in

FIG. 3

;





FIG. 5

is a cross sectional view taken along line


5





5


of

FIG. 4

;





FIG. 6

is an enlarged side elevational view that sets forth additional details of an upper standing valve apparatus that forms a part of the invention disclosed in

FIGS. 1 and 4

; with some parts thereof being broken away and the remaining part shown in cross-section;





FIG. 7

is a longitudinal cross-sectional view of the apparatus of FIG.


6


and disclosed in the normal or closed position of operation;





FIGS. 8 and 9

, respectively, are cross-sectional views taken along lines


8





8


and


9





9


, respectively, of

FIG. 7

; and discloses additional details of part of the apparatus thereof;





FIG. 10

is an exploded view of

FIG. 6

;





FIG. 11

is a longitudinal part cross-sectional side view that sets forth a bypass valve that forms a part of the apparatus of the foregoing

FIGS. 1 and 4

, and is disclosed in the normal or closed position of operation, with some parts thereof being broken away therefrom to disclose additional details;





FIG. 12

is a longitudinal, part cross-sectional side view that discloses the apparatus seen in

FIG. 11

in the open or alternate position of operation;





FIG. 13

is an enlarged, part schematical, part cross-sectional view of the plunger apparatus of

FIGS. 1 and 4

, showing additional details thereof;





FIG. 14

is a schematical representation of a flow sheet showing one embodiment of an operating and control apparatus for the pump system of this invention;





FIG. 15

is a schematical representation showing another embodiment of an operating and control apparatus for the pump system of this invention;





FIG. 16

is a schematical representation of a hydraulic control system that forms an alternate embodiment of the operating system for the pump system of this invention;





FIG. 17

is a schematical representation of a part of the hydraulic or electric control system that forms part of the production system of this invention; and





FIG. 18

is a cross sectional representation showing additional details of part of the sinker bar apparatus of

FIGS. 1 and 4

.











DETAILED DESCRIPTION OF THE INVENTION




This invention pertains to a production method and apparatus for producing a well; and, more particularly to a long-stroking well production system for producing a stripper oil well. This invention employs a relatively flexible elongated member that can be spooled onto and off a drum, as for example, a wire rope or cable by which a novel downhole pump assembly can be actuated. As shown in the accompanying Figures of the drawings, and particularly

FIGS. 1 and 4

thereof, there is broadly disclosed an oil well production system


10


that has the usual borehole, or wellbore having a casing


12


, formed into the Earth. The production system


10


, made in accordance with this invention, includes an improved surface apparatus


14


and improved subsurface apparatus


16


associated therewith for adjustably controlling the pumping action of the well in order to obtain optimum production.





FIG. 1

illustrates one arrangement of the present invention


10


installed respective to a wellbore that previously was operated by a prior art pumpjack unit (not shown) which has been removed along with its downhole pump and sucker rod string. The borehole extends from wellhead H, down though a hydrocarbon producing formation F that forces formation fluid to flow through the casing perforations P into well casing annulus A


1


. The oil bearing formation F can also be referred to as the pay zone.




The subsurface apparatus


16


of

FIGS. 1 and 4

includes a pump assembly


18


, the details of which are more fully described in conjunction with other Figures of the drawings. The pump assembly


18


is telescopingly received in a slidable manner within the illustrated production tubing string


19


, where it is releasably bottom supported by a prior art pump anchor apparatus


20


, also referred to as a pump anchor and seating apparatus as disclosed in

FIG. 1

at


32


,


34


; the details of which are known in the oil patch.




In accordance with the present invention, and as seen in

FIGS. 1 and 4

, together with other Figures of the drawings, the novel pump assembly


18


includes a very long pump barrel


21


made up from a plurality of individual lengths to facilitate assembly into a long continuous barrel. Within barrel


21


there is reciprocatingly received a plunger


22


connected to a polish rod


23


, with the rod


23


being positioned to move axially upon being reciprocated by an elongate driving member, such as for example, a cable


24


that extends uphole to the surface apparatus


14


. The polish rod


23


is also made into a plurality of connected lengths


23


′ having a small conductor passageway


47


(

FIG. 5

) therethrough as will be more fully appreciated later on. These assembled parts that are connected to and supported by cable


24


will hereinafter occasionally be referred to as a tool string T.




The entire tool string T, commencing with the cable


24


above wellhead H, includes a cable socket


25


suitably secured to the upper end


26


of the polish rod


23


; or, as seen in

FIGS. 4 and 5

, a sinker bar


27


can be included between cable socket


25


and polish rod


23


, as may be required. The polish rod


23


extends downhole through a guide bushing


28


located above a diagrammatically illustrated novel upper standing head valve assembly


29


, made in accordance with the present invention, the details of which will be more fully discussed later on herein in conjunction with

FIGS. 6-10

of the drawings. The upper standing head valve assembly


29


is the subject matter of co-pending U.S. patent application, Ser. No. 60/220,361, Filed on Jul. 24, 2000, Entitled: “RECIPROCATING PUMP STANDING HEAD VALVE”.




The upper standing valve assembly


29


, as more fully disclosed in

FIGS. 6-10

, is connected at the upper extremity of. pump barrel


21


immediately below the guide bushing


28


. The guide bushing


28


connects the pump assembly


18


to production tubing string


19


, and forms the upper marginal end of the pump assembly


18


. The lower end of polish rod


23


is connected to the upper end of a reciprocating traveling plunger


22


. A lower standing valve


30


is affixed to the lower end of pump barrel


21


. A bypass relief valve


31


, the details of which are more fully set forth later on in conjunction with

FIGS. 11 and 12

, is connected between the upper end of the pump anchor device


32


and the lower standing valve


30


. There usually will be another anchor device (not shown), often referred to as a tubing anchor device, located to anchor the lower end of the tubing string


19


to the casing


12


.




As seen in

FIGS. 1

,


4


,


11


and


12


, the bypass relief valve


31


, when actuated from the closed or normal operating position of

FIGS. 1

,


4


and


11


into the open or actuated position of

FIG. 12

, communicates tubing annulus A


2


(

FIGS. 1 and 4

) respective the lower end


34


of pump anchor device


32


. Lower end


32


will hereinafter also be referred to as the pump suction


33


. Thus, the pump anchor and seating apparatus


20


includes a pump hold down device


32


having inlet end


34


telescopingly received within a seating nipple


35


(FIGS.


1


and


4


). The pump anchor device


32


forms the lowermost end


34


of the tool string and is received within and sealingly engages the seating nipple or collar


35


in a releasable manner. The lower end of collar


35


is connected above a perforated joint


36


, also called a sand screen, or a bull plug, or the like and is attached to the end of tubing string


19


.




The plunger


22


, as shown in

FIGS. 1 and 4

, and in particular,

FIG. 13

, includes a traveling check valve


38


having a ball element suitably enclosed within a cage, the lower end of which forms the inlet passageway


39


into the plunger. The traveling check valve


38


is in the form of a one-way check valve by which fluid can flow only uphole through the illustrated passageways


40


,


40


′ during the downstroke. A plurality of radially spaced circumferentially arranged sensors


42


,


42


′, which can take on several different forms, are mounted in a protected manner on the plunger boss


22


′ adjacent the face of plunger


22


and form part of the plunger. The sensors protrude a small distance from the upper face


44


to easily sense the temperature, pressure, and conductivity of any fluid it contacts, thereby providing signals that are related to this data to the surface as will be more fully appreciated later on herein. Miniaturized circuitry forming a multiplexor device (not shown) connecting sensors


42


,


42


′ to the insulated conductor


46


can be included if desired in order to facilitate conducting several signals along a single conductor that includes a grounded return path.




Still looking at

FIG. 13

, together with other figures of the drawings, conductor


46


extends from the sensors, uphole from proximity of plunger


22


, and through the illustrated small passageway


47


formed longitudinally along the central axis of the polish rod


23


. The insulated conductor


46


continues up the central axis of the sinker bars, to an interior conductor of cable


24


, and terminates in proximity of cable drum


48


where provision is made for conductor


46


to transfer signals to computer


66


of

FIGS. 14 and 15

.




In

FIGS. 1 and 4

, together with other Figures of the drawings, it should be noted that hydrocarbon producing formation F drives fluid through casing perforations P into casing annulus A


1


, where the fluid flows downhole in order for the fluid to enter perforated joint


36


. The fluid then flows uphole though the hold-down


34


, axially through bypass relief valve


31


, the lower standing valve


30


, and into the variable or suction chamber


75


′ formed below plunger


22


that is located above valve


30


within the lower end of the pump barrel. The pump suction should be located at any reasonable elevation respective to casing perforations P, but preferably is positioned close thereto, as may be required to maintain an appropriate minimum fluid level or low hydrostatic head within casing annulus A


1


so as to assure that fluid will follow the slowly moving plunger as it reciprocates on the upstroke and thereby substantially completely fills the exceedingly long pump barrel


21


with formation fluid. The term “fluid” is intended to include compressible and non-compressible fluids such as gas, crude oil, and water, for example.




Looking again now to the details set forth in

FIGS. 1

,


14


and


17


of the drawings, the surface apparatus


14


includes means by which an elongate member, cable


24


for example, can be controllably, moved in both directions to raise and lower plunger


22


. One device for effecting this motion is a rotatable cable receiving drum


48


for reeling in and out the elongate member


24


disclosed as a relatively flexible cable


24


roved about cable drum


48


. Cable drum


48


is spaced a suitable distance from a cable idler pulley


50


having axis


51


thereof located to position the cable


24


axially above the wellhead H. Thus, a length of cable


24


is arranged along the central longitudinal axis of the tubing string


19


of borehole casing


12


.




In

FIG. 14

, a weight sensor and indicator apparatus


52


is illustrated as having idyler pulley


53


connected to apply a force against the tension of operating cable


24


thereby continuously weighing the entire string of tools attached to the lower end of cable


24


, along with any well fluid within the pump barrel being lifted. The weight sensor apparatus


52


and indicator


54


, which can take on any number of different known forms, are connected to provide a proportional weight signal to computer


66


. The signal from transducer


54


can also be connected to appropriate circuitry


56


which in turn is connected to motor control


154


so that a cable drum motor can be speed controlled responsive to cable tension as more fully described later on herein. Numeral


55


is apparatus responsive to plunger position that is connected for controlling the stroke range of plunger travel.




The weight sensor apparatus is connected between axis


51


of cable idler pulley


50


and cable drum


48


in the illustrated manner of FIG.


14


. The weight sensor can be anchored to the skid mounted apparatus


214


, or any other suitable dead man such as seen illustrated in

FIG. 14

at


214


′, such that there is provided a signal proportionately related to the weight of the downhole mass connected to the end of cable


24


. Hence, the weight indicator measures the tension of the upper marginal terminal end of cable


24


, thereby providing a means of constantly determining the instantaneous weight of downhole fluid contained above plunger


22


that is to be lifted by rotating cable drum


48


.





FIGS. 14-17

, disclose various embodiments of controller apparatus that energizes and controls the speed and direction of rotation of cable drum


48


to lift and lower plunger


22


of pump assembly


18


in order for the pump barrel


21


to be filled and made ready for the upstroke, and thereby controls the rate of production of the downhole pump.




In

FIG. 17

, for example, cable drum


48


is connected to operate a simplified form of control device


68


for use in controlling the cyclic operation of the plunger. Control device


68


employs spaced switch means


60


,


61


that are connected electrically to relays


62


,


63


to provide a signal at


64


which is connected to control box


58


and optionally to computer


66


of controller apparatus


65


of Figure


14


. Computer


66


is programmed to carry out the before described pumping operation. The drum control device


68


includes a switch actuator device


69


that engages a threaded marginal length


71


extending along the longitudinal central axis of drum shaft


70


. Device


69


oscillates along a track formed on support member


73


in response to movement induced by device


69


threadedly engaging the threaded marginal shaft length


71


to alternately contact and actuate one of the pair of switch means


60


,


61


as device


69


moves in opposed directions along the threaded shaft. This action alternately actuates switches


60


,


61


to change direction of rotation of cable drum


48


. Accordingly, this action of control device


68


determines the length of the stroke of pump assembly


18


while rotational speed of the shaft determines the time interval of the upstroke and downstroke of plunger


22


.




Alternatively, as seen in

FIG. 14

, the position of pump plunger


22


, also disclosed in

FIGS. 1 and 4

, can be determined electronically by a signal producing means attached to the drum as indicated by numerals


160


,


161


wherein a series of circumferentially spaced magnetic signal producing means


160


trigger or send signals related to inches of cable travel while another signal producing means


161


sends a different signal related to feet of cable travel, for example.




Looking now to the details of the pump assembly


18


set forth in

FIGS. 1 and 4

, the valve assemblies


29


,


30


and


38


, are spaced apart along the central axis of pump barrel


21


and polish rod


23


. The standing valve assemblies


29


and


30


form a variable production chamber of any desired length therebetween. The upper or standing head check valve assembly


29


supports the fluid column located in the tubing string above pump assembly


18


during the downstroke, and opens on the upstroke while the traveling check valve


38


(

FIG. 13

) is closed while lifting or displacing fluid from the variable production chamber


75


of the barrel as the pump plunger is stroked uphole in response to the action of surface equipment


14


. The lower standing valve


30


can be a ball check valve which permits flow only in an uphole direction and therefore must leave its seat each up-stroke of plunger


22


, and is closed against its seat on each downstroke of plunger


22


.




As best seen in

FIGS. 1

,


4


and in particular,

FIG. 13

, an axial passageway


47


formed through the polish rod receives the illustrated conductor


46


,


46


′ therein for transmitting downhole data signals uphole to the computer


66


in FIG.


14


. One of the opposed ends of the conductor is connected to the plurality of radially disposed sensors


42


,


42


′ located adjacent the upper face


44


of plunger


22


to provide signals to computer


66


of surface apparatus


14


. The conductor extends from the sensors, axially up through the small axial passageway


47


formed in polish rod


23


, axially through sinker bar


27


and cable


24


, where it provides selected signals that are available at terminal


49


on cable drum


48


, for example. Terminal


49


can be a slip ring contacting means or the like. The signal, when processed by computer


66


connected to controller


65


, instructs controller


58


the next appropriate step to be taken at this time. As best seen in

FIG. 4

, between the plunger


22


and upper standing valve assembly


29


there is formed the before mentioned variable production chamber


75


of any desired length.





FIGS. 6-10

set forth specific details of the check valve assembly


29


, having a lower threaded pin end


76


formed on lower annular sub


77


opposed to a threaded box end


78


formed within annular upper sub


79


which forms the guide bushing


28


by which valve assembly


29


is connected into the tool string. Valve assembly


29


supports the fluid column located in the tubing string


19


above pump assembly


18


during the plunger downstroke, thereby removing the tubing hydrostatic head which otherwise is placed on the plunger during its downstroke.




Upper standing valve


29


has a ball cage


80


located between subs


77


and


79


. Ball cage


80


has radially spaced holes


180


within which balls


81


are captured in radially spaced relationship such that each ball can be moved uphole a limited distance within its hole relative to its seat. The ball seats are formed within the upper face


82


of member


77


as seen illustrated in FIG.


7


. The radially spaced balls


81


are individually attached to one end of pins


84


with the opposed ends thereof being attached to annular pin holder


85


. Spring


86


is compressed between lower face


88


of sub


79


and upper face


89


of pin holder


85


to urge the balls onto the seats formed in the upper face


82


of sub


77


. Passageway


90


is formed axially through valve


29


and guide bushing


28


, and is of an inside diameter to sealingly and reciprocatingly receive the polish rod


23


therethrough.




As best seen in

FIGS. 7 and 10

, sub


77


has integral extension


92


upwardly depending therefrom and threadedly engaging co-acting threaded surface


93


formed on a marginal interior length of guide bushing


28


. Upon assembly, it will be noted that the tool is spaced out such that there is a space


95


formed above member


94


and below the lower face of member


85


to assure proper seating and opening of the valve apparatus.




The upper standing stationary head valve


29


, lower standing valve


30


, and traveling check valve


38


should be trouble free and provide many months of efficient operation. The system will lift about 4 gallons each stroke per 100 foot length of pump barrel of a size to fit within a standard 2 inch diameter oil field production tubing.




Contrasted to the usual production system, this invention produces the well at its maximum output for 24 hours each day, in order to always keep the hydrostatic head at perforations P to a minimum. After completion of a relatively slow upstroke of plunger


22


, the cable drum is energized to rotate in an opposed direction wherein there is a delay, or a time of no flow for a short time while pump plunger


22


descends on its down stroke. This downtime, together with the upstroke time, is representative of the total lapsed time required to keep the hydrostatic head at the perforations P at a minimum. This short delay or downtime of the downstroke is considered part of the production cycle and accordingly does not interrupt the continuous production of the well, but only interrupts the sequential outflows at wellhead H as the plunger descends through the fluid column in the lower chamber of the barrel. The downstroke forces the plunger to pass through the fluid contained in the lower barrel chamber as the plunger comes to rest momentarily at the bottom of its downstroke so that the fluid now is contained above the plunger, ready to be lifted by the plunger. The cable drum is again energized to rotate in the opposite direction and slowly lifts the plunger. During this upstroke time, while the displaced production fluid flows from the well head H, well fluid is being sucked into the lower barrel chamber, following the plunger uphole which results in a full barrel of fluid when the plunger reaches the end of its upstroke.




The cable tension is measured by weight indicator apparatus


52


(

FIG. 14

) and


52


′ (

FIG. 1

) during each pumping cycle. The cable tension, for example, may commence at 600 pounds tension, which represents the weight of the tool string when the plunger is at rest at the end of the downstroke.




In order to ascertain the quantity of produced fluid contained within the barrel, one method advantageously used is for the cable drum to pull in a minimum length of cable as required to weigh the fluid contained within the barrel without significantly up stroking the plunger. This action may increase the cable tension to a value of 900, which represents the 300 pounds of fluid transferred into the barrel (900 pounds total weight less 600 pounds cable tension equals 300 pounds produced fluid).




After the downstroke of the plunger the cable is tensioned due to the plunger lifting the fluid contained in the barrel. This action compresses the gas located at the top of the barrel to a value equal to the hydrostatic head in the tubing string. Additionally, as the upper stationary valve opens to admit fluid therethrough and into the tubing string, an additional tension is imposed on the cable due to overcoming the spring loaded valve parts. Hence, the slow upstroking plunger forces fluid contained within the upper working chamber of the barrel to be transferred into the tubing string and at the same time a like amount is discharged at wellhead H. This amount of fluid represents the amount of produced fluid for one pumping cycle of system


10


.




After the difference in tension due to the spring force on the upper standing valve has been applied to the cable, there is a constant tension as the plunger continues its upstroke. The cable drum stops the plunger at the end the upstroke, then reverses rotation, which downstrokes the plunger during a selected time interval as the plunger descends through the fluid trapped in the barrel by the lower standing valve


30


during the previous upstroke.




Many wells produce flour sand as well as corrosive materials which can cause a pump barrel to become stuck inside the tubing. Should this happen it is necessary to move the barrel upward with cable tension just a fraction of an inch to open the bypass tool of

FIGS. 11 and 12

which can allow fluid to bypass and remove the unwanted material which has caused the barrel to become stuck. The bypass valve of

FIGS. 11 and 12

is used if the anchor device


32


failed to release from its seat


35


.




A short extension of the barrel


21


is located below the lower standing valve


30


and includes a bypass relief valve


31


having a mandrel


100


which is slidably actuated in a telescoping manner respective to a sleeve


102


when the mandrel


100


is lifted uphole respective to the sleeve


102


. The bypass valve has a pin end


103


at the top thereof attached to the lower end of barrel


21


, and a box end


105


at the bottom thereof connected to the pump hold down. As seen in

FIGS. 11 and 12

, sleeve


102


is of annular configuration and covers equalizer ports


104


formed through the sidewall of mandrel


100


. The mandrel


100


is arranged to be slidably moved uphole and into the open position in order to uncover equalizer ports


104


and thereby equalize pressure between the suction at


33


of the pump assembly and the adjacent tubing string annulus A


2


.




Spaced seals


106


,


106


′ are installed on mandrel


100


and cooperate with sleeve


102


for preventing flow of fluid through equalizer ports


104


when the ports are covered by sleeve


102


. The seals


106


,


106


′ can be placed on the inner wall surface


112


of the sleeve rather than on the outer wall surface of the mandrel as shown. The mandrel has a central axial passageway


114


extending therethrough.




Shear pins


108


,


108


′ prevent relative movement between the pump barrel and the sleeve when the bypass is in the closed position as set forth in FIG.


11


. The shear pins


108


,


108


′, which hold the bypass in the closed position are designed to shear at a pull considerably more than is required to unlatch the anchor device


32


,


35


. As seen in

FIG. 12

, the shear pins


110


,


110


′ have been sheared, as a result of relative movement between the mandrel and the sleeve by elevating the pump barrel, since the sleeve is anchored by the hold down. This action uncovers equalizer ports


104


and allows flow of fluid from the tubing through the uncovered ports and into the lower end of the pump assembly near the suction, thereby equalizing the pressure therebetween. This action of the mandrel respective to the sleeve shears the pins


108


,


108


′ as the bypass is moved from the closed position of

FIG. 13

into the open position of

FIG. 14

by lifting the barrel. The barrel is lifted by engagement of the plunger respective the lower face of upper standing valve assembly seen at


29


. Uphole opening slidable movement of the mandrel


100


is achieved by upstroking the plunger into contact with the lower face of the upper standing valve with sufficient force to shear pins


108


,


108


′ and move the bypass relief valve


31


from the closed position of

FIG. 11

into the open position of

FIG. 12

, which illustrates the apparatus in each of these configurations.




In

FIG. 1

of the drawings the tension in the operating cable


24


is measured by weight indicator or tensiometer


52


connected to continually weigh pulley


50


at the axis


51


thereof. The tensiometer


52


provides weight data of everything connected to the downhole end of the cable


24


This data is relied upon by oil field production Engineers to ascertain a number of different downhole variable conditions, especially when going into and coming out of the bore-hole with a string of tools. Data from tensiometer


52


is in the form of a signal that can be accessed at junction


52


′, where the signal can be processed by circuitry (not shown) to provide most any form of conversion, as for example, pounds.




A pulley


222


(

FIG. 1

) is positioned to be rotated by longitudinal movement of cable


24


when the downhole pump plunger is reciprocated. Rotation of pulley


222


generates a signal that can be interfaced or connected to depthometer


220


seen in FIG.


15


. The depthometer


220


has the necessary means to provide a suitable display at


220


that indicates the depth of the plunger in the borehole casing


12


. The depthometer


220


is also connected to the illustrated bottom setting device


224


and top setting device


226


for setting the stroke length of plunger


22


. Device


220


also connects to the meter reading up display device


228


and meter reading down device


228


′, each of which is related to the previously selected operating range of plunger


22


as the uphole end of cable


24


is roved onto and away from winch drum


48


in order to reciprocate the downhole pump plunger


22


.




Still looking at the control apparatus of

FIG. 15

, the operating range of plunger


22


is selected and set by entering data in the bottom setting device


224


for selecting the low end of a selected plunger operating range; and, entering data in the top setting device


226


for selecting the high end of the selected plunger operating range; with the difference therebetween representing the operating range of the reciprocating plunger, preferably displayed in feet. The depthometer device


220


signal is also connected to the meter reading down display


228


′ and to the meter reading up display


228


. The meter reading up display provides data related to the instantaneous location of plunger


22


while the plunger is traveling upwards on the upstroke. The meter reading down display provides data related to the instantaneous location of plunger


22


while traveling downwards on the downstroke. Hence the active meter reading device is an indication of the direction of plunger travel as well as plunger location.




The meter reading down display device


228


′ is connected to the bottom preset depth device


230


which in turn is connected to both the stop device


232


and to the timer device


234


. The timer device


234


is connected to delay device


236


which in turn is connected to the start device


238


.




The meter reading up device


228


, in a manner similar to the before described meter reading down device


228


′, is connected to the top preset depth device


240


which in turn is connected to both the stop device


250


and the timer device


252


. The timer device


252


is connected to delay device


254


which in turn is connected to the start device


256


. The above signals also can be connected to computer


66


of

FIG. 14

to control any of the previously recited operating parameters of the well, such as the illustrated motor controller


58


.




As an illustrative example only, assuming a pump barrel


21


is 100 feet in length and the apparatus of

FIG. 15

is programmed with the bottom setting device


224


reading 2690 feet, which is the depth to which plunger


22


desends, the bottom of the barrel actually will be at 2695 feet, for example, which provides an ample clearance for operation of five feet between the upper face of the lower standing valve


30


and bottom face of plunger


22


.




With the top setting device


226


set for the depth of plunger


22


at 2600 feet, the lower face of the upper standing valve


28


will be at 2595 feet, which at the end of the upstroke provides five feet clearance between the top of plunger


22


and the bottom face of the upper standing valve


28


.




When the depthometer device


220


reads 2690 feet, which places the plunger


22


on the bottom of its stroke, the motor will stop and the brake will set, while at the same value, a delay at device


254


is set and commences to time out while the motor is reversed. When the delay time device


252


is up, the brake is released as the motor is started to lift the plunger at whatever speed is set with the gear box. When the plunger reaches 2600 feet, the motor will stop and the brake will set while a delay device


252


takes over. After the delay timer


234


times out, the brake is released and the motor is energized in the reversed direction by the start device


238


. This action lowers plunger


22


at a preset speed and the motor will stop when the plunger reaches 2690 feet. The forgoing describes one complete cycle of operation, that is, an upstroke followed by a downstroke. This method of operation is repeated continuously, 24 hours/day, producing the wellbore at its most optimum production rate until the well is shut in for some reason.




In

FIG. 1

of the drawings, a limit switch is connected to terminal


52


′ of the weight indicator


52


for use in assuring that proper tension is kept in cable


24


at all times. The limit switch is connected to the system of

FIG. 15

to stop the drum motor and set the brake should the weight indicator exceed a set range of values in either extremity. For example, on the downstroke should cable


34


tend to be over-run, the limit switch will activate the shutdown to stop the motor and set the brake. In a similar manner, on the upstroke, should the plunger become caught because of unforseen circumstances, the limit switch will activate the shut-down to stop the motor and set the brake. It is difficult to imagine any resultant damage to the system in view of the slow moving plunger


22


and the long relatively resilient cable


24


.





FIG. 14

discloses another embodiment of the invention having a cable drum


48


rotatably mounted on support


214


and rotated by a variable speed hydraulic motor (not shown) of a known type having the capability of rotating at any selected speed within a designed range of speeds and connected to be part of an algorithm or computer program that is written by those skilled in the art to carry out suitable commands from computer


66


that is consistent with the operation taught and set forth in this disclosure.





FIG. 16

is a schematical representation of one embodiment of the invention that illustrates another form of a control apparatus by which cable drum


48


can advantageously spool cable


24


in response to commands received from the programmed computer of

FIGS. 14 and 15

. In

FIG. 16

the suction side of hydraulic pump


201


receives filtered fluid from device


204


which in turn is connected to the illustrated reservoir. The pressure side of the pump is connected to controllably provide power fluid to the hydraulic motor


202


. The spent power fluid from the motor is returned through the radiator


208


, the output of which is connected back to the reservoir.




The output shaft of motor M of

FIG. 16

is connected to rotatably drive a reduction gear box


203


and thereby rotate cable drum


48


which spools cable


24


onto and away from cable drum


48


. A hydraulically actuated brake assembly


211


is arranged to prevent rotation of the drum when the brake is actuated by hydraulic valve assembly


209


. The valve assembly


209


also controls output from pump


201


so that there is no flow of power fluid to motor M when the brake is locked.




The four-way valve assembly illustrated at


206


and


207


of

FIG. 16

, controls the operation of the pump, and can be remotely operated. Pressure reducer


205


is connected to the four-way valve to unspool the cable when the four-way valve is in one position, and spools the cable when in another position of operation as well as controlling the action of the brake in response to pressure drop across the motor


202


. A remote relief control valve


213


and


214


maintains the hydraulic pressure differential across motor M and thereby determines the speed at which the cable


24


is operated.




Also included is apparatus for startup only, which is in the form of a friction hold control valve


212


arranged to override the other hydraulic control valves by operating only the pump, motor, and cable drum brake.




While numerous different hydraulic components can be used in the hydraulic control system of

FIG. 16

, one source of suitable components is as follows:






201


pump: Ondiout & Pavesi






202


motor: White 10565270






203


gearbox: 502-NC-16:1/SAE A6V






204


filter: 30-8G2-A25A-VS






205


valve: pressure reducing 1-D-65-A-A-XXX






206


valve: 4-way 8S-001-06-RC115-100






207


valve sub plate for valve


206


above: 10101






208


oil cooler and motor






209


valve: ACP720-5-B-63-050






210


valve: ACP120-1-D-68






211


brake: MICO 034060640M




FOR START-UP ONLY:






212


remote hydraulic control, friction hold 99023






213


valve: remote controled relief






214


remote relief controller




Those skilled in the art having studied the above parts list together with the schematical representation of

FIG. 16

will appreciate that the downhole pump assembly is cyclically operated in the novel method described in conjunction with the various other figures of the drawings. The system of

FIG. 16

is remotely controlled by the apparatus seen in

FIGS. 15-17

to remain in standby configuration until the pumping operation is started, whereupon, assuming the pump barrel has been filled with fluid from the previous upstroke, the plunger is next upstroked in response to movement of an elongate member connected to stroke the pump rod. This action is achieved with apparatus such as the cable drum of

FIGS. 1

,


14


, and


17


, which is instructed by computer


66


to be rotated to reciprocate the pump plunger at a predetermined speed to slowly upstroke the pump plunger and thereafter, to unspool the cable at a second predetermined speed, bringing the plunger to rest momentarily at the bottom of the pump barrel, thus completing one cycle of operation during a time interval required for formation F to produce one full pump barrel of fluid. This cyclic operation continues until the well is shut down.




Accordingly, fluid is pumped to the surface at the same rate that fluid is produced from formation F. Hence, the time interval of one cycle of operation is based on the production history of the well in accordance with this invention. The stored data related to the production history of the well contained in computer


66


enables the computer to determine the quantity of fluid contained within the pump barrel each cycle of operation and to change the time interval for successive cycles of operation so as to continually adjust the time intervals to coincide with the rate of production of the formation F whereby the optimum rate of production is always attained by this method of operation of the apparatus disclosed herein. This cyclic operation continues until the well is shut down.




In

FIG. 13

of the drawings, one of the plurality of sensors at


42


,


42


′ measures pressure and thereby determines the hydrostatic pressure or fluid level within the barrel above the plunger. Another sensor


42


,


42


′ measures conductivity to enable the fluid contents of the barrel to be ascertained as well as to determine the position of the water/oil interface within the pump barrel, and thereby provides data that can be used to control the time interval of the pump stroke, which enables an oil skimming process to properly function.




In

FIG. 15

, the meter reading up is a display of data related to a range of operation which is controlled by the preset depth and automatically stops lifting the cable uphole in order to accurately position the pump plunger respective the top of the pump barrel.




The timer of

FIG. 15

controls the time interval during which the cable upstrokes the plunger, then the operation is delayed momentarily a sufficient length of time to enable the control system to reverse rotation of the drum and commence the downstroke part of the timed cycle.




The meter reading down of

FIG. 15

is related to the position of the plunger to assure that it operates within a predetermined range as it down-strokes to a preset depth.




When the control system of

FIG. 15

is used in conjunction with any of the disclosed cable actuating apparatus for stroking the plunger, the cycle of operation commences, for example, with the plunger properly positioned within the barrel at the end of the downstroke, wherein, the upper barrel chamber is full. A time delay provides an interval of time for the next cycle of operation. The preset depth assures that the plunger comes to rest at a location spaced above the lowermost end of the pump barrel. The meter reading down provides instantaneous data related to plunger position respective the pump barrel. The depthometer displays data related to the elevation of the plunger at all times.




In

FIG. 15

, the start control


256


determines when the upstroke part of the cycle of operation commences. The delay device


254


continuously adjusts the time interval of the upstroke to assure a sufficient time has passed for the lower barrel to be filled prior to starting the next downstroke. The preset depth


240


is the desired lower elevation that assures the plunger will clear the upper standing valve of the pump. The meter reading up


228


is the instantaneous data related to plunger location during the upstroke.




Stripper wells and gas wells of low production rates often load up with salt water which must be trucked to disposal and this can use up much of the profit the well might otherwise provide. It is not unusual to pay more than $2/bb1 for water disposal. The Smart Pump of this invention provides a system that can more slowly remove water at a rate which allows more economical gas and oil production at an optimum rate when disposal cost of brine is considered relative to gas and liquid production sales.




It must be remembered that the slow 300 ft upstroke of this system pulls a continuous vacuum or reduced pressure below the plunger which pulls fluid from the formation by increasing the pressure differential across the perforations P. The rate of plunger travel is maintained at a minimum to keep a maximum vacuum imposed on the perforated side P of the formation F while fluid flows into the bottom of the pump. A large quantity of gas may break out inside the barrel below the plunger during the long slow upstroke. Most pumps could not handle this large quantity of gas due to fluid pounding, whereas the present system, according to this disclosure, works more efficiently with ingested gas for it aids in lifting production fluid as it rises in the tubing and expands all way uphole where it can be collected.




Stripper wells are prone to be problem wells that must have the pumps pulled often because they produce slowly and compound any paraffin problems. Consequently, after the paraffin builds up into a large accumulation that grows worse with time, the tool string usually cannot be pulled without getting stuck when coming out of the hole unless one uses an expensive pulling unit and hot oil truck to melt the hard paraffin substance in order to free the pump. When this condition is encountered with the present system, the paraffin melter HO of

FIGS. 1

,


4


,


14


and


18


is put into operation and the operating cable drum can then be used for pulling the entire tool string through the paraffin build-up.





FIG. 18

is a cross sectional representation showing additional details of part of the sinker bar apparatus


27


previously illustrated in

FIGS. 1 and 4

. The paraffin heater HO of

FIG. 18

is located at the upper end of the sinker bar


27


where it is housed below a conventional rope socket


25


that forms the nose of sinker bar


27


and is therefore the first part of the heated tool string to encounter and melt the build up of any blockage due to paraffin problems. Circuitry for the paraffin heating apparatus is enclosed within hermetically sealed chamber


350


which also houses relay device


352


. The relay device


352


selectively connects conductor


46


′ to conductor


46


which leads to either of the downhole sensors (

FIG. 13

) or alternatively, to the heating element


358


(FIG.


18


). Oil filled chamber


356


is spaced from hermetically sealed chamber


350


by the illustrated bulkhead connection at


354


having a seal and an insulator by which conductors


360


,


46


sealingly pass there-through. The entrance into opposed axial passageway


47


leading downhole through sinker bar


27


also is sealed at


354


′.




The heating element is isolated by the bulkhead connections


354


,


354


′ and houses the heating element


358


therebetween. The heating element is connected between a source of power provided at relay device


352


and a suitable grounded connection, as shown. The circuitry therefor is enclosed within the upper end of the sinker bar, which conveniently always has a nose in the form of a bullet. The paraffin heater circuitry is connected to conductor


46


that emerges from the end of the cable


24


at the illustrated rope socket


25


. The conductor


46


can be selectively connected to the paraffin heating element


358


and to the conductor leading downhole to sensors


42


-


42


′ by a simple electromechanical relay device


352


.




The paraffin heater HO is used to avoid the necessity of hiring an expensive pulling unit and hot oil truck, which, when added to other costs, can make many wells unprofitable. The embodiments of the system of this invention can be manufactured at a cost that often is less than the cost of plugging the well, therefore, it is advantageous to keep the well on line and show a profit in accordance with this disclosure rather than to shut in the well and abandon the potential crude oil production.




Operation




In operation, the before mentioned cable tension measuring device effectively weighs the total weight imposed on idler pulley


50


(of

FIGS. 1 and 14

) and includes a suitable transducer


54


which provides an appropriate signal to the computer


66


which, together with the control box


58


, controls the motor torque and speed in proportion to the measured weight of the produced fluid and the selected predetermined time interval determined by the computer for each cycle of operation for the particular wellbore.




When the apparatus is in operation, the action of the rotating drum shaft of

FIG. 17

alternately moves the traveling switch actuator device


69


into engagement with either of the spaced switches


60


,


61


, thereby alternately commanding the computer to instruct the control box to rotate cable drum


48


in one of the directions of rotation, and consequently pulling in or letting out an appropriate length of cable


24


during a time interval as determined by the computer commands to the control box.




This action of the cable actuated downhole pump system alternately strokes the downhole pump in a slow uphole direction followed by a downstroke during timed sequential cycles of continuous operation. In

FIG. 14

, the time interval of each stroke of the cycle is determined from stored data in the memory of computer


66


. This data is based on the history of the downhole conditions, so that optimum time is appropriately provided to accumulate the required quantity of fluid produced by the formation to fill the pump on the next complete pumping cycle. The computer is programmed to use this data in accordance with this disclosure to provide the most efficient timed cycle for each succeeding round trip of the plunger into the borehole. Hence, the duration of one pumping cycle is equal to the time interval required for the plunger to descend to the bottom of the pump barrel, and then to upstroke at the selected slow rate.




The long time interval of the upstroke is the maximum value consistent with the rate of flow through the downhole casing perforations P. This upstroke time interval is followed by a suitable time interval for the downhole stroke. The length of either of the strokes or of a cycle can be varied, depending on the capacity of the barrel and the duration of the complete cycle which should coincide with the time interval required to fill the barrel with fluid, while making a round trip into the borehole.




At the end of the downstroke and before the beginning of the next upstroke, as the plunger momentarily reaches its lowermost position of travel, the barrel should have become filled with the fluid that was accumulated in the well bore during the previous upstroke trip, and this should be adequate to provide a full barrel. At the end of this timed cycle, the cable drum can be rotated the minimum required to measure the weight of the tool string, or tension of the cable, that is required to lift the plunger without moving the upper check valve from its seat. From this measurement the weight of fluid contained within the barrel is found, and is compared to a dictionary of stored terms in the computer memory that is related to the history of the well production. The barrel should be substantially full according to the measured weight, and an appropriate signal will have been received from sensor


42


that is related or proportional to the fluid level contained within the barrel, which also is related to the weight of fluid that is being produced each cycle of operation. The payload or weight of the contents of the barrel is therefore the weight required to produce the measured tension signal less the tare weight of tool string which equals the weight of the fluid to be lifted by the downhole pump. Hence, the cable drum mechanism winds or pulls in the upper marginal length of the cable in response to the hydraulically actuated winding motor that is driven or powered by the electric motor, all in response to commands from the computer and control box.




The computer and controller is also instructed by the traveling switch actuator device


68


of

FIG. 17

, for example, as it is moved into engagement with either of spaced switch means


60


,


61


. This commands control box


58


of

FIG. 14

to rotate the drum in one of the directions of rotation, thereby pulling in or letting out the cable at the drum. The controller also receives instructions from the computer related to the weight indicator signal as well as instructions from a dictionary of stored knowledge related to the production history of the wellbore so that the time intervals of the upstroke and downstroke can be calculated and set at a value that keeps the hydrostatic head in front of the casing perforations at a minimum. Hence, the formation fluid is free to flow into the wellbore at all times without being held back by an excessive fluid hydrostatic head, while the plunger continually produces the well during the sequentially calculated time intervals.




On the other hand, the elevation of the fluid level within the casing annulus must be in proximity of the uppermost elevation of the plunger at the end of the upstroke in order for the formation fluid to be ingested by the pump in sufficient quantity to completely fill the barrel. This is because the suction of any pump can normally lift water, for example, only about 29 feet above the elevation of its corresponding fluid head that is to be pumped. Consequently, in the absence of a driving force other than ambient conditions, the fluid level within the annulus must be near the uppermost elevation of the plunger in order for the formation fluid to be ingested by the pump suction and completely fill the barrel. Stated differently, the suction side of a pump plunger can develop at most, a complete vacuum which provides a maximum of about 29 feet (for water) lifting force. Consequently the fluid level in the casing annulus must be at a fluid level respective the top of the barrel to enable the formation fluid to follow the pump plunger to the top of the barrel. Hence, positioning the top of the barrel at a location within the tubing string that is also near or below the top of the annular fluid level within the casing annulus will assure a full barrel on the upstroke in conjunction with the slow moving plunger of this disclosure.




This system can be designed to produce approximately 4 gallons each stroke of the extremely long 100 foot pump barrel, assuming that the pump assembly is received within a standard 2 inch production tubing, for example. Increasing the barrel length to 200 feet will yield a production rate of about 8 gallons per stroke. This provides a production rate of approximately one barrel per five upstrokes or five round trips. Accordingly, one stroke each 6 minutes provides an average rate of recovery of 2 barrels of fluid per hour, or 48 barrels per day. This allows for the average stripper well to have a large oil/water ratio while still economically maintaining a hydrocarbon production rate of approximately 10 barrels of oil per day, along with a large quantity of water.




The fluid discriminator probe


42


of

FIG. 13

that detects water level is located adjacent the top of the plunger. This feature, in conjunction with the other sensor circuitry is connected to cause lift to engage only after a predetermined and programmed desired amount of fluid is in the pump barrel. An additional method, as previously discussed, is to pull up with just enough cable tension to take a weight reading. Still another method is the pressure measuring sensor


42


′ of

FIG. 13

which enables calculation of the hydrostatic head of fluid in the barrel. The use of these readings will enable the system to determine how much oil and water is in the barrel, and since the system is programmed to receive a specific quantity of accumulated fluid within the pump barrel, the computer


66


calculates the time interval required during the succeeding cycles of operation for the barrel to be filled to that desired fluid level. During these time intervals the hydraulic pump motor is energized for rotation of the cable drum in the proper direction to slowly upstroke the pump assembly with a full barrel. If the well has not made sufficient fluid to fill the pump barrel, the time interval of the next pumping cycle will be increased until such time delay that the accumulated fluid has reached a desired level in the bottom of the borehole. This difference in time delay will be considered by the computer during the next cycle of operation.




A large savings in electrical costs of lifting or producing fluid from an oil well is realized with this invention because the slow moving pump plunger, together with the ability of the pump to handle gas in a manner to augment the lifting power, and along with the controlled speed of the motor, all harmonize and makes for better use of power and other nonrenewable energy resources.




Another use of the smart pump system is to skim oil off of water in wells that have a high water to oil ratio. Oil rises to the top of water when given adequate time in which to do so. Gas breaks out of the oil and rises above the oil. In many areas water disposal is a costly operation and reduces a considerable part of the hydrocarbon sales. If one can skim the oil from the accumulated downhole fluid and leave the water to act as a means to let the oil move through the column, then the well often could be made to operate more profitably. This is done by adjusting the production rate to a lower value that increases the oil/water ratio while still achieving a profitable production of oil. Hence, in the long run, it may be more profitable to skim the oil downhole to thereby reduce the rate of water production a large amount while reducing the production rate of the oil a small amount; especially when the cost of brine disposal compared to the loss in profit from the lowered oil production justifies this selection of variables.




The smart pump of this disclosure employs a seating nipple at the lower end thereof in which the suction end of the long series connected joints of pump barrels is to be seated. The optimum length of the barrel and plunger stroke can be predetermined by using electric wire line equipment to locate or determine depths where fluid levels stand and where oil/water contact would be after static conditions exist. After installation of the smart pump, each cycle of the pump system detects the oil/water interface using the electric conductivity probe at the top of the plunger. A signal from the conductivity probe is transmitted to the surface by means of an electric conductor located inside the cable which allows reading at the surface to monitor the fluid level as well as the contents of the pump barrel. The location of the downhole pump assembly respective to the elevation of the perforations most often will be dictated by the previous arrangement of the wellbore by the owner. It is not necessary to operate the present invention with the relative position of the perforations being arranged respective the downhole pump as shown in the drawings. It is preferred, however, to produce the formation fluid at the bottom of the well at a rate which keeps a minimum hydrostatic head imposed on the production formation. This happy combination requires a judicious survey of all the downhole conditions along with proper selection of the operating parameters if profits are to be maximized.




When the necessity arises to pull the downhole pump, the following procedure is preferred:




1. Go to manual control mode and lift the plunger to where the upper face of the plunger rests against the lower annular face of the upper standing valve. Pull up or bump up to unseat the anchor device. In the event that the anchor device does not release, then increase the cable tension enough to move the bypass valve element uphole respective to the sleeve thereof to shear the pin. After the pin is sheared, with the upper face of the plunger resting against the lower face of upper standing valve, and equalize the pressure across the equalizing or bypass valve by allowing fluid to flow across the bypass valve which equalizes pressure around the pump barrel.




2. With no more than 500 pounds additional pull, the bottom latch at the seating nipple should release and the pump assembly is ready to be removed from the borehole by spooling the cable uphole.




3. When the seal and bottom latch come out of the seating nipple, a weight loss is expected equivalent to the weight of fluid lowered in the tubing and this will be noted on the weight indicator.




4. Manually operate the winding motor to pull the cable uphole until the cable socket of the tool string reaches the stuffing box at the wellhead.




5. Using proper clamps or stops, begin to disassemble the tool string by first disconnecting the electric conduits from the paraffin heater located at the upper extremity of the sinker bar, thereafter the sinker bar is dissembled, as may be necessary, for removing the upper end of the tool string from the wellhead.




The polish rod would be in 12′ joints or lengths, screwed together with thread lock. Each of the rod connections will be heated before being unscrewed to take apart.




6. When the top of the barrel reaches the surface:




a. remove rod bushing guide;




b. remove upper standing valve;




c. pull plunger out of barrel.




d. If repair only to the plunger is to be made, this can be accomplished without breaking down the barrel.




e. If the complete system is to be disassembled, disconnect the barrels one at a time and lay on a rack. The individual barrels will be approximately 30 feet long.




f. If the bypass valve was actuated to the open position it has to be dressed and made ready for the next trip into the borehole.




There is advantage realized when the new smart pump upper standing valve is incorporated into oil wells which make gas. When a considerable amount of gas is being produced along with oil, the gas can accumulate below the plunger as the plunger makes its up-stroke. With conventional pump systems having no upper standing check valve, the total hydrostatic pressure rests on the top side of the ball check valve of the traveling plunger and causes the ball to be slow to open while the gas is being compressed.




The standing valve assembly used in the smart pump of this invention allows a zero hydrostatic pressure above the plunger on its downstroke. This allows gas and oil to pass through the plunger and fill the upper barrel on the downstroke with less effort. Also, the weight required to force fluid (liquid and gas) through the ball and seat of the plunger is much less if the upper standing valve of this disclosure is used. This makes loading the barrel above the plunger much easier even if no gas is present. Therefore, less weight in the form of sinker bars is required to force the plunger down through the fluid on the downstroke.




The upper standing valve of this disclosure is also useful with rod pumps, and is relatively easily installed in existing wells as follows:




1. Assemble as if system is to be run on a wire line.




2. Connect sucker rods along with sinker bars and run pump and land it as you would with a conventional pump barrel.




3. On wells which have gas production along with oil, this system could handle the gas and fluids better since there is no fluid to follow the plunger back to the bottom. Each stroke allows gas to come though the plunger against the barrel pressure instead of the usual tubing hydrostatic head.




4. Spacing and stroke length would be the same as a conventional pump system.




5. On work-over wells, pull the pump so that it can be modified by placing the smart pump upper standing valve at the top of the barrel. Then the rods screwed onto the polish rod as the modified pump is run back into the hole.




Those skilled in the art will appreciate that the hydraulic system used in

FIG. 16

advantageously can be replaced with a unit having a variable speed electric motor that is chain driven with a gear box attached to the cable drum, similar in some respects to the embodiment of FIG.


17


. The controls for speed and direction can be the same as used in conjunction with the hydraulic system of FIG.


16


.



Claims
  • 1. In a well that extends downhole through a production formation that flows fluid thereinto; a wellhead at the top thereof opposed to the bottom thereof; a production tubing extending from the wellhead downhole within proximity of the formation; an elongate member; a support adjacent the wellhead by which the elongate member is supported for movement along the longitudinal axis of the tubing; a storing device operable in both directions to retrieve and extend said elongate member therefrom;a well pumping apparatus telescopingly received within the tubing and having a long pump barrel within which a plunger reciprocates for lifting fluid from the bottom of the well up through the tubing and to the wellhead as the plunger upstrokes, and for filling the barrel below the plunger as the plunger upstrokes; means connecting the elongate member to said storage device and to said plunger for reciprocating the plunger; a control system for responsively lowering and raising the elongate member to thereby slowly remove fluid from the pump barrel during the plunger upstroke and to force formation fluid into the tubing and thereby produce fluid from the well, wherein said well pumping apparatus receives mixed compressible and non-compressible fluids within the barrel; the compressible and non-compressible fluid is lifted up into the tubing string to aerate the fluid column in the tubing string, thereby reducing the density of the fluid in the tubing string which improves production of the well; said control system comprises a position sensor responsive to plunger position to move said elongate member axially into and out of the well within a selected range of operation; timing means by which the rate of flow from the formation equals the rate of production of the pump apparatus during one cycle of operation; whereby: the plunger is cycled an upstroke followed by a downstroke during a cycle of operation which occurs during an interval of time equal to the rate of fluid flow from the formation to fill the pump barrel with well fluid.
  • 2. The apparatus of claim 1, wherein said control system further includes a weight sensor responsive to tension in the elongate member and connected to provide a signal to said control system to actuate the storing device and move the elongate member into and out of the well during an interval of time that is of a duration to accumulate a full pump barrel of fluid below the plunger on the upstroke; and means responsive to the tension reaching a value representative of the weight of a full pump barrel for moving said elongate member one cycle of operation during said interval of time.
  • 3. The apparatus of claim 1, wherein said plunger includes a traveling valve therein, and said barrel includes an upper and a lower standing valve at opposed ends thereof, whereby, during the upstroke formation fluid is forced into the pump barrel below the plunger, and through the plunger on the downstroke, and thereby forces fluid to be displaced from the barrel into the tubing string each cycle of operation.
  • 4. The apparatus of claim 3, wherein said plunger has a detector means positioned adjacent a face thereof for detecting the presence of a fluid level within the barrel, and means for transmitting data from the detector means uphole to said control means, to provide a signal to which the control system responds by moving the plunger one cycle of operation during a time interval required to accumulate a full pump barrel of fluid in the well.
  • 5. In a well that extends downhole through a production formation from which fluid flows into the well; a wellhead at the top thereof opposed to the bottom thereof; a relatively flexible elongate member, a support adjacent the wellhead by which the elongate member is suspended for movement along the longitudinal axis of the well; a well pumping apparatus having a long pump barrel within which a plunger reciprocates for lifting fluid from the bottom of the well up through a tubing and to the wellhead as the plunger upstrokes and concurrently filling the barrel as the plunger upstrokes;a storing device operable in both directions to retrieve and extend said elongate member respective thereto wherein the member extends from the support into the well and is connected to provide a means for reciprocating the plunger; and a control system for responsively actuating the storage device in alternate directions and thereby lowering and raising the elongate member for stroking said plunger uphole and downhole during one cycle of operation to slowly remove fluid from the pump barrel during the plunger upstroke and to force formation fluid into the tubing and thereby produce fluid from the well; said control system comprises a position sensor responsive to plunger position to move said elongate member axially into and out of the well and means coordinating the time interval of one cycle of pump operation to coincide with a time interval for the well to make a quantity of fluid that represents a full pump barrel.
  • 6. The apparatus of claim 5, wherein said control system further includes a weight sensor responsive to tension in the elongate member and connected to provide a signal to said control system to actuate the storing device and move the elongate member into and out of the well during an interval of time that is of a duration to accumulate a full pump barrel of fluid below the plunger on the upstroke; and means responsive to the tension being a value representative of the weight of a full pump barrel for moving said member during said interval of time.
  • 7. The apparatus of claim 5, wherein said barrel is telescopingly received within a tubing string for translocating fluid produced by the plunger uphole to the surface, said plunger includes a traveling valve, and said barrel includes an upper and a lower standing valve at opposed ends thereof, whereby, during the upstroke of the plunger formation fluid is forced into the pump barrel below the plunger; and, through the plunger on the downstroke and thereby forces fluid to be displaced into the tubing string each cycle of operation, a sinker bar having an upper end connected to said elongate member and a lower end connected to actuate the plunger, heating means within the upper end of said sinker bar for melting an accumulation of paraffin encountered when pulling the pump assembly from the tubing.
  • 8. The apparatus of claim 7, wherein said plunger has a detector means positioned in proximity of an upper face thereof for detecting the presence of a fluid level within the barrel, and means for transmitting data from the detector means uphole to said control means, to provide a signal to which the control system responds by moving the plunger one cycle of operation during a time interval required to accumulate a full pump barrel of fluid in the well.
  • 9. In a well having a production formation that flows fluid thereinto; a wellhead at the top thereof opposed to the bottom thereof; a cable support adjacent the wellhead by which a cable is suspended for movement along the longitudinal axis of the well; a well pumping apparatus having a long pump barrel within which a plunger is reciprocatingly received, means by which the plunger is reciprocated by said cable for lifting fluid from the bottom of the well up through a tubing and to the wellhead;a cable storing device operable to move the cable in both directions to retrieve and extend the cable therefrom wherein the cable extends from the cable support into the well; and means connecting the cable to reciprocatingly actuate the plunger of the well pumping apparatus; a prime mover connected to actuate said cable storing device for alternate change in direction of travel of the cable during each cycle of operation thereof; and a control system for responsively lowering and raising the cable to actuate the plunger to slowly remove fluid from the pump barrel each upstroke of the plunger and thereafter downstroke the plunger to force fluid into the barrel above the plunger and thereby produce fluid from the well borehole each cycle of operation at the same rate fluid flows from the formation into the well.
  • 10. The apparatus of claim 9 wherein said control system comprises a position sensor responsive to cable position to move said cable axially into and out of the well; said barrel is releasably affixed to said tubing by a pump hold down in the form of an anchor and seating arrangement; a bypass valve attached between the pump barrel and the anchor for bypassing fluid from the tubing to the suction side of the pump when actuated to the open position upon lifting the barrel respective the seating arrangement.
  • 11. The apparatus of claim 9 wherein said control system further includes a weight sensor responsive to cable tension and connected to move the cable into and out of the well during an interval of time of a duration to accumulate a full barrel of fluid below the plunger on the upstroke; and means responsive to a cable tension value that is representative of the weight of a full pump barrel for moving said cable during said interval of time; and, a sinker bar having an upper end connected to said cable and a lower end connected to actuate the plunger, heating means within the upper end of said sinker bar for melting an accumulation of paraffin encountered when pulling the pump assembly from the tubing.
  • 12. The apparatus of claim 9 wherein said barrel is received within a tubing string for translocating fluid produced by the plunger uphole to the wellhead, said plunger includes a traveling valve, and said barrel includes an upper and a lower standing valve at opposed ends thereof by which formation fluid is forced into the barrel below the plunger on the upstroke and the plunger moves through the fluid on the downstroke, whereupon fluid is displaced into the tubing string each cycle of operation.
  • 13. The apparatus of claim 12 wherein said plunger has a detector means positioned to contact fluid adjacent an upper face thereof for detecting the presence of a fluid level within the barrel, and means for transmitting data from the detector means uphole to the control system.
  • 14. The apparatus of claim 9 wherein said well pumping apparatus receives mixed compressible and non-compressible fluids within the barrel which are lifted up the tubing string to aerate the fluid column in the tubing string, thereby reducing the density of the fluid in the tubing string to improve the production of the well.
  • 15. The apparatus of claim 14 wherein said control system comprises a cable weight sensor which cooperates with control means connected to said cable storing device to control the duration of each upstroke and downstroke and thereby control the filling of said barrel with the formation fluids.
  • 16. The apparatus of claim 9 wherein said control system comprises a cable weight sensor and a fluid level sensor which cooperates with said control system to control the filling of said pump barrel with said formation fluids.
  • 17. The apparatus of claim 9 wherein said cable storing device is a motor driven rotatable drum that receives said cable; said motor is operated by said control system; and said barrel is made of a plurality of lengths of tubular products attached in series relationship;said plunger is attached to said cable by a hollow polish rod, a sensor adjacent the plunger, and a conductor connected to said sensor and extends uphole through the hollow polish rod and to the surface for transmitting downhole data uphole to said control system.
  • 18. The apparatus of claim 17 wherein said prime mover is an electric motor connected to rotate the drum to control the cable tension to enhance cable winding on said drum, and a cable tensiometer connected to transfer tension data to the control system to energize the motor and move the plunger uphole when the tension is within the range of predetermined values.
  • 19. A method of producing a stripper well extending through a fluid producing formation located downhole respective the wellbore, comprising the steps of:step 1. supporting a long pump assembly having a barrel and a plunger downhole in the wellbore; reciprocatingly receiving the plunger within the barrel of the pump assembly, telescopingly receiving the barrel within a tubing string connected to a wellhead which is located at the top of the well; providing the barrel with a lower standing valve at the lower end thereof and an upper standing valve at the upper end thereof, and providing the plunger with a traveling valve therewithin for supporting a fluid column in the barrel and the tubing string on the upstroke of the plunger; step 2. Supporting a fluid column in the tubing string with said upper standing valve on the downstroke of the plunger; step 3. filling the lower end of the barrel below the plunger with well fluid by raising the plunger in response to the elevation of the liquid level in the well wherein the well fluid includes both compressible and non-compressible fluid; step 4. actuating the pump by slowly cyclically reciprocating the plunger within a range of positions between the upper and lower ends of the barrel, thereby forcing fluid from the barrel into the tubing string and up to the wellhead; and thereafter lowering the plunger to a position near the lower end of the barrel, thereby positioning the plunger adjacent the lower end of the barrel; step 5. raising and lowering the plunger controllably responsive to the quantity of fluid contained within the barrel; and, expelling compressible fluid entering the pump up the tubing string to enhance lifting fluid uphole each cycle of operation.
  • 20. The method of claim 19, including the steps of positioning the pump in proximity of the formation, and reciprocating the plunger with an elongate member which is moved in opposite directions to stroke the plunger in response to instructions from a controller means connected to determine the time interval of raising and lowering the plunger.
  • 21. The method of claim 19 and further including the steps of operating the well while measuring the upstroke time, downstroke time, weight of full barrel, weight of empty barrel, fluid level and conductivity of the barrel contents, to thereby provide a dictionary of stored terms; and, reciprocating the plunger at a rate based on the stored terms which produces the well to remove fluid therefrom at substantially the rate of fluid flow from the formation into the well.
  • 22. The method of claim 21, wherein the fluid flowing into the bottom of the well from the formation includes oil and water, and further including the steps of: measuring the elevation of the interface between oil and water in the pump barrel responsive to a sensor means affixed to an end of the plunger and thereafter removing the oil contained in the barrel.
  • 23. The method of claim 19 and further including the step of pumping the well down to its minimum level each cycle of operation responsive to the quantity of fluid contained in the barrel on a previous stroke, while flowing liquid and gas into the pump barrel; lifting liquid and gas up through the pump barrel each upstroke of the pump to thereby reduce the density of the liquid contained in the tubing above the pump which aids in producing the well.
  • 24. Method of skimming oil from formation fluid located in a lower end of a borehole containing oil, water and gas, comprising the steps of:step 1. removably connecting a relatively long pump assembly downhole in the borehole within a production tubing string attached to a well head; step 2. controllably and reciprocatingly receiving a plunger within a barrel of the pump assembly at a relatively slow rate of cyclical operation; step 3. arranging a lower standing valve at the lower end of the barrel through which fluid is forced to flow into the barrel below the plunger during an upstroke, and an upper standing valve at the upper end of the barrel for supporting a fluid column in the tubing string on a downstroke, and, providing the plunger with a traveling valve therewithin for supporting a fluid column in the barrel on the upstroke; step 4. determining the location of an interface between oil and water in the barrel by connecting a downhole sensor means to the plunger and stopping the plunger near the interface on subsequent cycles of operation, while reciprocating the plunger within the barrel at a rate responsive to the rate of accumulation of oil contained in the fluid until a preset oil/water ratio is attained each cycle of the pumping operation; step 5. upstroking the plunger while filling the barrel below the plunger with well fluid including both compressible and non-compressible fluids; step 6. continuously producing the well while determining the oil/water ratio of fluid contained in the barrel during a cycle of operation comprising: slowly upstroking the plunger to a position near the upper end of the barrel, thereby forcing fluid to flow up the tubing string to the wellhead while fluid flows into the barrel below the plunger; and, thereafter downstroking the plunger through the fluid in the barrel to a position near the lower end of the barrel; step 7. controllably raising and lowering the plunger during each cycle during a time interval which is changed responsive to the filling of the barrel to attain said preset oil/water ratio, and; expelling compressible fluid entering the pump up the tubing string to enhance lifting produced fluid in the barrel each cycle of operation.
  • 25. The method of claim 24, including the steps of positioning an inlet to the pump in proximity of the fluid level in the well during continuous operation of the pump assembly, and cycling the plunger at a cyclic rate that allows oil and water in the well to separate prior to entering the pump barrel.
  • 26. The method of claim 25, including the step of reciprocating the plunger with a cable wound onto a cable drum and rotated in opposite directions to stroke the plunger in response to accumulation of a sufficient quantity of fluid required to fill the pump barrel with oil and gas on the upstroke of the plunger.
  • 27. The method of claim 24, including the step of accumulating compressible fluid within the pump barrel and subsequently forcing compressible fluid out of the pump barrel each up stroke of the pump plunger and thereby reducing the density of the liquid contained within the production tubing above the pump barrel to aid producing the well.
  • 28. The method of claim 25, wherein step 7 is carried out by operating the well at said cyclical rate while measuring the production rate of fluid produced by the formation and thereby provide a dictionary of stored terms related to upstroke time, downstroke time, cable tension of full barrel, cable tension of empty barrel, fluid level in barrel, and using said dictionary of stored terms for selecting the optimum cyclical rate at which the plunger is reciprocated within the barrel in order to remove well fluid at the same rate it accumulates in the borehole.
  • 29. The method of claim 24 and further including the step of determining the interface between the oil and water by a conductivity probe affixed adjacent a face of the plunger to measure the conductivity of the formation fluid that flows into the bottom of the pump assembly to fill the barrel, and, upstroking the plunger from a location adjacent the interface to force the oil from the pump barrel.
  • 30. The method of claim 24 and further including the step of pumping the well down to its minimum fluid level during sequential cycles of operation while flowing liquid and gas into the pump barrel; lifting compressible fluid up through the pump barrel each stroke of the pump to thereby expel both liquid and gas from the barrel, while reducing the density of the liquid contained in the tubing above the pump which aids in producing the well.
  • 31. A method of producing a stripper well comprising the steps of:step 1. arranging a long stroking pump assembly having a barrel downhole within a tubing string of a stripper well; the barrel having a standing valve at the lower end thereof, a stationary valve at the upper end of the barrel for supporting a fluid column within the tubing string; and a plunger having a traveling valve associated therewith is reciprocatingly received within the barrel for lifting formation fluid uphole; and, step 2. upstroking and downstroking the plunger respective the barrel in response to movement of a cable operated from the surface and connected to reciprocate the plunger to fill the barrel with well fluid on the upstroke of the plunger wherein the well fluid includes both compressible and non-compressible fluid; step 3. producing the well by upstroking the plunger to a position near the upper end of the barrel, thereby forcing fluid in the barrel above the plunger to flow up the tubing string to the wellhead; step 4. raising and lowering the plunger controllably in response to the rate of production needed to keep the well pumped down, and, expelling compressible fluid entering the pump up the tubing string to enhance lifting produced fluid.
  • 32. The method of claim 31, wherein the well is cased and perforated, and further including the step of positioning the upper end of the pump barrel at an elevation in proximity of the casing perforations whereby well fluid flows into the suction end of the pump during an upstroke at a rate which lowers the hydrostatic head at the perforations to a minimum; and, further including the steps of removably attaching the pump assembly to a pump hold down device and pulling said pump assembly to the surface by upstroking the plunger into engagement respective the upper end of the pump barrel by tensioning the cable, whereupon the pump is released from the hold down device and brought to the surface;and further including a paraffin melting device arranged adjacent the top of the tool string for melting paraffin encountered within the tubing string as the pump assembly is pulled uphole to the surface.
  • 33. The method of claim 31, and further including the step of producing the well at a rate that is substantially equal to the rate of flow of fluid from the fluid producing formation of the borehole while concurrently lowering the liquid level in the borehole to a minimum, and lifting compressible fluid up through the pump barrel each upstroke of the pump plunger and thereby reduce the density of the liquid contained in the tubing above the pump which aids in producing the well.
Parent Case Info

This application claims the benefit of provisional applications Nos. 60/220,414 and 60/220,361 both filed Jul. 24, 2000.

US Referenced Citations (7)
Number Name Date Kind
1970596 Coberly Aug 1934 A
4666375 Kime May 1987 A
4761120 Mayer Aug 1988 A
4973226 McKee Nov 1990 A
5141411 Klaeger Aug 1992 A
5318409 London et al. Jun 1994 A
5372482 London Dec 1994 A
Provisional Applications (2)
Number Date Country
60/220414 Jul 2000 US
60/220361 Jul 2000 US