This invention relates to vehicle outside door assemblies having pull-bar outside handles and a passive locking device for preventing the opening of the vehicle door during a threshold acceleration event.
Outside door handle assemblies for modern vehicles typically utilize pull-bar handles that include a handle chassis. The chassis and any internally connected latching mechanism may be preassembled inside of a cavity of the vehicle door. To prevent the handle from inadvertently actuating during a threshold lateral and/or longitudinal acceleration, hereinafter referred to as a threshold acceleration event, vehicle door handle assemblies are required to meet certain performance standards. For example, the National Highway Transportation Safety Administration (NHTSA) of the United States Department of Transportation establishes various minimum performance requirements for a host of vehicle systems.
With respect to door handle assemblies in particular, Federal Motor Vehicle Safety Standard (FMVSS) 206 sets the threshold acceleration requirement noted above. In particular, ยง3.2.3 of FMVSS 206 requires that a vehicle door latching mechanism, when in an unlocked status, shall retain full latching capability at an acceleration of at least 294.2 meters/second2, i.e., 30 g, in the longitudinal and lateral directions. The European Commission (EC) currently requires that door handle assemblies meet a similar 30 g minimum acceleration threshold.
Conventional door handle assemblies may be variously equipped to address these requirements, most often by employing counterweights or internal counterbalancing mechanisms. Such devices are relatively bulky and massive, and are typically installed on or packaged within the actuating portion of the door handle assembly at a position opposite a handle pivot or immediately adjacent to the door handle. The counterweights may be attached to a bell crank if such a device is used within the door handle assembly, while other methods or devices may be used in conjunction with door handles that do not use a bell crank. Regardless of the particular configuration of the door handle assembly, the relative size and mass of conventional inertial locking devices may render such devices less than optimal in certain design-related respects.
Accordingly, an outside (O/S) door handle assembly for a vehicle door is provided having an inertial-actuated locking mechanism or an inertial lock. The O/S door handle assembly is cable-actuated. That is, motion of a pull-bar type O/S door handle applies tension to a length of cable, which ultimately unlatches the vehicle door to permit entry into the vehicle interior. The handle and the inertial lock are positioned at opposite ends of the cable. By locating the inertial lock away from the handle, and by eliminating the need for an internal bell crank, a considerable reduction in overall mass of the door assembly is possible relative to conventional door assemblies. Additionally, vehicle styling flexibility may be greatly enhanced.
The inertial lock is positioned at an end of the cable in proximity to the door latch, which in turn is enclosed within a separate door latch mechanism. A toggle piece of the inertial lock deploys into locking engagement with a stationary member or surface in response to the threshold acceleration. Deployment of the toggle piece prevents the handle from actuating beyond a point sufficient for unlatching the door. Another end of the cable is directly connected to the handle. Among other potential benefits, this particular configuration allows the handle assembly to be packaged within the door panel assembly in much closer proximity to the outer panel of the door, thus optimizing vehicle design flexibility as noted above.
In one embodiment, the inertial lock contains a housing, the toggle piece, and a moveable linkage. The housing is held stationary with respect to the linkage while the linkage moves within a cavity of the housing. The housing may be configured to capture one end of the cable, with the other end of the cable connected to the door handle. A sufficient movement of the handle pulls the linkage along within the cavity of the housing. The toggle piece may be stowed into another cavity or an opening of the linkage using a torsion spring or other suitable resilient biasing device.
In the presence of a threshold acceleration, e.g., the 30 g federal acceleration requirement mentioned above or any other desired acceleration value, the rotational biasing force of the torsion spring is overcome, thus allowing the toggle piece to quickly rotate into a deployed position. In the deployed position, the toggle piece engages a stationary member, e.g., a shaped or stepped internal surface of the housing or another suitable stationary member. Motion of the linkage within the cavity of the housing is thereby immediately arrested by direct contact between the deployed portion of the toggle piece and the housing, preventing the door from unlatching during the threshold acceleration event.
The above features and advantages, and other features and advantages, of the present invention are readily apparent from the following detailed description of the best mode for carrying out the invention when taken in connection with the accompanying drawings.
Referring to the drawings, wherein like reference numbers correspond to like or similar components throughout the several figures, and beginning with
Referring to
The handle 16 may be connected to the outside of the door 14 using the inner assembly 17 such that a panel 15 of the door 14 is positioned between the handle 16 and the inner assembly 17. The handle 16 is also connected to the latching mechanism 22 via a length of cable 20. For proper alignment, positioning, and/or strain relief of the cable 20, the inner assembly 17 may include one or more guide members 18.
In one embodiment, the guide member(s) 18 may each define a circular through-opening 30 adapted for receiving the cable therein and for securing the cable 20 to the inner assembly 17, although the guide members 18 may be constructed in other ways without departing from the intended scope of the invention. The number and location of guide members 18 may be varied as needed to properly orient the cable 20 in a generally vertical direction relative to the latching mechanism 22, such that strain on the cable 20 is sufficiently minimized and the motion of a wire or wires 48 (see
Still referring to
During normal operation, i.e., when a person wishes to enter the interior 11 of the vehicle 10 shown in
The inertial lock 24 includes a stationary housing 25 which receives and secures the cable 20 via the linkage 56 contained therein, as shown in
Referring to
The lever 26 may be shaped or configured as needed to provide the desired latch-opening functionality. However configured, the lever 26 is coupled with the linkage 56 in such a manner as to freely move within the slot 42 when the handle 16 of
Referring to
The lever 26 (also see
The toggle piece 36 may be stowed within a recess or opening 68 of the linkage 56. The linkage 56 may also be configured to secure an end of the cable 20. For example, the cable 20 may be configured to terminate in a cap or a plug 58 that may be securely connected to end 76 of the linkage 56, e.g., press-fit or bonded within a slot 64 formed in the linkage 56. End 78 of the linkage 56 may secure an end of the spring 54, with the other end of the spring 54 likewise secured to the housing 25, if necessary using a cross piece or connecting member 66.
Referring to
To ensure proper deployment of the toggle piece 36 within the linkage 56, the toggle piece should be properly weighted to provide the desired deployment response during the threshold acceleration. For example, the toggle piece 36 may be constructed of a die cast metal or other material having sufficient mass for the desired threshold acceleration, toggle piece 36, and torsion of the spring 83. Alternately, an integral or connected mass may be connected to the shaped end 72 of the toggle piece 36 to provide the required moment about pivot 98.
As noted above, separating the inertial lock 24 from the handle 16 of
While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.