Not Applicable.
Not Applicable.
Not Applicable.
The invention generally relates to a cable actuation system. More particularly, the invention relates to a cable actuation system that is capable of perturbing or enhancing a postural stability of a person undergoing balance and/or gait testing or training.
In order to study human motion, subjects are often tested in gait labs which are provided with special equipment disposed therein for measuring body movements, body mechanics, and/or the activity of the muscles (e.g., gait labs with force plates, etc.). The gait analysis performed in the gait lab is typically used to assess, plan, and/or treat subjects with medical conditions affecting their ability to walk. Also, the gait analysis is often used in sports biomechanics to improve athletic performance, and to help identify and/or treat injuries that deleteriously affect athletic performance.
However, the artificial nature of a typical environment for testing and/or training the balance and/or gait of a subject (e.g., a typical gait lab or clinician's office) makes it difficult to simulate the real-life conditions that are encountered by the subject. Also, these artificial environments for balance and gait testing and/or training are unable to effectively simulate the uncertain nature of the stimuli encountered by subjects in real-life scenarios. As such, these balance gait testing and/or training environments are limited in their overall ability to effectively test and/or train subjects for the scenarios that are actually experienced by subjects in the their everyday lives.
Therefore, what is needed is a cable actuation system that is capable of perturbing a postural stability of a person so as to simulate real-life conditions. Moreover, a cable actuation system is needed that is capable of enhancing a postural stability of a person undergoing balance and/or gait testing or training. Furthermore, what is needed is a cable actuation system that obviates the need for perturbations to be applied by a motion base, which is far more costly than the cable actuation system.
Accordingly, the present invention is directed to a cable actuation system that substantially obviates one or more problems resulting from the limitations and deficiencies of the related art.
In accordance with one or more embodiments of the present invention, there is provided a cable actuation system configured to apply a force to a person. The cable actuation system comprises a cable having a first end and a second end, the second end being oppositely disposed relative to the first end, and the first end of the cable configured to be coupled to a person; an actuator operatively coupled to the second end of the cable, the actuator configured to apply a force to the cable; and a control system operatively coupled to the actuator, the control system configured to determine the force being applied to the cable by the actuator, and the control system configured to apply a controlled force to the person by means of the actuator based upon feedback from the force applied to the cable.
In a further embodiment of the present invention, the actuator comprises an electric motor, and the control system is operatively coupled to the electric motor.
In yet a further embodiment, the torque generated by the electric motor is proportional to the force applied to the cable by the electric motor, and the control system is configured to determine the force being applied to the cable based upon the torque generated by the electric motor.
In still a further embodiment, the cable actuation system further comprises a load cell operatively coupled to the cable, the load cell configured to measure the force applied to the cable by the actuator, and the control system being configured to determine the force being applied to the cable based upon output data from the load cell.
In yet a further embodiment, the load cell is disposed between the first end and the second end of the cable.
In still a further embodiment, the cable actuation system further comprises an enclosure for housing the actuator, the enclosure configured to be mounted on a floor, wall, or ceiling of a room.
In yet a further embodiment, the enclosure resembles a post or pedestal, and the enclosure is mounted on the floor of the room.
In still a further embodiment, the cable actuation system further comprises a plurality of cables operatively coupled to respective actuators for applying a plurality of controlled forces to different body portions of the person, each of the actuators being operatively coupled to the control system.
In yet a further embodiment, the control system comprises a computer-based control system with a microprocessor.
In still a further embodiment, the first end of the cable is coupled to the person via a harness or belt worn by the person.
In yet a further embodiment, the controlled force applied to the person by the actuator perturbs a postural stability of the person.
In still a further embodiment, the controlled force applied to the person by the actuator enhances a postural stability of the person.
In yet a further embodiment, the cable actuation system further comprises a treadmill configured to accommodate the person running or walking thereon.
In still a further embodiment, the cable actuation system further comprises a force measurement assembly configured to receive the person. The force measurement assembly includes a top surface for receiving at least one portion of the body of the person; and at least one force transducer, the at least one force transducer configured to sense one or more measured quantities and output one or more signals that are representative of forces and/or moments being applied to the top surface of the force measurement assembly by the person. The force measurement assembly is operatively coupled to the control system, the control system configured to receive the one or more signals that are representative of the forces and/or moments being applied to the top surface of the force measurement assembly by the person, and to convert the one or more signals into output forces and/or moments.
In yet a further embodiment, the force measurement assembly is in the form of a dynamic or static force plate.
In still a further embodiment, the force measurement assembly is in the form of an instrumented treadmill.
It is to be understood that the foregoing general description and the following detailed description of the present invention are merely exemplary and explanatory in nature. As such, the foregoing general description and the following detailed description of the invention should not be construed to limit the scope of the appended claims in any sense.
The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Throughout the figures, the same elements are always denoted using the same reference characters so that, as a general rule, they will only be described once.
An illustrative embodiment of a cable actuation system configured to apply a force to a person is seen generally at 100 in
Now, turning to
In the illustrative embodiment, the actuator 10 comprises an electric motor, and the control system 14 is operatively coupled to the electric motor (see
In a second variation of the illustrative embodiment, the cable actuation system 100 further comprises a load cell 22 operatively coupled to the cable 12, and the load cell 22 is configured to measure the force applied to the cable 12 by the actuator 10. As shown in
Referring again to
As shown in the illustrative embodiment of
In the illustrative embodiment, the controlled force applied to the person 26 by the actuator 10 may perturb a postural stability of the person 26. For example, the cable 12 may pull the person 26 to the left side to perturb the balance of the person 26. Also, in the illustrative embodiment, the controlled force applied to the person 26 by the actuator 10 may alternatively enhance a postural stability of the person 26. For example, the cable 12 may pull the person 26 to the right side to counteract the person 26 falling to his or her left side.
In one or more embodiments, the cable actuation system 100 further comprises a treadmill configured to accommodate the person 26 running or walking thereon. For example, the treadmill may comprise an exercise treadmill or an instrumented treadmill, such as the instrumented treadmill 10 described in U.S. Pat. No. 10,390,736, the entire disclosure of which is incorporated herein by reference.
In one or more embodiments, the cable actuation system 100 further comprises a force measurement assembly 42 configured to receive the person 26 (see e.g.,
In further embodiments, the cable actuation system may comprise a plurality of cables 12 operatively coupled to respective actuators 10 for applying a plurality of controlled forces to different body portions of the person 26. Each of these actuators 10 may be operatively coupled to the control system 14. For example, the room may be provided with a plurality of post enclosures 24 mounted to the floor of the room. Each of these post enclosures 24 may contain a respective actuator 10 and a cable 12 attached to a different portion of the body of the person 26. For example, a first cable 12 may be attached to the left side of the person 26, a second cable 12 may be attached to the right side of the person 26, a third cable 12 may be attached to the anterior side of the person 26, and a fourth cable 12 may be attached to the posterior side of the person 26. As such, forces may be applied in different directions to the person 26.
A first exemplary perturbation arrangement using the cable actuation system of
A second exemplary perturbation arrangement using the cable actuation system of
A third exemplary perturbation arrangement using the cable actuation system of
In one or more illustrative embodiments, the controlled force(s) applied to the person 26 in the arrangements of
Advantageously, the cable actuation system 100 described above is in the form of a standalone cable system that enables additional standalone units to be easily added to the system for applying perturbations to a plurality of different sides of the person. The actuators 10 of each of the standalone units may each be wirelessly coupled to the control system 14 so that hard wiring is not required. As such, the standalone cable system described herein obviates the need for pulleys, trolleys, tracks, or movable carriages that complicate the system. In the illustrative embodiment described above, the cable actuation system 100 does not include any pulleys, trolleys, tracks, or movable carriages.
It is readily apparent from the above detailed description that the cable actuation system 100 described above substantially benefits the field of human balance assessment and human gait analysis. First, the cable actuation system 100 is capable of perturbing a postural stability of a person 26 so as to simulate real-life conditions. Secondly, the cable actuation system 100 is capable of enhancing a postural stability of a person 26 undergoing balance and/or gait testing or training. Finally, the cable actuation system 100 obviates the need for perturbations to be applied by a motion base, which is far more costly than the cable actuation system 100.
Any of the features or attributes of the above described embodiments and variations can be used in combination with any of the other features and attributes of the above described embodiments and variations as desired. Also, the compound conjunction “and/or” is used throughout this disclosure to mean one or the other, or both.
Although the invention has been shown and described with respect to a certain embodiment or embodiments, it is apparent that this invention can be embodied in many different forms and that many other modifications and variations are possible without departing from the spirit and scope of this invention.
Moreover, while exemplary embodiments have been described herein, one of ordinary skill in the art will readily appreciate that the exemplary embodiments set forth above are merely illustrative in nature and should not be construed as to limit the claims in any manner. Rather, the scope of the invention is defined only by the appended claims and their equivalents, and not, by the preceding description.
This patent application claims priority to, and incorporates by reference in its entirety, U.S. Provisional Patent Application No. 62/965,844, entitled “Cable Actuation System”, filed on Jan. 25, 2020.
Number | Name | Date | Kind |
---|---|---|---|
6038488 | Barnes et al. | Mar 2000 | A |
6113237 | Ober et al. | Sep 2000 | A |
6123649 | Lee | Sep 2000 | A |
6152564 | Ober et al. | Nov 2000 | A |
6295878 | Berme | Oct 2001 | B1 |
6354155 | Berme | Mar 2002 | B1 |
6389883 | Berme et al. | May 2002 | B1 |
6936016 | Berme et al. | Aug 2005 | B2 |
7066865 | Radow | Jun 2006 | B2 |
8181541 | Berme | May 2012 | B2 |
8315822 | Berme et al. | Nov 2012 | B2 |
8315823 | Berme et al. | Nov 2012 | B2 |
8366589 | Tyree | Feb 2013 | B2 |
D689388 | Berme | Sep 2013 | S |
D689389 | Berme | Sep 2013 | S |
8543540 | Wilson et al. | Sep 2013 | B1 |
8544347 | Berme | Oct 2013 | B1 |
8643669 | Wilson et al. | Feb 2014 | B1 |
8700569 | Wilson et al. | Apr 2014 | B1 |
8704855 | Berme et al. | Apr 2014 | B1 |
8764532 | Berme | Jul 2014 | B1 |
8847989 | Berme et al. | Sep 2014 | B1 |
D715669 | Berme | Oct 2014 | S |
8902249 | Wilson et al. | Dec 2014 | B1 |
8915149 | Berme | Dec 2014 | B1 |
9032817 | Berme et al. | May 2015 | B2 |
9043278 | Wilson et al. | May 2015 | B1 |
9066667 | Berme et al. | Jun 2015 | B1 |
9081436 | Berme et al. | Jul 2015 | B1 |
9168420 | Berme et al. | Oct 2015 | B1 |
9173596 | Berme et al. | Nov 2015 | B1 |
9200897 | Wilson et al. | Dec 2015 | B1 |
9254417 | Lawrence | Feb 2016 | B2 |
9277857 | Berme et al. | Mar 2016 | B1 |
D755067 | Berme et al. | May 2016 | S |
9404823 | Berme et al. | Aug 2016 | B1 |
9414784 | Berme et al. | Aug 2016 | B1 |
9468370 | Shearer | Oct 2016 | B1 |
9517008 | Berme et al. | Dec 2016 | B1 |
9526443 | Berme et al. | Dec 2016 | B1 |
9526451 | Berme | Dec 2016 | B1 |
9558399 | Jeka et al. | Jan 2017 | B1 |
9568382 | Berme et al. | Feb 2017 | B1 |
9622686 | Berme et al. | Apr 2017 | B1 |
9763604 | Berme et al. | Sep 2017 | B1 |
9770203 | Berme et al. | Sep 2017 | B1 |
9778119 | Berme et al. | Oct 2017 | B2 |
9814430 | Berme et al. | Nov 2017 | B1 |
9829311 | Wilson et al. | Nov 2017 | B1 |
9854997 | Berme et al. | Jan 2018 | B1 |
9873012 | Huppée | Jan 2018 | B2 |
9916011 | Berme et al. | Mar 2018 | B1 |
9927312 | Berme et al. | Mar 2018 | B1 |
9987188 | Diao | Jun 2018 | B1 |
10010248 | Shearer | Jul 2018 | B1 |
10010286 | Berme et al. | Jul 2018 | B1 |
10085676 | Berme et al. | Oct 2018 | B1 |
10117602 | Berme et al. | Nov 2018 | B1 |
10126186 | Berme et al. | Nov 2018 | B2 |
10216262 | Berme et al. | Feb 2019 | B1 |
10231662 | Berme et al. | Mar 2019 | B1 |
10264964 | Berme et al. | Apr 2019 | B1 |
10331324 | Wilson et al. | Jun 2019 | B1 |
10342473 | Berme et al. | Jul 2019 | B1 |
10390736 | Berme et al. | Aug 2019 | B1 |
10413230 | Berme et al. | Sep 2019 | B1 |
10463250 | Berme et al. | Nov 2019 | B1 |
10527508 | Berme et al. | Jan 2020 | B2 |
10555688 | Berme et al. | Feb 2020 | B1 |
10610719 | Wehrell | Apr 2020 | B2 |
10646153 | Berme et al. | May 2020 | B1 |
10722114 | Berme et al. | Jul 2020 | B1 |
10736545 | Berme et al. | Aug 2020 | B1 |
10765936 | Berme et al. | Sep 2020 | B2 |
10803990 | Wilson et al. | Oct 2020 | B1 |
10828524 | Birgen | Nov 2020 | B1 |
10853970 | Akbas et al. | Dec 2020 | B1 |
10856796 | Berme et al. | Dec 2020 | B1 |
10860843 | Berme et al. | Dec 2020 | B1 |
10945599 | Berme et al. | Mar 2021 | B1 |
10966606 | Berme | Apr 2021 | B1 |
11033453 | Berme et al. | Jun 2021 | B1 |
11052288 | Berme et al. | Jul 2021 | B1 |
11054325 | Berme et al. | Jul 2021 | B2 |
11074711 | Akbas et al. | Jul 2021 | B1 |
11097154 | Berme et al. | Aug 2021 | B1 |
11158422 | Wilson et al. | Oct 2021 | B1 |
11182924 | Akbas et al. | Nov 2021 | B1 |
11262231 | Berme et al. | Mar 2022 | B1 |
11262258 | Berme et al. | Mar 2022 | B2 |
11301045 | Berme et al. | Apr 2022 | B1 |
11311209 | Berme et al. | Apr 2022 | B1 |
11321868 | Akbas et al. | May 2022 | B1 |
11337606 | Berme et al. | May 2022 | B1 |
11348279 | Akbas et al. | May 2022 | B1 |
20020025891 | CoIosky, Jr. | Feb 2002 | A1 |
20030216656 | Berme et al. | Nov 2003 | A1 |
20080228110 | Berme | Sep 2008 | A1 |
20110277562 | Berme | Nov 2011 | A1 |
20120266648 | Berme et al. | Oct 2012 | A1 |
20120271565 | Berme et al. | Oct 2012 | A1 |
20150096387 | Berme et al. | Apr 2015 | A1 |
20150367171 | Truong | Dec 2015 | A1 |
20160043200 | Mihara | Feb 2016 | A1 |
20160245711 | Berme et al. | Aug 2016 | A1 |
20160325131 | Wehrell | Nov 2016 | A1 |
20160334288 | Berme et al. | Nov 2016 | A1 |
20160338896 | Gruben | Nov 2016 | A1 |
20170027803 | Agrawal | Feb 2017 | A1 |
20170312582 | Root, Jr. | Nov 2017 | A1 |
20180024015 | Berme et al. | Jan 2018 | A1 |
20180214729 | Rubin | Aug 2018 | A1 |
20180264306 | Agrawal | Sep 2018 | A1 |
20180361189 | Gupta | Dec 2018 | A1 |
20190046830 | Chiavegato | Feb 2019 | A1 |
20190078951 | Berme et al. | Mar 2019 | A1 |
20190344123 | Rubin | Nov 2019 | A1 |
20200086163 | Karys | Mar 2020 | A1 |
20200139229 | Berme et al. | May 2020 | A1 |
20200222266 | Gordon | Jul 2020 | A1 |
20200408625 | Berme et al. | Dec 2020 | A1 |
20210113418 | Matsumoto | Apr 2021 | A1 |
20210333163 | Berme et al. | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
204469114 | Jul 2015 | CN |
100981703 | Sep 2010 | KR |
WO-2008152627 | Dec 2008 | WO |
Number | Date | Country | |
---|---|---|---|
62965844 | Jan 2020 | US |