1. Field of the Invention
This invention relates generally to cable guards for archery bows and, more particularly, to a cable buss system for using with or as a cable guard for a compound archery bow.
2. Discussion of Related Art
Compound archery bows include a bowstring that includes, forms, or is otherwise connected to tension cables that are connected between opposing cams on upper and lower bow limbs. The bowstring and cables are desirably positioned at or proximate to the vertical centerline of the bow. When the cables and bowstring are aligned in or near the same vertical plane, an arrow released from the bowstring may contact the cables, thereby interfering with the flight of the arrow.
Cable guards are commonly used to prevent this interference by displacing or deflecting the cables a sufficient distance from the bowstring. Exemplary illustrations of cable guards are illustrated in
Cable guards exert a torque on the bow when the bowstring is drawn. The lateral deflection of the cables causes a twisting at the cams, resulting in left or right forces. These forces caused by the tension cables deflected against the cable guard, particularly when the bowstring is at full draw, can have a negative affect on the bow during use. There is a continuing need for a cable guard system that removes cables from an arrow flight path while minimizing torque forces on the bow.
This invention includes and provides a cable buss apparatus for an archery bow using a cable guard for laterally deflecting tension cables of a bowstring that extend between two opposing cams, in order to prevent interfering with an arrow. The apparatus includes a first cable alignment rod that is attachable to an upper portion of the bow for deflecting a first section of the cables extending between an upper cam and the cable guard. The apparatus also includes a second cable alignment rod attachable to a lower portion of the bow for deflecting a second section of the cables extending between a lower cam and the cable guard.
The apparatus of this invention allows for laterally displacing tension cables away from a flight path of a launching arrow without imparting lateral and/or twisting forces on the upper and lower cams. The apparatus of this invention moves the lateral stress caused by the deflected tension cables away from the upper and lower cams of the bow, thereby reducing forces on the cams, which can reduce cam and cable wear while also providing a steadier draw and launch for the archer.
The invention further includes an archery bow with a riser, an upper limb connected to a first end of the riser and including an upper cam at an end opposite the riser, and a lower limb connected to a second end of the riser and including a lower cam at an end opposite the riser. A bowstring and tension cables extend between the upper cam and the lower cam. A cable guard deflects the cables between the upper cam and the lower cam. A first cable alignment rod attached to the bow engages the cables between the cable guard and the upper cam, and a second cable alignment rod attached to the bow engages the cables between the cable guard and the lower cam.
Other objects and advantages will be apparent to those skilled in the art from the following detailed description taken in conjunction with the appended claims and drawings.
The present invention provides a cable buss apparatus for an archery bow for use as or with a cable guard for laterally deflecting cables extending between two opposing cams of a bow to prevent cable interference with an arrow during launch. The cable buss apparatus of this invention can be an accessory to be added on to existing bows, or can be integrated into bows during manufacture and/or sale.
In one embodiment of this invention, the cable buss apparatus includes a first cable alignment rod attachable to an upper portion of the bow for deflecting a first section of the cables extending between an upper cam and a cable guard, and a second cable alignment element attachable to a lower portion of the bow for deflecting a second section of the cables extending between a lower cam and the cable guard. The cable alignment rods of this invention can be any structure that serves as a mechanism to move the point of lateral cable deflection above or below, respectively, the opposing bow cams. As will be discussed further below, the two cable alignment rods can be used in combination with existing cable guards, or can be used with one two additional cable alignment rods of this invention as cable guards.
The cable alignment rod can have any suitable shape, depending on, for example, the configuration of the bow it will be attached to. In the embodiment shown in
In one embodiment of this invention, two or more cable alignment rods function as a starting point to laterally deflect cables of a compound bow toward one side of the vertical centerline of a bow so that the cables do not interfere with the launch of an arrow from the bow.
In
In
In one embodiment of this invention, the first and second cable alignment rods 82 and 84 are each used in combination with a cable guard or a further cable alignment rod.
The first cable alignment rod 82 and the second cable alignment rod 84 each have a side 92 and 94, respectively, facing a first lateral direction and aligned between the upper and lower cams to receive the cables 25 while maintaining the vertical position of cable portions 25′. Each of the third cable alignment rod 86 and the fourth cable alignment rod 88 has a side 96 and 98, respectively, facing a second lateral direction that is opposite the first lateral direction. The cables 25 contact the sides 92 and 94 of the first and second cable alignment rods 82 and 84 and are deflected laterally to wrap around the second sides 96 and 98 of the third and fourth cable alignment rods 86 and 88. A laterally positioned portion of the cables 25 extends between the third and fourth cable alignment rods 86 and 88, thereby moving the cables away from possible interference with an arrow during launch.
Various sizes, shapes, placements, and configurations are available for the cable alignment rods of this invention. For example, in
The cable buss apparatus includes a first cable alignment rod 130 attached to the bow 100 and engaging the cables 125 beneath the upper cam 106. On an opposite end, the cable buss apparatus includes a second cable alignment rod 132 attached to the bow 100 and engaging the cables 125 above the lower cam 110. The cable buss apparatus also includes two additional cable alignment rods 134 and 136 acting as cable guards to secure the cables 125 in a lateral direction in an area of arrow rest 128 and away an arrow launched with the bow 100.
As shown in
The first cable alignment rod 130 and the third cable alignment rod 134 can each be mounted directly to the riser 102, or through an intermediate first mounting element 142. The first mounting element 142 includes two receivers for the first and third cable alignment rods 130 and 134, and a single attachment element, such as a threaded end, for mounting to a bow. The first mounting element 142 can be particularly useful in retrofitting the two cable alignment rods 130 and 134 to a bow having a single receiver. Conventional bows often already include such a receiver in the riser for use with, for example, conventional string stops. A second mounting element 144 is used to attach the second and fourth cable alignment rods 132 and 136 to a lower portion of the riser 102. Various and alternative sizes, shapes, placements, and configurations are available for the alignment rods and mounting elements according to this invention. For example, instead of being mounted to the riser, the cable alignment rods and/or mounting elements can be mounted to the upper and lower limbs. Also, the cable alignment rods on the mounting elements can be offset as shown in
Thus, the invention provides a cable buss apparatus for a compound bow that laterally displaces tension cables away from a flight path of a launching arrow while not imparting lateral and/or twisting forces on the upper and lower cams. By moving the lateral stress caused by the deflected tension cables away from the cams, the apparatus of this invention can reduce forces on the bow during use and provide a steadier draw and launch for the archer.
The invention illustratively disclosed herein suitably may be practiced in the absence of any element, part, step, component, or ingredient which is not specifically disclosed herein.
While in the foregoing detailed description this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein can be varied considerably without departing from the basic principles of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4452222 | Quartino et al. | Jun 1984 | A |
4733648 | Martin | Mar 1988 | A |
4903678 | Walker | Feb 1990 | A |
6382201 | McPherson et al. | May 2002 | B1 |
6681754 | Angeloni | Jan 2004 | B1 |
6708684 | Chattin | Mar 2004 | B2 |
6722354 | Land | Apr 2004 | B1 |
6729320 | Terry | May 2004 | B1 |
6758204 | Goff et al. | Jul 2004 | B1 |
6763818 | Larson | Jul 2004 | B2 |
6792930 | Kronengold et al. | Sep 2004 | B1 |
6904900 | Gallops, Jr. | Jun 2005 | B2 |
6966312 | Larson | Nov 2005 | B1 |
7047958 | Colley | May 2006 | B1 |
7082937 | Land | Aug 2006 | B1 |
7308890 | Wheeler | Dec 2007 | B1 |
7441555 | Larson | Oct 2008 | B1 |
20060174859 | Andrews | Aug 2006 | A1 |
20070101980 | Sims et al. | May 2007 | A1 |
20090000606 | Cooper et al. | Jan 2009 | A1 |
20090165766 | Evans | Jul 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110048394 A1 | Mar 2011 | US |