The present disclosure is related to consumer goods and, more particularly, to methods, systems, products, features, services, and other elements directed to media playback or some aspect thereof.
Options for accessing and listening to digital audio were limited until in 2002, when SONOS, Inc. began development of a new type of playback system. Sonos then filed one of its first patent applications in 2003, entitled “Method for Synchronizing Audio Playback between Multiple Networked Devices,” and began offering its first media playback systems for sale in 2005. The Sonos Wireless Home Sound System enables people to experience music from many sources via one or more networked playback devices. Through a software control application installed on a controller (e.g., smartphone, tablet, computer, voice input device), one can play what she wants in any room having a networked playback device. Media content (e.g., songs, podcasts, video sound) can be streamed to playback devices such that each room with a playback device can play back corresponding different media content. In addition, rooms can be grouped together for synchronous playback of the same media content, and/or the same media content can be heard in all rooms synchronously.
Features, aspects, and advantages of the presently disclosed technology may be better understood with regard to the following description, appended claims, and accompanying drawings, as listed below. A person skilled in the relevant art will understand that the features shown in the drawings are for purposes of illustrations, and variations, including different and/or additional features and arrangements thereof, are possible.
The drawings are for the purpose of illustrating example examples, but those of ordinary skill in the art will understand that the technology disclosed herein is not limited to the arrangements and/or instrumentality shown in the drawings.
Headphone devices often include first and second earpieces that are connected by a headband configured to extend over a user's head while wearing the headphones. Each earpiece may house a single audio transducer, and the headband may house a headbow cable or cable assembly extending within the headband and between the two earpieces. Conventional wireless headphone devices often dispose nearly all of the electronic components and the battery within a single earpiece. Thus, the headbow cable extending between the two earpieces is relatively simple because the cable need only send an audio signal to the remote earpiece to drive an audio transducer therein.
More complex wireless headphone devices may offer additional functionality. For example, such devices may support multiple wireless communications protocols (e.g., both BLUETOOTH and WIFI), along with the ability to receive voice input and perform active noise cancellation, among other functions. These additional features, however, may require distributing the various electronic components among both earpieces, rather than merely grouping them all together in a single earpiece as in conventional designs. For example, a robust WIFI communication system may employ multiple antennas that are spatially diverse including a first antenna disposed in one earpiece and a second antenna disposed in the other earpiece. Examples of such a robust WIFI communication system are described in U.S. patent application Ser. No. 16/844,682, titled “Spatial Antenna Diversity Techniques,” filed on Apr. 9, 2020, which is incorporated herein by reference in its entirety. Additionally, both earpieces can include one or more microphones for performing active noise cancellation and/or for detecting voice input.
As a result of the spatial distribution of certain electronic components, the headbow cable assembly may need to support a wider range of signals than in conventional designs. For example, a cable assembly may include one or more conductors configured to carry wireless signals received via a remote antenna in one earpiece to a wireless transceiver disposed within the other earpiece, while also including additional cables and/or conductors separate and apart from the components employed for the received wireless signals. For example, additional electronic components may be integrated into the earpiece that is remote from the power source and processing circuitry, such as one or more microphones for performing active noise cancellation and/or for detecting voice input. In this example, the cable assembly may comprise additional conductors to carry audio input from the microphones in the earpiece that is remote from the processing circuitry.
To support the increased the number of signals traversing the headband via a headbow cable assembly, a plurality of individual conductors need to be disposed within the cable assembly. To maintain acceptable dimensions and flexibility for housing within a headband, the conductors may be tightly grouped together into an outer jacket. However, this arrangement of individual conductors can lead to poor electrical performance of certain components. For example, electrical signals in one conductor may generate electromagnetic interference (e.g., via electromagnetic induction) in another conductor (e.g., distorting the electrical signals carried by the other conductor). Such interference is particularly problematic to the operation of analog sensors (e.g., analog microphones, analog strain gauge(s), analog light sensor(s) (such as light dependent resistor(s)), analog pressure sensor(s), analog temperature sensor(s), analog accelerometer(s), etc.), which can significantly reduce the efficacy of features (e.g., active noise cancellation) that may rely on such sensors. In some examples, electromagnetic interference can generate undesirable audible artifacts.
In some instances, analog sensor signals can be processed to remove or otherwise compensate for noise generated due to electromagnetic interference. However, such compensation is rendered more difficult when the interference is intermittent, as in the case of a power conductor carrying current from a power source in one earpiece to a wireless transceiver in the opposite earpiece. Because the wireless transceiver consumes significant current, and because its current draw may come in brief bursts or peaks of high current draw followed by periods of low current draw, electromagnetic interference caused by power conductors driving wireless communication can be particularly difficult to address with processing techniques alone.
Embodiments of the present technology address these and other challenges by providing a cable assembly in which certain conductors are shielded from one another to reduce or eliminate the risk of electrical interference between the conductors. For example, a shield in the form of one or more grounded conductors extending helically around an active conductor can reduce electromagnetic interference induced within that active conductor as well as reducing electromagnetic interference induced within adjacent conductors. In some examples, such a shield can take the form of a spiral shield extending helically around analog microphone conductor(s) along at least a portion of their lengths. Additionally or alternatively, a spiral shield can extend around power conductor(s) along at least a portion of their lengths. As a result of such an arrangement, the electromagnetic interference generated within the analog microphone conductor(s) (or other conductors) via the power conductor(s) is reduced. Additionally, the use of such spiral shielding can achieve a desirably compact arrangement, as opposed to alternative solutions to the problem of electromagnetic interference, such as arranging conductors in twisted pairs.
In addition to the problems associated with electromagnetic interference, the inclusion of an increased number of conductors within a headbow cable assembly presents challenges for manufacturability of the assembled headphone device. In particular, as each individual conductor must be coupled to its corresponding terminal within each earpiece, a large number of conductors (e.g., 16 conductors) present a challenging case for properly aligning and connecting individual conductors of the cable assembly to the respective terminals within each earpiece. Embodiments of the present technology address these and other problems by providing a termination assembly that maintains respective ends of the individual conductors of the cable assembly in appropriate positions for connecting to electrical contacts of the electronics disposed within each earpiece.
While many aspects of the present technology are described herein with respect to headphone devices, the cable and termination assemblies described herein can be beneficially incorporated into other playback and non-playback devices. For example, aspects of the present technology can be used with any device includes at least one antenna for wireless communication that is remote from the wireless transceiver and power source to which it is coupled.
While some examples described herein may refer to functions performed by given actors such as “users,” “listeners,” and/or other entities, it should be understood that this is for purposes of explanation only. The claims should not be interpreted to require action by any such example actor unless explicitly required by the language of the claims themselves.
In the Figures, identical reference numbers typically identify generally similar, and/or identical, elements. To facilitate the discussion of any particular element, the most significant digit or digits of a reference number refers to the Figure in which that element is first introduced. For example, element 110a is first introduced and discussed with reference to
As used herein the term “playback device” can generally refer to a network device configured to receive, process, and output data of a media playback system. For example, a playback device can be a network device that receives and processes audio content. In some examples, a playback device includes one or more transducers or speakers powered by one or more amplifiers. In other examples, however, a playback device includes one of (or neither of) the speaker and the amplifier. For instance, a playback device can comprise one or more amplifiers configured to drive one or more speakers external to the playback device via a corresponding wire or cable.
Moreover, as used herein the term NMD (i.e., a “network microphone device”) can generally refer to a network device that is configured for audio detection. In some examples, an NMD is a stand-alone device configured primarily for audio detection. In other examples, an NMD is incorporated into a playback device (or vice versa).
The term “control device” can generally refer to a network device configured to perform functions relevant to facilitating user access, control, and/or configuration of the media playback system 100.
Each of the playback devices 110 is configured to receive audio signals or data from one or more media sources (e.g., one or more remote servers, one or more local devices) and play back the received audio signals or data as sound. The one or more NMDs 120 are configured to receive spoken word commands, and the one or more control devices 130 are configured to receive user input. In response to the received spoken word commands and/or user input, the media playback system 100 can play back audio via one or more of the playback devices 110. In certain examples, the playback devices 110 are configured to commence playback of media content in response to a trigger. For instance, one or more of the playback devices 110 can be configured to play back a morning playlist upon detection of an associated trigger condition (e.g., presence of a user in a kitchen, detection of a coffee machine operation). In some examples, for instance, the media playback system 100 is configured to play back audio from a first playback device (e.g., the playback device 110a) in synchrony with a second playback device (e.g., the playback device 110b). Interactions between the playback devices 110, NMDs 120, and/or control devices 130 of the media playback system 100 configured in accordance with the various examples of the disclosure are described in greater detail below with respect to
In the illustrated example of
The media playback system 100 can comprise one or more playback zones, some of which may correspond to the rooms in the environment 101. The media playback system 100 can be established with one or more playback zones, after which additional zones may be added, or removed to form, for example, the configuration shown in
In the illustrated example of
In some aspects, one or more of the playback zones in the environment 101 may each be playing different audio content. For instance, a user may be grilling on the patio 101i and listening to hip hop music being played by the playback device 110c while another user is preparing food in the kitchen 101h and listening to classical music played by the playback device 110b. In another example, a playback zone may play the same audio content in synchrony with another playback zone. For instance, the user may be in the office 101e listening to the playback device 110f playing back the same hip-hop music being played back by playback device 110c on the patio 101i. In some aspects, the playback devices 110c and 110f play back the hip-hop music in synchrony such that the user perceives that the audio content is being played seamlessly (or at least substantially seamlessly) while moving between different playback zones. Additional details regarding audio playback synchronization among playback devices and/or zones can be found, for example, in U.S. Pat. No. 8,234,395 entitled, “System and method for synchronizing operations among a plurality of independently clocked digital data processing devices,” which is incorporated herein by reference in its entirety.
a. Suitable Media Playback System
The links 103 can comprise, for example, one or more wired networks, one or more wireless networks, one or more wide area networks (WAN), one or more local area networks (LAN), one or more personal area networks (PAN), one or more telecommunication networks (e.g., one or more Global System for Mobiles (GSM) networks, Code Division Multiple Access (CDMA) networks, Long-Term Evolution (LTE) networks, 5G communication network networks, and/or other suitable data transmission protocol networks), etc. The cloud network 102 is configured to deliver media content (e.g., audio content, video content, photographs, social media content) to the media playback system 100 in response to a request transmitted from the media playback system 100 via the links 103. In some examples, the cloud network 102 is further configured to receive data (e.g. voice input data) from the media playback system 100 and correspondingly transmit commands and/or media content to the media playback system 100.
The cloud network 102 comprises computing devices 106 (identified separately as a first computing device 106a, a second computing device 106b, and a third computing device 106c). The computing devices 106 can comprise individual computers or servers, such as, for example, a media streaming service server storing audio and/or other media content, a voice service server, a social media server, a media playback system control server, etc. In some examples, one or more of the computing devices 106 comprise modules of a single computer or server. In certain examples, one or more of the computing devices 106 comprise one or more modules, computers, and/or servers. Moreover, while the cloud network 102 is described above in the context of a single cloud network, in some examples the cloud network 102 comprises a plurality of cloud networks comprising communicatively coupled computing devices. Furthermore, while the cloud network 102 is shown in
The media playback system 100 is configured to receive media content from the networks 102 via the links 103. The received media content can comprise, for example, a Uniform Resource Identifier (URI) and/or a Uniform Resource Locator (URL). For instance, in some examples, the media playback system 100 can stream, download, or otherwise obtain data from a URI or a URL corresponding to the received media content. A network 104 communicatively couples the links 103 and at least a portion of the devices (e.g., one or more of the playback devices 110, NMDs 120, and/or control devices 130) of the media playback system 100. The network 104 can include, for example, a wireless network (e.g., a WIFI network, a BLUETOOTH, a Z-Wave network, a ZigBee, and/or other suitable wireless communication protocol network) and/or a wired network (e.g., a network comprising Ethernet, Universal Serial Bus (USB), and/or another suitable wired communication). As those of ordinary skill in the art will appreciate, as used herein, “WIFI” can refer to several different communication protocols including, for example, Institute of Electrical and Electronics Engineers (IEEE) 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.11ac, 802.11ad, 802.11af, 802.11ah, 802.11ai, 802.11aj, 802.11aq, 802.11ax, 802.11ay, 802.15, etc. transmitted at 2.4 Gigahertz (GHz), 5 GHz, and/or another suitable frequency.
In some examples, the network 104 comprises a dedicated communication network that the media playback system 100 uses to transmit messages between individual devices and/or to transmit media content to and from media content sources (e.g., one or more of the computing devices 106). In certain examples, the network 104 is configured to be accessible only to devices in the media playback system 100, thereby reducing interference and competition with other household devices. In other examples, however, the network 104 comprises an existing household communication network (e.g., a household network). In some examples, the links 103 and the network 104 comprise one or more of the same networks. In some aspects, for example, the links 103 and the network 104 comprise a telecommunication network (e.g., an LTE network, a 5G network). Moreover, in some examples, the media playback system 100 is implemented without the network 104, and devices comprising the media playback system 100 can communicate with each other, for example, via one or more direct connections, PANs, telecommunication networks, and/or other suitable communication links.
In some examples, audio content sources may be regularly added or removed from the media playback system 100. In some examples, for instance, the media playback system 100 performs an indexing of media items when one or more media content sources are updated, added to, and/or removed from the media playback system 100. The media playback system 100 can scan identifiable media items in some or all folders and/or directories accessible to the playback devices 110, and generate or update a media content database comprising metadata (e.g., title, artist, album, track length) and other associated information (e.g., URIs, URLs) for each identifiable media item found. In some examples, for instance, the media content database is stored on one or more of the playback devices 110, network microphone devices 120, and/or control devices 130.
In the illustrated example of
The media playback system 100 includes the NMDs 120a and 120d, each comprising one or more microphones configured to receive voice utterances from a user. In the illustrated example of
b. Suitable Playback Devices
The playback device 110a, for example, can receive media content (e.g., audio content comprising music and/or other sounds) from a local audio source 105 via the input/output 111 (e.g., a cable, a wire, a PAN, a BLUETOOTH connection, an ad hoc wired or wireless communication network, and/or another suitable communication link). The local audio source 105 can comprise, for example, a mobile device (e.g., a smartphone, a tablet, a laptop computer) or another suitable audio component (e.g., a television, a desktop computer, an amplifier, a phonograph, a Blu-ray player, a memory storing digital media files). In some aspects, the local audio source 105 includes local music libraries on a smartphone, a computer, a networked-attached storage (NAS), and/or another suitable device configured to store media files. In certain examples, one or more of the playback devices 110, NMDs 120, and/or control devices 130 comprise the local audio source 105. In other examples, however, the media playback system omits the local audio source 105 altogether. In some examples, the playback device 110a does not include an input/output 111 and receives all audio content via the network 104.
The playback device 110a further comprises electronics 112, a user interface 113 (e.g., one or more buttons, knobs, dials, touch-sensitive surfaces, displays, touchscreens), and one or more transducers 114 (referred to hereinafter as “the transducers 114”). The electronics 112 is configured to receive audio from an audio source (e.g., the local audio source 105) via the input/output 111, one or more of the computing devices 106a-c via the network 104 (
In the illustrated example of
The processors 112a can comprise clock-driven computing component(s) configured to process data, and the memory 112b can comprise a computer-readable medium (e.g., a tangible, non-transitory computer-readable medium, data storage loaded with one or more of the software components 112c) configured to store instructions for performing various operations and/or functions. The processors 112a are configured to execute the instructions stored on the memory 112b to perform one or more of the operations. The operations can include, for example, causing the playback device 110a to retrieve audio data from an audio source (e.g., one or more of the computing devices 106a-c (
The processors 112a can be further configured to perform operations causing the playback device 110a to synchronize playback of audio content with another of the one or more playback devices 110. As those of ordinary skill in the art will appreciate, during synchronous playback of audio content on a plurality of playback devices, a listener will preferably be unable to perceive time-delay differences between playback of the audio content by the playback device 110a and the other one or more other playback devices 110. Additional details regarding audio playback synchronization among playback devices can be found, for example, in U.S. Pat. No. 8,234,395, which was incorporated by reference above.
In some examples, the memory 112b is further configured to store data associated with the playback device 110a, such as one or more zones and/or zone groups of which the playback device 110a is a member, audio sources accessible to the playback device 110a, and/or a playback queue that the playback device 110a (and/or another of the one or more playback devices) can be associated with. The stored data can comprise one or more state variables that are periodically updated and used to describe a state of the playback device 110a. The memory 112b can also include data associated with a state of one or more of the other devices (e.g., the playback devices 110, NMDs 120, control devices 130) of the media playback system 100. In some aspects, for example, the state data is shared during predetermined intervals of time (e.g., every 5 seconds, every 10 seconds, every 60 seconds) among at least a portion of the devices of the media playback system 100, so that one or more of the devices have the most recent data associated with the media playback system 100.
The network interface 112d is configured to facilitate a transmission of data between the playback device 110a and one or more other devices on a data network such as, for example, the links 103 and/or the network 104 (
In the illustrated example of
The audio components 112g are configured to process and/or filter data comprising media content received by the electronics 112 (e.g., via the input/output 111 and/or the network interface 112d) to produce output audio signals. In some examples, the audio processing components 112g comprise, for example, one or more digital-to-analog converters (DAC), audio preprocessing components, audio enhancement components, a digital signal processors (DSPs), and/or other suitable audio processing components, modules, circuits, etc. In certain examples, one or more of the audio processing components 112g can comprise one or more subcomponents of the processors 112a. In some examples, the electronics 112 omits the audio processing components 112g. In some aspects, for example, the processors 112a execute instructions stored on the memory 112b to perform audio processing operations to produce the output audio signals.
The amplifiers 112h are configured to receive and amplify the audio output signals produced by the audio processing components 112g and/or the processors 112a. The amplifiers 112h can comprise electronic devices and/or components configured to amplify audio signals to levels sufficient for driving one or more of the transducers 114. In some examples, for instance, the amplifiers 112h include one or more switching or class-D power amplifiers. In other examples, however, the amplifiers include one or more other types of power amplifiers (e.g., linear gain power amplifiers, class-A amplifiers, class-B amplifiers, class-AB amplifiers, class-C amplifiers, class-D amplifiers, class-E amplifiers, class-F amplifiers, class-G and/or class H amplifiers, and/or another suitable type of power amplifier). In certain examples, the amplifiers 112h comprise a suitable combination of two or more of the foregoing types of power amplifiers. Moreover, in some examples, individual ones of the amplifiers 112h correspond to individual ones of the transducers 114. In other examples, however, the electronics 112 includes a single one of the amplifiers 112h configured to output amplified audio signals to a plurality of the transducers 114. In some other examples, the electronics 112 omits the amplifiers 112h.
The transducers 114 (e.g., one or more speakers and/or speaker drivers) receive the amplified audio signals from the amplifier 112h and render or output the amplified audio signals as sound (e.g., audible sound waves having a frequency between about 20 Hertz (Hz) and 20 kilohertz (kHz)). In some examples, the transducers 114 can comprise a single transducer. In other examples, however, the transducers 114 comprise a plurality of audio transducers. In some examples, the transducers 114 comprise more than one type of transducer. For example, the transducers 114 can include one or more low frequency transducers (e.g., subwoofers, woofers), mid-range frequency transducers (e.g., mid-range transducers, mid-woofers), and one or more high frequency transducers (e.g., one or more tweeters). As used herein, “low frequency” can generally refer to audible frequencies below about 500 Hz, “mid-range frequency” can generally refer to audible frequencies between about 500 Hz and about 2 kHz, and “high frequency” can generally refer to audible frequencies above 2 kHz. In certain examples, however, one or more of the transducers 114 comprise transducers that do not adhere to the foregoing frequency ranges. For example, one of the transducers 114 may comprise a mid-woofer transducer configured to output sound at frequencies between about 200 Hz and about 5 kHz.
By way of illustration, SONOS, Inc. presently offers (or has offered) for sale certain playback devices including, for example, a “SONOS ONE,” “PLAY:1,” “PLAY:3,” “PLAY:5,” “PLAYBAR,” “PLAYBASE,” “CONNECT:AMP,” “CONNECT,” and “SUB.” Other suitable playback devices may additionally or alternatively be used to implement the playback devices of example examples disclosed herein. Additionally, one of ordinary skilled in the art will appreciate that a playback device is not limited to the examples described herein or to SONOS product offerings.
For instance, one or more playback devices 110 may comprise wired or wireless headphone devices (e.g., over-the-ear headphones, on-ear headphones, in-ear earphones). In some examples, the headphone device may be configured to operate in various operational modes dependent upon media-type and/or synchronized devices (e.g., music, home theater, etc.). For example, one mode may be a synchronized playback mode where headphone device plays back audio content that is synchronized with playback of content output by another device. In one example, the synchronized playback mode includes a first headphone device playing back audio that is synchronized with a television set's playback of video corresponding to the audio that the first headphone device is playing back. In some examples, the audio may be home theater or surround sound audio. In another example, the synchronized playback mode includes the first headphone device playing back audio that is synchronized with a second headphone device's playback of the same audio that the first headphone device is playing. In yet another example, the synchronized playback mode includes the first playback device playing back audio that is synchronized with both (i) a television set's playback of video corresponding to the audio that the first headphone device is playing back and (ii) a second headphone device's playback of the same audio that the first headphone device is playing. Another mode may be a non-synchronized playback mode where the first headphone device plays back audio content that is not synchronized with content output by other devices (e.g., headphone device playing only audio content without synchronization to other devices).
Additionally or alternatively, operating a headphone device in a synchronized playback mode, such as a home theater mode, may involve pairing the headphone device with other playback devices described herein. In these examples, the headphone device may, for example, be grouped in a playback zone. An example playback scheme may involve muting the other playback devices in the playback zone while the headphone device is paired. For example, when the headphone device is paired in a playback zone with a home theater system comprising multiple playback devices (e.g., a sound bar, a subwoofer, and a plurality of satellite speakers), the other multiple playback devices may not play back home theater audio while the headphones are paired with the playback zone and playing back the home theater audio. In operation, the other multiple playback devices may mute their playback of the home theater audio, or alternatively, a home theater controller (e.g., a soundbar, surround sound processor, or other device configured to coordinate surround sound playback of the home theater audio among the multiple playback devices) may simply not transmit or otherwise provide the home theater audio information to the multiple playback devices for playback while the headphone is paired in the playback zone and configured to playback the home theater audio. In some examples, the surround sound controller transmits or otherwise provides the home theater audio to the headphones and coordinates the headphone's synchronized playback of the home theater audio with the play back of the home theater audio's corresponding video by the television or other display screen.
Further, in some examples, multiple headphone devices may be paired in the playback zone. In these examples, a playback scheme may involve outputting audio content only on the paired headphone devices and muting the remaining playback devices in the playback zone. For example, when a first headphone device and a second headphone device are both paired in the playback zone with the home theater system comprising the multiple playback devices (e.g., the sound bar, subwoofer, and plurality of satellite speakers), the other multiple playback devices may not play back the home theater audio while the first and second headphones are paired with the playback zone and playing back the home theater audio. As described above, the other multiple playback devices may mute their playback of the home theater audio, or alternatively, the home theater controller may simply not transmit or otherwise provide the home theater audio information to the multiple playback devices for playback while the first and second headphones are paired in the playback zone and configured to playback the home theater audio. In some examples where multiple headphones are paired with the playback zone, the surround sound controller transmits or otherwise provides the home theater audio to the first and second headphones and coordinates the synchronized playback of the home theater audio by the first and second headphones with each other and with the play back of the home theater audio's corresponding video by the television or other display screen.
In other examples, one or more of the playback devices 110 comprise a docking station and/or an interface configured to interact with a docking station for personal mobile media playback devices. In certain examples, a playback device may be integral to another device or component such as a television, a lighting fixture, or some other device for indoor or outdoor use. In some examples, a playback device omits a user interface and/or one or more transducers. For example,
c. Suitable Network Microphone Devices (NMDs)
In some examples, an NMD can be integrated into a playback device.
Referring again to
After detecting the activation word, voice processing 124 monitors the microphone data for an accompanying user request in the voice input. The user request may include, for example, a command to control a third-party device, such as a thermostat (e.g., NEST® thermostat), an illumination device (e.g., a PHILIPS HUE® lighting device), or a media playback device (e.g., a Sonos® playback device). For example, a user might speak the activation word “Alexa” followed by the utterance “set the thermostat to 68 degrees” to set a temperature in a home (e.g., the environment 101 of
d. Suitable Control Devices
The control device 130a includes electronics 132, a user interface 133, one or more speakers 134, and one or more microphones 135. The electronics 132 comprise one or more processors 132a (referred to hereinafter as “the processors 132a”), a memory 132b, software components 132c, and a network interface 132d. The processor 132a can be configured to perform functions relevant to facilitating user access, control, and configuration of the media playback system 100. The memory 132b can comprise data storage that can be loaded with one or more of the software components executable by the processor 112a to perform those functions. The software components 132c can comprise applications and/or other executable software configured to facilitate control of the media playback system 100. The memory 112b can be configured to store, for example, the software components 132c, media playback system controller application software, and/or other data associated with the media playback system 100 and the user.
The network interface 132d is configured to facilitate network communications between the control device 130a and one or more other devices in the media playback system 100, and/or one or more remote devices. In some examples, the network interface 132d is configured to operate according to one or more suitable communication industry standards (e.g., infrared, radio, wired standards including IEEE 802.3, wireless standards including IEEE 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac, 802.15, 4G, LTE). The network interface 132d can be configured, for example, to transmit data to and/or receive data from the playback devices 110, the NMDs 120, other ones of the control devices 130, one of the computing devices 106 of
The user interface 133 is configured to receive user input and can facilitate control of the media playback system 100. The user interface 133 includes media content art 133a (e.g., album art, lyrics, videos), a playback status indicator 133b (e.g., an elapsed and/or remaining time indicator), media content information region 133c, a playback control region 133d, and a zone indicator 133e. The media content information region 133c can include a display of relevant information (e.g., title, artist, album, genre, release year) about media content currently playing and/or media content in a queue or playlist. The playback control region 133d can include selectable (e.g., via touch input and/or via a cursor or another suitable selector) icons to cause one or more playback devices in a selected playback zone or zone group to perform playback actions such as, for example, play or pause, fast forward, rewind, skip to next, skip to previous, enter/exit shuffle mode, enter/exit repeat mode, enter/exit cross fade mode, etc. The playback control region 133d may also include selectable icons to modify equalization settings, playback volume, and/or other suitable playback actions. In the illustrated example, the user interface 133 comprises a display presented on a touch screen interface of a smartphone (e.g., an iPhone™, an Android phone). In some examples, however, user interfaces of varying formats, styles, and interactive sequences may alternatively be implemented on one or more network devices to provide comparable control access to a media playback system.
The one or more speakers 134 (e.g., one or more transducers) can be configured to output sound to the user of the control device 130a. In some examples, the one or more speakers comprise individual transducers configured to correspondingly output low frequencies, mid-range frequencies, and/or high frequencies. In some aspects, for example, the control device 130a is configured as a playback device (e.g., one of the playback devices 110). Similarly, in some examples the control device 130a is configured as an NMD (e.g., one of the NMDs 120), receiving voice commands and other sounds via the one or more microphones 135.
The one or more microphones 135 can comprise, for example, one or more condenser microphones, electret condenser microphones, dynamic microphones, and/or other suitable types of microphones or transducers. In some examples, two or more of the microphones 135 are arranged to capture location information of an audio source (e.g., voice, audible sound) and/or configured to facilitate filtering of background noise. Moreover, in certain examples, the control device 130a is configured to operate as playback device and an NMD. In other examples, however, the control device 130a omits the one or more speakers 134 and/or the one or more microphones 135. For instance, the control device 130a may comprise a device (e.g., a thermostat, an IoT device, a network device) comprising a portion of the electronics 132 and the user interface 133 (e.g., a touch screen) without any speakers or microphones.
In some examples, a playback device may be a headphone device. Aspects of the present disclosure relate to a headphone device including one or more analog sensors (e.g., analog microphones for performing active noise cancellation), one or more antennas and wireless transceivers, and other electronic components spatially distributed among the earpieces of the device.
As shown in
To electrically couple the components in the second earpiece 204b with components in the first earpiece 204a, the headband includes a cable assembly 210 that connects circuitry disposed within the second earpiece 204b to circuitry disposed within the second earpiece 204b. The cable assembly 210 may be constructed as, for example, a set of one or more cables that couple (e.g., electrically couple) one or more components at least partially housed by the first earpiece 204a with one or more components at least partially housed by the second earpiece 204b.
The cable assembly 210 may be constructed as, for example, a set of one or more cables (e.g., a set of one or more flexible cables). At least some of the one or more cables may comprise, for example, any combination of the following: (1) one or more conductors (e.g., one or more solid conductors, one or more stranded conductors, etc.); (2) one or more insulators; (3) one or more shields; and/or (4) one or more jackets. Example cables that may be integrated into the cable assembly 210 include: (1) coaxial cable(s); (2) twisted pair cable(s); (3) solid wire cable(s); and (4) stranded wire cable(s). As described in more detail elsewhere herein, the cable assembly 210 may be constructed in any of a variety of ways.
In some examples, the cable assembly 210 may comprise one or more coaxial cables that may electrically couple the antenna assembly 212 to the communication circuitry 218. The one or more coaxial cables may comprise, for example, any combination of the following: (1) one or more inner conductors; (2) one or more insulators at least partially disposed around the one or more inner conductors; (3) one or more metallic shields at least partially disposed around the one or more insulators; and (4) a jacket at least partially disposed around the one or more metallic shields. Although coaxial cables are advantageous because of durability, low noise, and ease of manufacture and implementation for the example headphone configuration(s) described herein, the cable assembly 210 may comprise other types of cables in place of a coaxial cable or in combination with a coaxial cable. For example, in some examples, the cable assembly 210 may include a triaxial cable, a ribbon cable, or any other cable configuration suitable for connecting electrical components in the first earpiece 204a with electrical components in the second earpiece 204b.
As shown in
In the example shown in
When equipped with microphones, the headphone device 200 can operate as an NMD configured to receive voice input from a user and correspondingly perform one or more operations based on the received voice input. Additionally or alternatively, the microphones may be used for active noise cancellation (ANC) and/or active noise reduction (ANR).
In the example shown in
The antenna assembly 212 can include one or more antennas configured to communicate over one or more wireless networks. Example wireless networks include: a WI-FI network, a BLUETOOTH network, an LTE network, a Z-Wave network, a 5G network, and a ZIGBEE network. Although a single antenna assembly 212 is shown in the first earpiece 204a, in some instances an additional one or more antenna assemblies can be disposed in the second earpiece 204b. In some examples, the antenna assembly 212 includes one or more multi-band antennas configured to operate on several frequency bands (e.g., two or more of: the 2.4 GHz band, the 5 GHz band, or the 6 GHz band), such as a dual-band inverted-F antenna (IFA). Further, in some examples, one or more antennas of the assembly 212 may be passive multi-band antennas, active multi-band antennas, or a combination thereof. In some examples, the antenna assembly 212 can include a single-band antenna configured to operate on a single frequency band (e.g., the 2.4 GHz band, the 5 GHz band, or the 6 GHz band).
It should be appreciated that the headphone device 200 may employ any number of antennas and is not limited to implementations with any particular number of antennas. For example, the headphone device 200 may comprise two antennas for communication over WIFI and/or BLUETOOTH and a third antenna for near-field communication.
In some examples, the communication circuitry 218 may comprise any of a variety of electronic components that enable transmission and/or receipt of wireless signals via the antenna assembly 212. Examples of such components include receivers, transmitters, processors, memory, amplifiers, switches, and/or filters.
The communication circuitry 218 is further configured to cause the headphone device 200 to wirelessly communicate with at least one external device, such as a control device 130 or other network device, based at least in part on the current mode of operation. The control device 130 may be, for example, a smartphone, tablet, computer, etc.
As noted previously, distributing electronic components among the earpieces 204a and 204b of the headphone device 200 can present certain challenges to operation of the headphone device 200. In particular, the cable assembly 210 must carry current from the power source 112i in the second earpiece 204b to the communication circuitry 218 in the first earpiece 204a. Because of the relatively high current levels required, there is significant risk of inducing electromagnetic interference in other conductors within the cable assembly 210. Additionally, because operation of the communication circuitry 218 may include bursts of high current levels followed by periods of low current levels, such electromagnetic interference can be difficult to remove or otherwise compensate for using filters or other processing techniques. Electromagnetic interference can be particularly problematic in the case of conductor(s) carrying signals from the analog sensors 214 in the second earpiece 204b to the processor(s) 112a in the first earpiece 204a, as noise in the analog signal can significantly degrade device performance, for example by reducing the efficacy of active noise cancellation processes that are based at least in part on input from the analog sensor(s) 214.
To reduce electromagnetic interference in the analog sensor conductors, one or more of the conductors within the cable assembly 200 can be shielded along at least a portion of its length. Such shielding can take the form of a grounded conductor (e.g., metallic wire) extending helically around one or more active conductors. In various examples, the shielding can include a spiral shield, a braid shield, a foil shield, any combination thereof, or any other suitable shielding configured to reduce or eliminate electromagnetic interference between individual conductors of the cable assembly 210.
A first termination assembly 307 is disposed at the first end portion 301, and a second termination assembly 309 is disposed at the second end portion 303. In an assembled state, the first and second termination assemblies 307, 309 can be disposed within respective earpieces of the headphone device. The cable assembly 300 includes a plurality of individual conductors 311 (e.g., 10 or more individual conductors, for example, 16 individual conductors) extending between the first termination assembly 307 and the second termination assembly 309. The individual conductors 311 can be joined together within an outer jacket 313 along at least a portion of their respective lengths. In various examples, the individual conductors 311 can assume any suitable size, construction, composition, or configuration. For example, the individual conductors 311 can take the form of twisted conductor pairs, coaxial conductors, or single stranded conductors, and may include any suitable insulation or shielding. Additionally, the cable assembly 300 can include one or more fillers such as nylon rods or other suitable material to provide a suitable fit within the jacket 313. In various examples, the jacket 313 can have an outer diameter of between about 1-6 mm, for example between about 4-6 mm, or approximately 4.5 mm.
The jacket 313 can extend over the individual conductors 311 within the intermediate portion 305 of the assembly 300. The jacket 313 can be made of any suitable material that is sufficiently flexible to accommodate bending, stretching, and other movement of the cable assembly 300. For example, the jacket 313 may be at least partially formed from one or more elastomeric materials. Examples of such elastomeric materials include rubbers (e.g., latex rubbers, silicone rubbers, nitrile rubbers, butyl rubbers, chloroprene rubbers, styrene-butadiene rubbers, and polyacrylic rubbers), thermoplastic elastomers (e.g., thermoplastic polyurethane (TPU)), and elastolefins. The intermediate portion 305 can be configured to assume a serpentine, undulating, or other such shape having a plurality of bends while at rest. For example, the intermediate portion 305 may be heat-formed into such a shape having a plurality of bends. When the cable assembly 300 is extended (e.g., by a user pulling the earpieces containing the termination assemblies downwardly away from the crown of the user's head while wearing the assembled device), the intermediate portion 305 can elongate by reducing the degree of bending or curvature within the intermediate portion without risking damage to the individual conductors 311 contained within the jacket 313. As shown in
As shown in
In some examples, at least some of the individual conductors 311 may not be coupled to terminals 317 of the termination assembly 307. For example, an antenna conductor 319 can be coupled directly to an antenna assembly without being coupled to a terminal 317 of the termination assembly 307.
In various examples, the first and second termination assemblies 307 and 309 can include one or more shielding elements which can reduce or remove electromagnetic interference between the conductors 311 and/or between the individual terminals 317. These shielding elements can include any desired shielding element and can be implemented in any desired manner. For example, the shielding elements can include guard traces, which are grounded traces disposed between the conductors 311 and the terminals 317 of the termination assemblies 307 and 309.
As noted previously, it can be beneficial to provide shielding around at least some of the conductors of the cable assembly. In particular, a power conductor which carries current from a power source in one earpiece to electronic components in the other earpiece may generate undesirable electromagnetic interference in the conductors carrying analog sensor signals (e.g., analog microphone signals). Accordingly, either or both of the power conductor(s) and the analog sensor conductor(s) can be electrically shielded from one another. In some examples, such shielding can take the form of a conductor (e.g., copper wire or other suitable metallic material) that extends helically around the power conductor(s) and/or the analog sensor conductor(s). The shielding can be, for example, a spiral shield, braid shield, foil shield, any combination thereof, or any other suitable electrical shielding. The shield(s) can be electrically grounded.
As shown in
In some examples, one or more of the elements 401-422 may be stranded conductors. For example, the conductors that transfer power and/or carry audio signals (e.g., originating from a microphone or being provided to a transducer) may be stranded to advantageously improve the flexibility of the cable assembly. These stranded conductors may be insulated using, for example, a thin film polymer and/or an enamel type insulation.
The structure and function of the particular elements 401-422 shown in
As noted in Table 1, in the example shown in
It should be appreciated that the particular implementation of elements 401-422 shown Table 1 above is only one example implementation and the elements 401-422 may be constructed in other ways. For example, cable assembly may use additional conductors or fewer conductors (e.g., to accommodate a different number of components such as microphones). Further, the diameter of any portion of the elements 401-422 may be changed. In various examples, any one or any subset of the conductors 401-420 can be surrounded along at least a portion of their lengths by a suitable shield (e.g., spiral shield, braid shield, foil shield, or any combination thereof).
The above discussions relating to playback devices, controller devices, playback zone configurations, and media content sources provide only some examples of operating environments within which functions and methods described below may be implemented. Other operating environments and configurations of media playback systems, playback devices, and network devices not explicitly described herein may also be applicable and suitable for implementation of the functions and methods.
It should be appreciated that the cable assemblies described herein may be readily applied to devices separate and apart from playback devices and/or NMDs. For example, the techniques described herein may be employed in wearable devices separate and apart from headphone devices such as a pair of smart glasses. Implementing audio input and wireless communications capability in a pair of smart glasses may present similar problems to those described above with respect to headphones (e.g., the need to distribute electronic components about the housing along with the need for wireless communication and analog sensor input). In such a smart glasses implementation, the smart glasses may comprise a housing including a frame front (e.g., configured to hold one or more lenses), a first temple rotatably coupled to the frame front, and a second temple rotatable coupled to the frame front. A cable assembly may be at least partially housed in any suitable location, for example on or in the frame front, disposed in the left temple, disposed in the right temple, distributed between the frame front and the temples, etc.
The description above discloses, among other things, various example systems, methods, apparatus, and articles of manufacture including, among other components, firmware and/or software executed on hardware. It is understood that such examples are merely illustrative and should not be considered as limiting. For example, it is contemplated that any or all of the firmware, hardware, and/or software aspects or components can be embodied exclusively in hardware, exclusively in software, exclusively in firmware, or in any combination of hardware, software, and/or firmware. Accordingly, the examples provided are not the only ways) to implement such systems, methods, apparatus, and/or articles of manufacture.
Additionally, references herein to “example” means that a particular feature, structure, or characteristic described in connection with the example can be included in at least one example of an invention. The appearances of this phrase in various places in the specification are not necessarily all referring to the same example, nor are separate or alternative examples mutually exclusive of other examples. As such, the examples described herein, explicitly and implicitly understood by one skilled in the art, can be combined with other examples.
The specification is presented largely in terms of illustrative environments, systems, procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth to provide a thorough understanding of the present disclosure. However, it is understood to those skilled in the art that certain examples of the present disclosure can be practiced without certain, specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the examples. Accordingly, the scope of the present disclosure is defined by the appended claims rather than the foregoing description of examples.
When any of the appended claims are read to cover a purely software and/or firmware implementation, at least one of the elements in at least one example is hereby expressly defined to include a tangible, non-transitory medium such as a memory, DVD, CD, Blu-ray, and so on, storing the software and/or firmware.
The present technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the present technology are described as numbered examples for convenience. These are provided as examples and do not limit the present technology. It is noted that any of the dependent examples may be combined in any combination, and placed into a respective independent example. The other examples can be presented in a similar manner.
Example 1. A headphone device comprising: a first earpiece; a second earpiece; at least one microphone at least partially disposed in at least one of the first earpiece or the second earpiece; a wireless transceiver at least partially disposed in the first earpiece; a power source at least partially disposed in the second earpiece; a cable assembly extending between the first earpiece and the second earpiece, the cable assembly comprising: a jacket; one or more power conductors at least partially disposed within the jacket and coupled between the power source and the wireless transceiver; one or more microphone conductors at least partially disposed within the jacket and coupled to the at least one microphone; and a shield at least partially disposed between the one or more power conductors and the one or more microphone conductors.
Example 2. The headphone device of any one of the Examples herein, wherein the shield comprises one or more conductors helically extending around at least one of the one or more power conductors.
Example 3. The headphone device of any one of the Examples herein, wherein the shield comprises a spiral shield.
Example 4. The headphone device of any one of the Examples herein, wherein the shield is a first shield and wherein the cable assembly further comprises a second shield at least partially disposed within the jacket and comprising one or more conductors helically extending around the one or more microphone conductors.
Example 5. The headphone device of any one of the Examples herein, wherein at least one of the first shield or the second shield comprises a spiral shield.
Example 6. The headphone device of any one of the Examples herein, wherein the wireless transceiver is configured to facilitate communication via at least one data network, wherein the at least one data network comprises at least one of: a wireless local area network (WLAN) or a personal area network (PAN).
Example 7. The headphone device of any one of the Examples herein, wherein the wireless transceiver is configured to operate in a plurality of operation modes including a first operation mode and second operation mode, wherein the wireless transceiver facilitates communication via at least one WIFI network in the first operation mode, and wherein the wireless transceiver facilitates communication via at least one BLUETOOTH network in the second operation mode.
Example 8. The headphone device of any one of the Examples herein, wherein the jacket has an outer diameter between 1 millimeter (mm) and 6 mm.
Example 9. The headphone device of any one of the Examples herein, wherein the outer diameter of the jacket is between 4 mm and 6 mm.
Example 10. The headphone device of any one of the Examples herein, further comprising a housing including the first earpiece and the second earpiece, wherein the housing is an over-ear housing, an on-ear housing, or an in-ear housing.
Example 11. The headphone device of any one of the Examples herein, further comprising a headband attached to the first earpiece and the second earpiece and wherein the cable assembly comprises: a first end portion coupled to one or more components at least partially disposed in the first earpiece; a second end portion coupled to one or more components at least partially disposed in the second earpiece; and an intermediate portion between the first end portion and the second end portion, wherein the intermediate portion is at least partially disposed in the headband.
Example 12. The headphone device of any one of the Examples herein, wherein at least part of the intermediate portion is in a configuration that comprises a plurality of bends.
Example 13. The headphone device of any one of the Examples herein, wherein the cable assembly further comprises a termination assembly disposed in the first earpiece, wherein the termination assembly comprises: a flexible circuit board including a plurality of conductive traces; and a plurality of terminals coupled to the plurality of conductive traces.
Example 14. The headphone device of any one of the Examples herein, wherein at least one of the one or more microphone conductors are soldered to at least one of the plurality of terminals.
Example 15. The headphone device of any one of the Examples herein, wherein the at least one microphone comprises at least one analog microphone.
Example 16. A wearable device comprising: a housing configured to be worn about a head of a subject; a power source at least partially disposed in the housing and disposed on a first side of the subject when the wearable device is worn about the head; at least one analog sensor at least partially disposed in the housing; a wireless radio at least partially disposed in the housing and disposed on a second, opposite side of the subject when the wearable device is worn about the head; a cable assembly at least partially disposed in the housing and comprising: one or more power conductors coupled between the power source and the wireless radio; one or more sensor conductors coupled to the at least one analog sensor; and a shield at least partially separating the one or more power conductors from the one or more sensor conductors, wherein the shield comprises one or more conductors helically extending around at least one of the one or more power conductors.
Example 17. The wearable device of any one of the Examples herein, wherein the at least one analog sensor comprises at least one analog microphone.
Example 18. The wearable device of any one of the Examples herein, wherein the housing comprises a frame front, a first temple rotatable coupled to the frame front, and a second temple rotatably coupled to the frame front.
Example 19. The wearable device of any one of the Examples herein, wherein the housing comprises a first earpiece and a second earpiece.
Example 20. A cable assembly for a headphone device including a first earpiece and a second earpiece, the cable assembly comprising: a jacket having an outer diameter between 4 millimeters (mm) and 6 mm; an inner coaxial cable at least partially disposed within the jacket, wherein the inner coaxial cable comprises a first end configured to electrically couple to an antenna at least partially disposed in the second earpiece and a second end configured to electrically couple to a wireless transceiver at least partially disposed in the first earpiece; one or more power conductors at least partially disposed within the jacket, wherein the one or more power conductors comprises a first end configured to electrically couple to a battery at least partially disposed in the second earpiece and a second end configured to couple to the wireless transceiver at least partially disposed in the first earpiece; one or more microphone conductors at least partially disposed within the jacket, wherein the one or more microphone conductors includes a first end configured to couple to electrically couple to at least one microphone; and a shield at least partially disposed between the one or more power conductors and the one or more microphone conductors, wherein the shield comprises one or more conductors helically extending around at least one of the one or more power conductors.
21. The cable assembly of any one of the Examples herein, further comprising a termination assembly coupled to the conductors, the termination assembly comprising: a flexible circuit board including a plurality of conductive traces; and a plurality of terminals coupled to the plurality of conductive traces.
22. The cable assembly of any one of the Examples herein, wherein at least one of the one or more microphone conductors is soldered to at least one of the plurality of terminals.
The present application claims the benefit of priority to U.S. Patent Application No. 63/040,312, filed Jun. 17, 2020, which is incorporated herein by referenced in its entirety.
Number | Date | Country | |
---|---|---|---|
63040312 | Jun 2020 | US |