The present invention generally relates to a cable assembly, and more particularly to a cable assembly with a new latching mechanism.
PCI Express, officially abbreviated as PCI-E or PCIe, is a computer expansion card interface format introduced by Intel in 2004. It was designed to replace the general-purpose PCI expansion bus, the high-end PCI-X bus and the AGP graphics card interface. Unlike previous PC expansion interfaces, rather than being merely a bus, it is configured around point-to-point full duplex serial links called lanes. In PCIe 1.1 (the most common version as of 2007) each lane carries 250 MB/s in each direction.
PCI Express External Cabling which extends the PCI Express interconnects architecture “outside the box.” Cables using the PCIe technology will be used for external applications, as well as applications internal to an enclosure that need a cable connection. PCI Express External Cabling Specification, REV. 1.0 introduced four kinds of cable assemblies x1, x4, x8 and x16, and among which the x16 cable assembly may reach highest transmitting rate. The x16 cable assembly includes a housing, a pair of stacked PCBs accommodated in a space of the housing and four cables terminated to corresponding the PCBs.
U.S. Pat. No. 7,134,914 B1 discloses a cable assembly having a latch and an actuator cooperated with each other, the actuator has a front end disposed below the latch for actuating a portion of the latch on the top of the front end of the actuator. When the actuator is moved rearward by a pulling force, a front end of the latch is raised up. However, the front end of the latch can not be resumed to an original state automatically when the pulling force is removed, obviously, additional operation should be effected on the latch to make it resume to the original state. So the cable assembly can not latch with the complementary connector conveniently.
Hence, an improved cable assembly is highly desired to overcome the aforementioned problems.
Accordingly, an object of the present invention is to provide a cable assembly having a latching mechanism including an pulling member and a latching member cooperated with the pulling member, and an interconnection between the pulling member and the latching member is reliable and simple.
In order to achieve the object set forth, a cable assembly in accordance with the present invention comprises a housing formed by a base portion having a first top surface and a mating portion having a second top surface, and the housing has a receiving space therein. A plurality of conductive contacts are retained in the housing. A cable is entered into the receiving space and electrically connected with the conductive contacts. A pulling member is moveable relative to the housing in a horizontal direction, and comprises a cooperating portion at a front end thereof. And a latching member is cooperated with the pulling member and assembled to the housing for latching with a complementary connector. The latching member comprises an engaging section assembled to the housing, a latching section disposed on the top of the base portion and an actuating section disposed between the engaging section and the latching section. The actuating section is interconnected with the cooperating portion and capable of being actuated by the cooperating portion of the pulling member.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Reference will now be made in detail to the preferred embodiment of the present invention.
Referring to
Referring to
The top wall 111 of the base portion 11 of the first shield part 1 defines a first channel 1111 arranged in a middle section thereof and a lower second channel 1114 in front of and communicating with the first channel 1111. The first and second channels 1111, 1114 are both formed on a top surface of the top wall 111 of the base portion 11. It should be noted that the top surface of the top wall 111 of the base portion 11 of the first shield part 1 can be seen as the first top surface 1011 of the base portion 101 of the housing 10. In addition, a pair of first grooves 1112 are located in the middle section of the top wall 111 and further communicate with the first channel 1111. Two second grooves 1113 are in front of the first grooves 1112 and also communicate with the first channel 1111. A receiving room 1115 is recessed downwardly from the top surface of a front section of the top wall 111 and communicates with the first channel portion 1114. It should be noted that the second channel 1114 can also be seen as the receiving room 1115. A pair of protrusions 1116 are formed on a front side of a bottom surface of the receiving room 1115. The bottom surface of the receiving room 115 can be defined as a third top surface of the base portion 101 of the housing 10. And a protruding piece 1118 is formed on a rear side of a bottom surface of the receiving room 1115. A pair of slits 1117 extend downward from the top surface of the top wall 111 and communicate with the receiving room 1115. The pair of slits 1117 are disposed at two sides of the receiving room 1115.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
When assembly, firstly the wires 71 of the cables 7 are soldered to the second conductive pads 331 of the first and second PCBs 3a, 3b. Then the spacer 4 is arranged between the first and second PCBs 3a, 3b, thus, the positioning posts 403 formed on the upper and lower surfaces 402, 401 of the spacer 4 respectively passes through the corresponding through holes 321 formed on the first and second PCBs 3a, 3b to make the first and second PCBs 3a, 3b and the spacer 4 assembled together.
Secondly, the PCBs 3a, 3b and the spacer 4 are together assembled to the second shield part 2, each positioning post 403 formed on the lower surface 401 of the spacer 4 has a free end received into a receiving hole (not figured) formed in each second supporting post 2211. At the same time, the cables 7 are supported by the rear wall 214 of the second shield part 2 and extends into the second shield part 2 through the semicircular through holes 2141, and a lower portion of each ring member 72 is located into a recess 2142 formed in each semicircular through hole 2141 of the rear wall 214.
Thirdly, the first shield part 1 is assembled to the second shield part 2 to form a housing 10, thus, the first and second PCBs 3a, 3b and the spacer 4 are enclosed into the housing 10, each positioning post 403 formed on the upper surface 402 of the spacer 4 has a free end received into a receiving hole (not figured) formed in each first supporting post 1211. And the ring member 72 is fully received into the recesses 1142, 2142 respectively formed in the rear walls 114, 214 of the first and second shield parts 1, 2. Obviously, the number of first and second conductive pads 311, 331 are located in the housing 10 through the first and second PCBs 3a, 3b disposed in the housing 10.
Fourthly, the latching member 51 is received into the receiving room 1115 of the first shield part 1 of the housing 10 and engaged with the housing 10. The base segment 5132 of the engaging section 513 is disposed between the protruding piece 1118 and a rear surface of the receiving room 1115 in a longitudinal direction, the pair of side segments 5130 of the engaging section 513 are received into the pair of slits 1117 and engaging with the housing 10. The latching section 515 of the latching member 51 is located on the top of the second top surface 1021 of the mating portion 102 of the housing 10. As a result, the latching portion 515 is cantilevered from the engaging portion 513 of the latching member 51. The connecting portion 512 and the inclined portion 514 are located on the top of the bottom surface of the receiving room 1115.
Fifthly, the pulling member 52 is attached to the first top surface 1011 of the base portion 101 of the housing 10 and cooperated with the latching member 51. Thus, the locking segment 5142 of the actuating section 5140 pass through the aperture 5240 formed on the cooperating portion 524 of the pulling member 52. Thus, the latching member 51 and the pulling member 52 are interlocked with each other. It is clearly that the pulling member 52 is disposed on the top of latching member 51. Then, the pulling tape 53 is attached to the rear end of the pulling member 52. When a rearward pulling force exerts on the pulling member 52 or the pulling tape 53, a pair of claw-shaped spring members 522 and a pair of stoppers 523 are respectively sided in the first and second grooves 1112, 1113 along a front to rear direction, the pulling member 52 is also moved rearward. Thus, the actuating section 5140 of the latching member 51 is also pulled backward by a rearward movement from the pulling member 52, simultaneously, the main portion 511 of the latching member 51 will be raised up easily. When a pulling force exerted on the pulling member 52 is removed, the latching member 51 will be resumed to an original state. So, the interconnection between the pulling member 52 and the latching member 51 is reliable and the cooperation between the pulling member 52 and the latching member 51 is simple.
Six, the conductive shell 6 is assembled to the first top surface 1011 of the base portion 101 of the housing 10, and then a pair of first and second screws 62 are assembled to the cable assembly 100 to interconnect with the conductive shell 6, the first shield part 1 and the second shield part 2.
At last, a gasket 9 is assembled to the housing 10. The gasket 9 is mounted to an outer periphery of the mating portion 102 of the housing 10 and attached to a front surface of the base portion 101 of the housing 10.
After the above assembling steps, the entire process of assembling the cable assembly 100 is finished.
It will be understood that the invention may be embodied in other specific forms without departing from the spirit or central characteristics thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details given herein.
Number | Date | Country | Kind |
---|---|---|---|
2009 2 0300479 U | Feb 2009 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7114980 | Wu | Oct 2006 | B1 |
7134914 | Wu | Nov 2006 | B1 |
7160135 | Wu | Jan 2007 | B1 |
7226316 | Wu | Jun 2007 | B2 |
7238040 | Wu | Jul 2007 | B1 |
7281937 | Reed et al. | Oct 2007 | B2 |
7473124 | Briant et al. | Jan 2009 | B1 |
7540755 | Wu | Jun 2009 | B1 |
7572138 | Wu | Aug 2009 | B1 |
7666023 | Wu | Feb 2010 | B2 |
20050233631 | Wu | Oct 2005 | A1 |
20070161281 | Wu | Jul 2007 | A1 |
20080032841 | Oishi et al. | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100203754 A1 | Aug 2010 | US |