Individuals with physical disabilities and chronic conditions often require intensive rehabilitation to improve function, cardiorespiratory fitness, and quality of life. Stroke is a leading cause of long-term disability in adults with approximately 15 million individuals worldwide and about 795,000 in the United States experiencing a stroke annually. Approximately 80% of survivors experience difficulties moving their limbs. The extent of resulting disability is impacted by multiple factors including timing and intensity of rehabilitation services. Ensuring safe rehabilitation spaces for those with impaired mobility is critical, particularly given their elevated injury risk due to falls, which are the most prevalent cause of fatal injury and nonfatal trauma-related hospital admissions among elderly.
Manual patient handling (for example, lifting or moving) of those lacking physical mobility is the greatest risk factor for overexertion injuries among nursing staff and workers in assistive care facilities, with musculoskeletal injury rates 2 to 5 times the national average. Rehabilitation physical therapists (PTs) are at risk due to challenges associated with repetitively lifting/supporting patients during therapy. Up to 91% of PTs will experience a work-related musculoskeletal disorder, with common factors across studies including transferring, lifting, unanticipated sudden patient fall/movement, and assisting patients during gait activities. Following injury, PTs most commonly leave the neurology and rehabilitation (42%) specialty areas, draining critical expertise needed to care for older adults and others with mobility limitations.
Based on this evidence, technology that addresses the physical needs of those with impaired mobility (including the elderly) and those caring for them may be helpful. Ensuring safe mobility and safe patient handling may significantly improve quality of life while reducing a cost that exceeds $10 billion annually in the United States.
One or more embodiments of the present disclosure provides an overhead support system. The overhead support system includes a plurality of posts disposed within a space; a plurality of beams configured to connect to and span between the plurality of posts; a counterbalance system configured to be fixedly attached to the plurality of posts; a harness configured to be worn by and support a patient; a plurality of pulleys configured to be disposed on the plurality of posts; a plurality of cables, each cable comprising a first end configured to be operatively connected to the harness and a second end configured to be operatively connected to a counterbalance system, each cable passing over one of the plurality of pulleys; and a mechanism configured to selectively adjust a tension in at least one of the plurality of cables to vary the amount of support provided by the support system between 0 and 100% of the weight of the patient. The counterbalance system compensates to maintain the amount of support while the patient is located between the posts and the harness is lower than the plurality of pulleys.
Relative to the present disclosure, a novel Reconfigurable Independent Support Environment (hereinafter, RISE) system that mechanically supports patients' partial body weight may facilitate rehabilitation, allow for unrestricted patient movement throughout therapy spaces, integrate a fall-arresting mechanism, and scale to various room sizes and configurations. In one or more embodiments, RISE may: 1) reduce risk of fall-related injuries in therapeutic environments used by the elderly and individuals with mobility limitations; 2) lighten physical demand placed on healthcare workers to reduce risk of musculoskeletal injury; and 3) promote healthy levels of activity in the elderly and those with disability through safe mobility, thus decreasing co-morbidities arising from inactivity.
RISE may provide body-weight support and/or fall-arresting functionalities in a uniform fashion throughout a volume such as a therapy gym or occupational therapy room (i.e., clinical/rehabilitation space). RISE may also be used in home settings (for example, independent and assisted living settings) and skilled nursing environments.
There exists a strong body of evidence that shows how falls and lifting injuries pose a growing, unmet health challenge to those with limited mobility (including the elderly) and healthcare workers, respectively, not adequately addressed by current technology. In the long term, broad adoption of RISE may have a cascading and multiplicative effect in reducing these significant healthcare burdens.
The following section outlines advantages that may make RISE unique and able to succeed where other technologies have failed to adequately address issues in the healthcare industry, including issues mentioned above.
In the clinical and rehabilitation environment, therapy equipment is often accompanied by overhead body-weight support (BWS) devices. For example, several versions of overhead gantries exist: passive gantries allowing straight-line motion, passive two-degree-of-freedom gantries allowing full range of motion in an open room space, and robotically driven gantries.
A common disadvantage of these BWS devices is that these devices have limited range of coverage and do not scale well for different room sizes. Gantries support load at a point that varies across one or more beams. As the span of the beam (i.e., room size) increases, the stress in the beam scales up and the beam cross section must increase, meaning that there is no single standard for the design of the gantry structure, and the cost of these systems does not scale well from small to larger rehabilitation spaces. Although fixed trajectory overhead support gantries can be found in some facilities, these scaling issues represent a critical deficiency that has kept the more fully functional gantries (robotic or passive) from being widely adopted. Additionally, if a space is remodeled or if patient flow patterns change (for example, therapy mats replace walking areas or staircases move), these systems may no longer address patient needs in the space.
Mobile body weight support devices, another variant of BWS devices found in limited clinical use, are space-consuming to store, difficult to navigate within small spaces, and can hinder the capacity of a clinician to easily facilitate movement. Other existing BWS devices include passive overhead suspension frames/walkers and robotically-mobilized frames/walkers. Unfortunately, these bulky systems get in the way of performing activities of daily living by preventing close approach to objects such as tables/chairs because these frames/walkers surround the user (i.e., the patient). These systems can also obstruct line of sight of cameras used for documenting movement function (for example, gait, transfers) during rehabilitation. Further, many BWS systems do not sustain support across activities performed at different heights (for example, ascending stairs).
One or more embodiments of the disclosed overhead support system may overcome the challenges posed by current technology. RISE may provide both BWS and fall-arresting functionalities in a uniform fashion throughout a 3-dimensional (3D) space such as a physical and/or occupational therapy gym. RISE may be used to equip an entire space like a therapy gym with a cable system based on stability principles from the domain of cable-suspended robots. RISE may enable use with a typical BWS harnesses used in conjunction with other aforementioned rehabilitation and/or lifting devices to ensure backward compatibility and cost-efficiencies in facilities that already have harnesses. To stay unobtrusive and affordable, RISE may include a counterbalance system that can be tuned to passively compensate for variable BWS as needed for individualized patient needs, as well as providing an independent fall-arresting feature. Thus, RISE may provide a passive, statically balanced 3D cable system for body-weight support.
In addition to the statically-balanced cable design of RISE, the RISE system may improve on current technology because RISE may address multiple unmet needs (for example, prevention of falls and caregiver injuries) in a single system while allowing full use of the entire therapeutically-relevant space. In contrast, existing BWS systems may allow only areas under a fixed path or support device. Due to modular design, RISE may be easily installed and adaptable to rooms of different sizes and shapes (without taking up a lot of space) so that value scales well from small to larger rehabilitation spaces. Based on these characteristics, RISE may circumvent all major identified barriers to adoption/use. Specifically, RISE may cover the entire used space without need to predetermine key pathways, scale well across room sizes and patient anthropometrics (weight/height), support various therapy activities (for example, transfers, walking/balancing, treadmill/elliptical use), and may be hands-free and “always present.” Although cable robots may be well known in literature, passive statically balanced cable-suspended systems have not been developed. Therefore, RISE may be novel in terms of both mechanical design and application to rehabilitation.
Basic analysis for a two-cable support device that remains in equilibrium at all positions within its workspace has been shown. With a planar system of two cables suspended from two anchoring points, one may fully balance a load vertically while maintaining zero net force on the payload horizontally (see, for example,
The resulting force required to maintain the patient in an upright position can be adjusted, i.e., the supporting force provided to the harness by the support cables, can be adjusted such that the patient is either completely supporting themselves, all the way to supporting the entire weight of the patent by the cables, or anywhere in between. The support force provided by the cables, which as can be seen in
More specifically, cables 180 as illustrated in a force diagram in
Testing showed reasonable agreement between actual counterbalancing performance and the theoretical model, with differences attributable to non-idealized factors such as friction. Based on the success of the cam system, one may extend these design principles to the RISE system design covering the 3D space and implementing improvements to make the RISE design user-friendly, as described below.
In one or more embodiments, RISE may include a modular body-weight support system suitable for unobtrusive installation in rehabilitation therapy environments of various sizes and shapes.
In a cable-based overhead support system in accordance with the disclosure, which uses cams 110 to mechanically encode the nonlinear load-displacement relationship (see, for example,
By adjusting preload in the system using the pretension motor 415 (as shown in the example in
In an exemplary treatment scenario, a patient may enter a treatment room (at A) and don a harness 160 (see
In one or more embodiments, the force-equilibrium model may account for the 3D position of the payload (i.e., the supported body weight). In a two-cable system, the equilibrium analysis is planar, limiting therapeutic applications. In order to support personal mobility in 3D space, the single-variable function derived in the work shown in
Referring to the generic cable-suspended representation in
Furthermore, when varying height dynamically (for example, sit-to-stand or climbing steps), cable angle effects and cable displacement effects largely cancel out, resulting in less than 10% change in vertical BWS (i.e., less than 5 pounds (lbs) if providing 25% BWS for a 200 lb patient) and less than 2% resultant horizontal force (i.e., typically less than 1 lb of “imperfect equilibrium” horizontally). In one or more embodiments, spring orientations may be varied to minimize this error by introducing nonlinear kinetostatic effects. Equilibrium conditions may dictate that the cable tensions decrease with cable extension, thus shallower cable angles may correspond to lower tension. Our simulations have shown that even with relatively low ceilings the cable tensions do not exceed twice the offloaded weight (i.e., less than 100 lbs if providing 25% BWS for a 200 lb patient), thus well within the 5,000 lb safety threshold of the cable. Since the system is passively counterbalanced and carries low inertia, dynamic activities may be readily accommodated without needing a control system.
Certain constraints may be addressed by RISE in order to advance rehabilitation care meaningfully. In one or more embodiments, RISE may consider the practical constraints of cost, installation, maintenance, and scalability. In one or more embodiments, RISE may be applied flexibly across a wide spectrum of use cases. Further, RISE may use standardized off-the-shelf components and favor safety and simplicity. A simple framework as, for example, in
In one or more embodiments, RISE may use standardized parts, for example, springs, to suit the range of properties determined through optimization. However, off-the-shelf parts may come in discrete versions. If standard springs have properties sufficiently close to those desired, then standard springs may be used, recognizing that some margin for imperfect operation may be acceptable. In one or more embodiments, custom springs and/or components may be specified. In all cases, assessment of sensitivity of predicted system performance to the variation from nominal as-optimized parameters may be performed.
It is contemplated that changes in BWS with changes in height (for example, during stair navigation) may be too large. In one or more embodiments, an actively controlled tensioner may be used in place of the winch motor shown in
Safety with RISE is enhanced by maintaining low cable tensions and low overall energy storage. Further, any release of spring energy may be contained to the column locations under a protective cover.
In one or more embodiments, RISE may implement distinct modes of operation for serving as a fall-arrester and as a weight-offload system for patient lifting.
The RISE system may address needs related to both fall prevention and BWS, with additional benefits of encouraging safe mobility. For patient-lifting applications, the counterbalance design described under above may provide a standard principle of operation. Adjusting the pretension of the coil springs may fine-tune the amount of BWS to suit the need; springs may be located along the corner uprights to facilitate clinician adjustment using, for example, a single pendant-type controller, though other controllers may be used. In one or more embodiments, hardware may produce the desired performance in this operating mode, and improve ease of adjusting the offload amount for lifting different patients. RISE may be compatible with existing slings/harnesses common in rehabilitation/therapy settings for easy integration.
For arresting falls, the need may be different. Rather than concern with cable tensions, the important quantities may be cumulative cable displacement and rate. In normal operation, some cables may be lengthening while others are shortening. For example, refer to diagram in
In one or more embodiments, RISE may detect a fall event as a lengthening of all cables, and the fall-arresting mechanism can be triggered automatically (without sensors) through a mechanical “cumulative extension threshold” based on the sum of all cable extension lengths (for example, “measured” using a pulley system through which all cables pass, similar to a block-and-tackle). Motion of the “block” beyond a certain threshold may engage a spring or stop-block that serves as a fall-arrester (regardless of the rate of fall). For sit-to-stand or other maneuvers that involve purposeful lengthening/shortening of all cables, the threshold can be adjusted (using, for example, the pendant controller).
In one or more embodiments, centrifugal brakes may be applied to each support cable separately.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and “at least one” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The use of the term “at least one” followed by a list of one or more items (for example, “at least one of A and B”) is to be construed to mean one item selected from the listed items (A or B) or any combination of two or more of the listed items (A and B), unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (for example, “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 63/231,221, filed Aug. 9, 2021, and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2546688 | Cullen | Mar 1951 | A |
2871915 | Hogan | Feb 1959 | A |
2962730 | Carnes | Dec 1960 | A |
3349411 | Eaton | Oct 1967 | A |
3750199 | Spivey | Aug 1973 | A |
4256098 | Swan | Mar 1981 | A |
4805248 | Lunau | Feb 1989 | A |
5369821 | Richards | Dec 1994 | A |
5456655 | Morris | Oct 1995 | A |
6006377 | Asakawa | Dec 1999 | A |
6241215 | Gersemsky | Jun 2001 | B1 |
6321398 | Wang | Nov 2001 | B1 |
6637610 | Cheeseboro | Oct 2003 | B1 |
7381163 | Gordon et al. | Jun 2008 | B2 |
9987188 | Diao | Jun 2018 | B1 |
10238318 | Wu et al. | Mar 2019 | B2 |
10265565 | Jue | Apr 2019 | B2 |
11135112 | Winfree | Oct 2021 | B1 |
20020026130 | West | Feb 2002 | A1 |
20050115914 | Chepurny | Jun 2005 | A1 |
20070004567 | Shetty | Jan 2007 | A1 |
20090077737 | Dyhr | Mar 2009 | A1 |
20100270252 | Chepurny | Oct 2010 | A1 |
20110296608 | Victor | Dec 2011 | A1 |
20120018689 | Chepurny | Jan 2012 | A1 |
20140223661 | Galloway | Aug 2014 | A1 |
20140259391 | Karlsson | Sep 2014 | A1 |
20140352058 | Sverdlik | Dec 2014 | A1 |
20170027803 | Agrawal | Feb 2017 | A1 |
20180055715 | Vallery | Mar 2018 | A1 |
20180214329 | Mitchell | Aug 2018 | A1 |
20190076313 | Choi | Mar 2019 | A1 |
20200230005 | Hidler | Jul 2020 | A1 |
20200323725 | Kao | Oct 2020 | A1 |
20210069052 | Burke | Mar 2021 | A1 |
20210290463 | Dubois | Sep 2021 | A1 |
Entry |
---|
Frey et al., “A Novel Mechatronic Body Weight Support System,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(3): 311-321 (Sep. 2006). |
Hidayah et al., “Cable-driven systems for robotic rehabilitation.” Soft Robotics in Rehabilitation, Academic Press, 135-163 (2021). |
Shinde, “Cam-Based Pose-Independent Counterweighting for Partial Body-Weight Support in Rehabilitation,” Master's Thesis, Univ. of Nebraska, 113 pp (Dec. 2017). |
Stienen et al., “Freebal: Design of a Dedicated Weight-Support System for Upper-Extremity Rehabilitation,” J. of Medical Devices, 3(041009), 9 pp. (Dec. 2009). |
Vallery et al., “Multidirectional Transparent Support for Overground Gait Training,” 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), IEEE, 7 pp. (2013). |
Number | Date | Country | |
---|---|---|---|
20230044322 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
63231221 | Aug 2021 | US |