This non-provisional application claims priority to and benefit of, under 35 U.S.C. § 119(a), Patent Application No. 201621390583.4 filed in P.R. China on Dec. 19, 2016, the entire content of which is hereby incorporated by reference.
This invention relates to a cable apparatus, and more particularly to a high frequency cable apparatus that transmits high speed differential signals.
Currently, cable signal transmission apparatuses are effective carriers of signal transmission of electronic device connectors. With the intelligentized development of electronic devices, processing capabilities of chips thereof also become stronger, and requirements for signal transmission rates of the cable signal transmission apparatuses are also higher. An existing cable for transmitting high frequency signals includes a conductor wrapped with an insulating body outside and a shield tape that wraps adjacent two of the insulation bodies at the same time. The conductor has a soldering portion exposed out of the shield tape, and is correspondingly soldered to a high speed differential pair terminal group of a connector, so that the conductor can transmit high speed signals of differential signal terminals. However, the soldering portion is exposed out of the shield tape, and consequently, the shield tape cannot shield crosstalk at the soldering portion. When high speed signals pass through the soldering portion, crosstalk between adjacent differential signal pairs is inevitably caused and transmission quality of the cable signals is reduced. As a result, the cable cannot provide capability of stable signal transmission at a higher speed, and a bottleneck of using the cable exists.
Therefore, a heretofore unaddressed need exists in the art to address the aforementioned deficiencies and inadequacies.
In one aspect, the present invention relates to a cable apparatus that has good shield performance, avoids high frequency signal transmission crosstalk, and can transmit high frequency signals stably.
In certain embodiments, a cable apparatus includes a circuit board, an insulating body located in front of the circuit board, a pair of differential signal terminals retained in the insulating body, a cable located in front of the insulating body, and a shielding shell, fixed to the insulating body. The circuit board has multiple ground pads and signal pads. Each of the two sides of adjacent two of the signal pads is provided with one of the pads. One end of each of the differential signal terminals is provided with an elastic portion that extends out of the insulating body and conducts with the signal pad, and the other end of each of the differential signal terminals is provided with a contacting portion exposed on a surface of the insulating body. The cable has two cable cores, two insulating layers respectively wrapping the cable cores, and a shielding layer wrapping the two insulating layers. Each of the cable cores is correspondingly connected to one of the contacting portions. One end of the shielding shell is covered on the contacting portions and conducts with the shielding layer, and the other end of the shielding shell is covered on the elastic portions and is connected to the ground pads.
In certain embodiments, only two of the signal pads are provided between any two adjacent ground pads on a same surface of the circuit board.
In certain embodiments, the shielding shell has a top wall and two side walls formed by bending and extension of opposite two sides of the top wall. One end of the top wall is soldered to the shielding layer, and an edge of the other end bends and extends to form a rear wall. The rear wall is conductively connected to the ground pad. An edge of each of the side walls extends to form a shrapnel to urge against the ground pad.
In certain embodiments, a location where the shrapnel urges against the ground pad is a first contact location, a location where the elastic portion urges against the signal pad is a second contacting portion, and the first contact location and the second contact location are arranged in one row.
In certain embodiments, the shrapnel includes a connecting portion formed by backward extension from the side wall toward the circuit board, and a guiding portion formed by further extension toward a direction away from the circuit board. The guiding portion urges against the ground pad, and there is a gap between the guiding portion and the side wall.
In certain embodiments, an included angle between the guiding portion and the connecting portion is an obtuse angle to make the shrapnel hook-shaped.
In certain embodiments, the opposite two sides of the top wall further bend and extend to form two extending portions. The extending portions are located between the rear wall and the side walls. An edge of the extending portion is closer to the circuit board than the edge of the side wall, and does not contact the circuit board.
In certain embodiments, the extending portions are not connected to the rear wall.
In certain embodiments, the shielding layer is a copper foil, and longitudinally wraps the two insulation layers at the same time along a direction parallel to an axis of the cable core.
In certain embodiments, the ground pads are located on an upper surface and a lower surface of the circuit board. Each of the ground pads is connected to one of the shielding shells. Two of the ground pads aligned in a vertical direction are connected by means of at least two conductive paths, and the two conductive paths are located between two of the shielding shells.
In certain embodiments, at least one of the conductive paths directly faces a location where the shielding shell contacts the ground pad.
In certain embodiments, the shielding shell has two side walls. An edge of each of the side walls tears and extends to form a shrapnel to urge against the ground pad. One of the conductive paths directly faces a location where the shrapnel contacts the ground pad.
In certain embodiments, the insulating body includes a first body and a second body buckled with the first body. There are two rows of the differential signal terminals that are symmetrically arranged. The two rows of the differential signal terminals are separately integrally formed on the first body and the second body. The differential signal terminals in an upper row have the contacting portions exposed on a surface of the first body and soldered to the cable cores, and the differential signal terminals in a lower row have the contacting portions exposed on a surface of the second body and soldered to the cable cores.
In certain embodiments, two plastic blocks are respectively covered on the contacting portions in the upper row and the contacting portions in the lower row, and are integrally formed with the insulating body and the shielding shell.
In certain embodiments, the shielding shell is connected to the shielding layer by means of soldering.
In certain embodiments, two adjacent shielding shells and two pairs of the differential signal terminals are provided on a same surface of the circuit board. Each of the shielding shells is correspondingly covered on one pair of the differential signal terminals. Adjacent side walls of the two shielding shells are attached to each other and are connected to one of the ground pads.
In certain embodiments, two first slots and a second slot located between the two first slots are provided on the surface of the insulating body. A width of the second slot is greater than that of the first slot. The first slot correspondingly accommodates one side wall of the shielding shell. The second slot accommodates two side walls that are attached to each other of the two adjacent shielding shells at the same time.
Compared with the related art, certain embodiments of the present invention have the following beneficial advantages:
By means of the cable apparatus of this invention, the two cable cores are correspondingly soldered to one pair of the differential signal terminals; the shielding layer wraps the two cable cores; one end of the shielding shell is covered on the contacting portions and conducts with the shielding layer; and the other opposite end is covered on the elastic portions and is connected to the ground pad to form entire shielding coverage from front to back of the differential signal terminals and the cable cores, so as to ensure that an entire path of signal transmission has good electromagnetic shielding isolation, so that the cable apparatus can be adjusted to transmission of signals with higher rates.
These and other aspects of the present invention will become apparent from the following description of the preferred embodiment taken in conjunction with the following drawings, although variations and modifications therein may be effected without departing from the spirit and scope of the novel concepts of the disclosure.
The accompanying drawings illustrate one or more embodiments of the invention and together with the written description, serve to explain the principles of the invention. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment.
The present invention is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Various embodiments of the invention are now described in detail. Referring to the drawings, like numbers indicate like components throughout the views. As used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Moreover, titles or subtitles may be used in the specification for the convenience of a reader, which shall have no influence on the scope of the present invention.
It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower”, can therefore, encompasses both an orientation of “lower” and “upper,” depending of the particular orientation of the figure. Similarly, if the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
As used herein, “around”, “about” or “approximately” shall generally mean within 20 percent, preferably within 10 percent, and more preferably within 5 percent of a given value or range. Numerical quantities given herein are approximate, meaning that the term “around”, “about” or “approximately” can be inferred if not expressly stated.
As used herein, the terms “comprising”, “including”, “carrying”, “having”, “containing”, “involving”, and the like are to be understood to be open-ended, i.e., to mean including but not limited to.
The description will be made as to the embodiments of the present invention in conjunction with the accompanying drawings in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
In this embodiment, the upper and lower surfaces of the circuit board 1 are respectively provided with two of the shielding shells 5, two pairs of the differential signal terminals 3, and two of the cables 4. In other embodiments, quantities of the pairs of the differential signal terminals 3, the shielding shells 5, and the cables 4 can be configured according to actual requirements, and this invention is not limited thereto.
In summary, the cable apparatus 100 according to certain embodiments of the present invention has the following beneficial advantages:
(1) One end of the shielding shell 5 is covered on the contacting portions 32 and conducts with the shielding layer 43, and the other opposite end is covered on the elastic portions 32 and is connected to the ground pad 11 to form entire shielding coverage from front to back of the differential signal terminals 3 and the cable cores 41, so as to ensure that an entire path of signal transmission has good electromagnetic shielding isolation, so that the cable apparatus 100 can be adjusted to transmission of signals with higher rates.
(2) The rear wall 53 and the shrapnel 521 urge against the shielding shell 5 at the same time to be grounded, so that multipoint grounding is formed for the shielding shell 5, and a crosstalk isolation effect is more stable.
(3) Two of the ground pads 11 symmetrically arranged on the upper and lower surfaces of the circuit board 1 have two conductive paths 13 conducted with each other, and the two conductive paths 13 are both located between two shielding shells 5 that vertically correspond to each other, so as to form an entire loop between the upper and lower shielding shells 5 and between the upper and lower ground pads 11, so that a shielding effect of the shielding shell 5 is optimal.
(4) One of the two conductive paths 13 directly faces a point where the shrapnel 521 contacts the ground pad 11. Such a smart design enables the shield loop between the upper and lower shielding shells 5 and between the upper and lower ground pads 11 to be optimized.
(5) The first contact location A and the second contact location B are arranged in one row, so as to ensure synchronism of stress applied to the circuit board 1 during plug connection, thereby extending service life of the cable apparatus 100.
The foregoing description of the exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments are chosen and described in order to explain the principles of the invention and their practical application so as to activate others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.
Number | Date | Country | Kind |
---|---|---|---|
201621390583.4 | Dec 2016 | CN | national |