Claims
- 1. In a well that extends downhole through a production formation that flows fluid thereinto; a wellhead at the top thereof opposed to the bottom thereof; a production tubing extending from the wellhead downhole within proximity of the formation; an elongate member; a support adjacent the wellhead by which the elongate member is supported for movement along the longitudinal axis of the tubing; a storing device operable in both directions to retrieve and extend said elongate member therefrom;a well pumping apparatus telescopingly received within the tubing and having a long pump barrel within which a plunger reciprocates for lifting fluid from the bottom of the well up through the tubing and to the wellhead as the plunger upstrokes, and for filling the barrel below the plunger as the plunger upstrokes; means connecting the elongate member to said storage device and to said plunger for reciprocating the plunger; a control system for responsively lowering and raising the elongate member to thereby slowly remove fluid from the pump barrel during the plunger upstroke and to force formation fluid into the tubing and thereby produce fluid from the well, wherein said well pumping apparatus receives mixed compressible and non-compressible fluids within the barrel; the compressible and non-compressible fluid is lifted up into the tubing string to aerate the fluid column in the tubing string, thereby reducing the density of the fluid in the tubing string which improves production of the well; said control system comprises a position sensor responsive to plunger position to move said elongate member axially into and out of the well within a selected range of operation; timing means by which the rate of flow from the formation equals the rate of production of the pump apparatus during one cycle of operation; whereby: the plunger is cycled an upstroke followed by a downstroke during a cycle of operation which occurs during an interval of time equal to the rate of fluid flow from the formation to fill the pump barrel with well fluid.
- 2. The apparatus of claim 1, wherein said control system further includes a weight sensor responsive to tension in the elongate member and connected to provide a signal to said control system to actuate the storing device and move the elongate member into and out of the well during an interval of time that is of a duration to accumulate a full pump barrel of fluid below the plunger on the upstroke; and means responsive to the tension reaching a value representative of the weight of a full pump barrel for moving said elongate member one cycle of operation during said interval of time.
- 3. The apparatus of claim 1, wherein said plunger includes a traveling valve therein, and said barrel includes an upper and a lower standing valve at opposed ends thereof, whereby, during the upstroke formation fluid is forced into the pump barrel below the plunger, and through the plunger on the downstroke, and thereby forces fluid to be displaced from the barrel into the tubing string each cycle of operation.
- 4. The apparatus of claim 3, wherein said plunger has a detector means positioned adjacent a face thereof for detecting the presence of a fluid level within the barrel, and means for transmitting data from the detector means uphole to said control means, to provide a signal to which the control system responds by moving the plunger one cycle of operation during a time interval required to accumulate a full pump barrel of fluid in the well.
- 5. In a well that extends downhole through a production formation from which fluid flows into the well; a wellhead at the top thereof opposed to the bottom thereof; a relatively flexible elongate member, a support adjacent the wellhead by which the elongate member is suspended for movement along the longitudinal axis of the well; a well pumping apparatus having a long pump barrel within which a plunger reciprocates for lifting fluid from the bottom of the well up through a tubing and to the wellhead as the plunger upstrokes and concurrently filling the barrel as the plunger upstrokes;a storing device operable in both directions to retrieve and extend said elongate member respective thereto wherein the member extends from the support into the well and is connected to provide a means for reciprocating the plunger; and a control system for responsively actuating the storage device in alternate directions and thereby lowering and raising the elongate member for stroking said plunger uphole and downhole during one cycle of operation to slowly remove fluid from the pump barrel during the plunger upstroke and to force formation fluid into the tubing and thereby produce fluid from the well; said control system comprises a position sensor responsive to plunger position to move said elongate member axially into and out of the well and means coordinating the time interval of one cycle of pump operation to coincide with a time interval for the well to make a quantity of fluid that represents a full pump barrel.
- 6. The apparatus of claim 5, wherein said control system further includes a weight sensor responsive to tension in the elongate member and connected to provide a signal to said control system to actuate the storing device and move the elongate member into and out of the well during an interval of time that is of a duration to accumulate a full pump barrel of fluid below the plunger on the upstroke; and means responsive to the tension being a value representative of the weight of a full pump barrel for moving said member during said interval of time.
- 7. The apparatus of claim 5, wherein said barrel is telescopingly received within a tubing string for translocating fluid produced by the plunger uphole to the surface, said plunger includes a traveling valve, and said barrel includes an upper and a lower standing valve at opposed ends thereof, whereby, during the upstroke of the plunger formation fluid is forced into the pump barrel below the plunger; and, through the plunger on the downstroke and thereby forces fluid to be displaced into the tubing string each cycle of operation, a sinker bar having an upper end connected to said elongate member and a lower end connected to actuate the plunger, heating means within the upper end of said sinker bar for melting an accumulation of paraffin encountered when pulling the pump assembly from the tubing.
- 8. The apparatus of claim 7, wherein said plunger has a detector means positioned in proximity of an upper face thereof for detecting the presence of a fluid level within the barrel, and means for transmitting data from the detector means uphole to said control means, to provide a signal to which the control system responds by moving the plunger one cycle of operation during a time interval required to accumulate a full pump barrel of fluid in the well.
- 9. In a well having a production formation that flows fluid thereinto; a wellhead at the top thereof opposed to the bottom thereof; a cable support adjacent the wellhead by which a cable is suspended for movement along the longitudinal axis of the well; a well pumping apparatus having a long pump barrel within which a plunger is reciprocatingly received, means by which the plunger is reciprocated by said cable for lifting fluid from the bottom of the well up through a tubing and to the wellhead;a cable storing device operable to move the cable in both directions to retrieve and extend the cable therefrom wherein the cable extends from the cable support into the well; and means connecting the cable to reciprocatingly actuate the plunger of the well pumping apparatus; a prime mover connected to actuate said cable storing device for alternate change in direction of travel of the cable during each cycle of operation thereof; and a control system for responsively lowering and raising the cable to actuate the plunger to slowly remove fluid from the pump barrel each upstroke of the plunger and thereafter downstroke the plunger to force fluid into the barrel above the plunger and thereby produce fluid from the well borehole each cycle of operation at the same rate fluid flows from the formation into the well.
- 10. The apparatus of claim 9 wherein said control system comprises a position sensor responsive to cable position to move said cable axially into and out of the well; said barrel is releasably affixed to said tubing by a pump hold down in the form of an anchor and seating arrangement; a bypass valve attached between the pump barrel and the anchor for bypassing fluid from the tubing to the suction side of the pump when actuated to the open position upon lifting the barrel respective the seating arrangement.
- 11. The apparatus of claim 9 wherein said control system further includes a weight sensor responsive to cable tension and connected to move the cable into and out of the well during an interval of time of a duration to accumulate a full barrel of fluid below the plunger on the upstroke; and means responsive to a cable tension value that is representative of the weight of a full pump barrel for moving said cable during said interval of time; and, a sinker bar having an upper end connected to said cable and a lower end connected to actuate the plunger, heating means within the upper end of said sinker bar for melting an accumulation of paraffin encountered when pulling the pump assembly from the tubing.
- 12. The apparatus of claim 9 wherein said barrel is received within a tubing string for translocating fluid produced by the plunger uphole to the wellhead, said plunger includes a traveling valve, and said barrel includes an upper and a lower standing valve at opposed ends thereof by which formation fluid is forced into the barrel below the plunger on the upstroke and the plunger moves through the fluid on the downstroke, whereupon fluid is displaced into the tubing string each cycle of operation.
- 13. The apparatus of claim 12 wherein said plunger has a detector means positioned to contact fluid adjacent an upper face thereof for detecting the presence of a fluid level within the barrel, and means for transmitting data from the detector means uphole to the control system.
- 14. The apparatus of claim 9 wherein said well pumping apparatus receives mixed compressible and non-compressible fluids within the barrel which are lifted up the tubing string to aerate the fluid column in the tubing string, thereby reducing the density of the fluid in the tubing string to improve the production of the well.
- 15. The apparatus of claim 14 wherein said control system comprises a cable weight sensor which cooperates with control means connected to said cable storing device to control the duration of each upstroke and downstroke and thereby control the filling of said barrel with the formation fluids.
- 16. The apparatus of claim 9 wherein said control system comprises a cable weight sensor and a fluid level sensor which cooperates with said control system to control the filling of said pump barrel with said formation fluids.
- 17. The apparatus of claim 9 wherein said cable storing device is a motor driven rotatable drum that receives said cable; said motor is operated by said control system; and said barrel is made of a plurality of lengths of tubular products attached in series relationship;said plunger is attached to said cable by a hollow polish rod, a sensor adjacent the plunger, and a conductor connected to said sensor and extends uphole through the hollow polish rod and to the surface for transmitting downhole data uphole to said control system.
- 18. The apparatus of claim 17 wherein said prime mover is an electric motor connected to rotate the drum to control the cable tension to enhance cable winding on said drum, and a cable tensiometer connected to transfer tension data to the control system to energize the motor and move the plunger uphole when the tension is within the range of predetermined values.
- 19. A method of producing a stripper well extending through a fluid producing formation located downhole respective the wellbore, comprising the steps of:step 1. supporting a long pump assembly having a barrel and a plunger downhole in the wellbore; reciprocatingly receiving the plunger within the barrel of the pump assembly, telescopingly receiving the barrel within a tubing string connected to a wellhead which is located at the top of the well; providing the barrel with a lower standing valve at the lower end thereof and an upper standing valve at the upper end thereof, and providing the plunger with a traveling valve therewithin for supporting a fluid column in the barrel and the tubing string on the upstroke of the plunger; step 2. Supporting a fluid column in the tubing string with said upper standing valve on the downstroke of the plunger; step 3. filling the lower end of the barrel below the plunger with well fluid by raising the plunger in response to the elevation of the liquid level in the well wherein the well fluid includes both compressible and non-compressible fluid; step 4. actuating the pump by slowly cyclically reciprocating the plunger within a range of positions between the upper and lower ends of the barrel, thereby forcing fluid from the barrel into the tubing string and up to the wellhead; and thereafter lowering the plunger to a position near the lower end of the barrel, thereby positioning the plunger adjacent the lower end of the barrel; step 5. raising and lowering the plunger controllably responsive to the quantity of fluid contained within the barrel; and, expelling compressible fluid entering the pump up the tubing string to enhance lifting fluid uphole each cycle of operation.
- 20. The method of claim 19, including the steps of positioning the pump in proximity of the formation, and reciprocating the plunger with an elongate member which is moved in opposite directions to stroke the plunger in response to instructions from a controller means connected to determine the time interval of raising and lowering the plunger.
- 21. The method of claim 19 and further including the steps of operating the well while measuring the upstroke time, downstroke time, weight of full barrel, weight of empty barrel, fluid level and conductivity of the barrel contents, to thereby provide a dictionary of stored terms; and, reciprocating the plunger at a rate based on the stored terms which produces the well to remove fluid therefrom at substantially the rate of fluid flow from the formation into the well.
- 22. The method of claim 21, wherein the fluid flowing into the bottom of the well from the formation includes oil and water, and further including the steps of: measuring the elevation of the interface between oil and water in the pump barrel responsive to a sensor means affixed to an end of the plunger and thereafter removing the oil contained in the barrel.
- 23. The method of claim 19 and further including the step of pumping the well down to its minimum level each cycle of operation responsive to the quantity of fluid contained in the barrel on a previous stroke, while flowing liquid and gas into the pump barrel; lifting liquid and gas up through the pump barrel each upstroke of the pump to thereby reduce the density of the liquid contained in the tubing above the pump which aids in producing the well.
- 24. Method of skimming oil from formation fluid located in a lower end of a borehole containing oil, water and gas, comprising the steps of:step 1. removably connecting a relatively long pump assembly downhole in the borehole within a production tubing string attached to a well head; step 2. controllably and reciprocatingly receiving a plunger within a barrel of the pump assembly at a relatively slow rate of cyclical operation; step 3. arranging a lower standing valve at the lower end of the barrel through which fluid is forced to flow into the barrel below the plunger during an upstroke, and an upper standing valve at the upper end of the barrel for supporting a fluid column in the tubing string on a downstroke, and, providing the plunger with a traveling valve therewithin for supporting a fluid column in the barrel on the upstroke; step 4. determining the location of an interface between oil and water in the barrel by connecting a downhole sensor means to the plunger and stopping the plunger near the interface on subsequent cycles of operation, while reciprocating the plunger within the barrel at a rate responsive to the rate of accumulation of oil contained in the fluid until a preset oil/water ratio is attained each cycle of the pumping operation; step 5. upstroking the plunger while filling the barrel below the plunger with well fluid including both compressible and non-compressible fluids; step 6. continuously producing the well while determining the oil/water ratio of fluid contained in the barrel during a cycle of operation comprising: slowly upstroking the plunger to a position near the upper end of the barrel, thereby forcing fluid to flow up the tubing string to the wellhead while fluid flows into the barrel below the plunger; and, thereafter downstroking the plunger through the fluid in the barrel to a position near the lower end of the barrel; step 7. controllably raising and lowering the plunger during each cycle during a time interval which is changed responsive to the filling of the barrel to attain said preset oil/water ratio, and; expelling compressible fluid entering the pump up the tubing string to enhance lifting produced fluid in the barrel each cycle of operation.
- 25. The method of claim 24, including the steps of positioning an inlet to the pump in proximity of the fluid level in the well during continuous operation of the pump assembly, and cycling the plunger at a cyclic rate that allows oil and water in the well to separate prior to entering the pump barrel.
- 26. The method of claim 25, including the step of reciprocating the plunger with a cable wound onto a cable drum and rotated in opposite directions to stroke the plunger in response to accumulation of a sufficient quantity of fluid required to fill the pump barrel with oil and gas on the upstroke of the plunger.
- 27. The method of claim 24, including the step of accumulating compressible fluid within the pump barrel and subsequently forcing compressible fluid out of the pump barrel each up stroke of the pump plunger and thereby reducing the density of the liquid contained within the production tubing above the pump barrel to aid producing the well.
- 28. The method of claim 25, wherein step 7 is carried out by operating the well at said cyclical rate while measuring the production rate of fluid produced by the formation and thereby provide a dictionary of stored terms related to upstroke time, downstroke time, cable tension of full barrel, cable tension of empty barrel, fluid level in barrel, and using said dictionary of stored terms for selecting the optimum cyclical rate at which the plunger is reciprocated within the barrel in order to remove well fluid at the same rate it accumulates in the borehole.
- 29. The method of claim 24 and further including the step of determining the interface between the oil and water by a conductivity probe affixed adjacent a face of the plunger to measure the conductivity of the formation fluid that flows into the bottom of the pump assembly to fill the barrel, and, upstroking the plunger from a location adjacent the interface to force the oil from the pump barrel.
- 30. The method of claim 24 and further including the step of pumping the well down to its minimum fluid level during sequential cycles of operation while flowing liquid and gas into the pump barrel; lifting compressible fluid up through the pump barrel each stroke of the pump to thereby expel both liquid and gas from the barrel, while reducing the density of the liquid contained in the tubing above the pump which aids in producing the well.
- 31. A method of producing a stripper well comprising the steps of:step 1. arranging a long stroking pump assembly having a barrel downhole within a tubing string of a stripper well; the barrel having a standing valve at the lower end thereof, a stationary valve at the upper end of the barrel for supporting a fluid column within the tubing string; and a plunger having a traveling valve associated therewith is reciprocatingly received within the barrel for lifting formation fluid uphole; and, step 2. upstroking and downstroking the plunger respective the barrel in response to movement of a cable operated from the surface and connected to reciprocate the plunger to fill the barrel with well fluid on the upstroke of the plunger wherein the well fluid includes both compressible and non-compressible fluid; step 3. producing the well by upstroking the plunger to a position near the upper end of the barrel, thereby forcing fluid in the barrel above the plunger to flow up the tubing string to the wellhead; step 4. raising and lowering the plunger controllably in response to the rate of production needed to keep the well pumped down, and, expelling compressible fluid entering the pump up the tubing string to enhance lifting produced fluid.
- 32. The method of claim 31, wherein the well is cased and perforated, and further including the step of positioning the upper end of the pump barrel at an elevation in proximity of the casing perforations whereby well fluid flows into the suction end of the pump during an upstroke at a rate which lowers the hydrostatic head at the perforations to a minimum; and, further including the steps of removably attaching the pump assembly to a pump hold down device and pulling said pump assembly to the surface by upstroking the plunger into engagement respective the upper end of the pump barrel by tensioning the cable, whereupon the pump is released from the hold down device and brought to the surface;and further including a paraffin melting device arranged adjacent the top of the tool string for melting paraffin encountered within the tubing string as the pump assembly is pulled uphole to the surface.
- 33. The method of claim 31, and further including the step of producing the well at a rate that is substantially equal to the rate of flow of fluid from the fluid producing formation of the borehole while concurrently lowering the liquid level in the borehole to a minimum, and lifting compressible fluid up through the pump barrel each upstroke of the pump plunger and thereby reduce the density of the liquid contained in the tubing above the pump which aids in producing the well.
Parent Case Info
This application claims the benefit of provisional applications Nos. 60/220,414 and 60/220,361 both filed Jul. 24, 2000.
US Referenced Citations (7)
Provisional Applications (2)
|
Number |
Date |
Country |
|
60/220414 |
Jul 2000 |
US |
|
60/220361 |
Jul 2000 |
US |