The present invention is directed to crimping wire cables and, more particularly, is directed to an apparatus and method for compressing wire cable strands prior to crimping.
Crimp connections are widely used in industry to connect two electrical conductors or wire cables together. Crimp connections are also used to fasten a ring lug or spade lug to the end of a single cable. The cable or cable pair is inserted into the cable crimp connector, which is then compressed tightly around the cable with a compression tool. With small gauge wire strand cable, the tool is typically manually squeezed to compress the cable connector. In the case of large gauge wire strand cable, the compression tool is typically operated by mechanical leverage or hydraulic pressure.
In one aspect, a cable compression die assembly is used for compressing a stranded cable for subsequent termination in a cable connector. The cable compression die assembly comprises a pair of cable compression dies for directly accommodating the stranded cable therebetween. The dies are accommodated within a compression tool. The dies are compressingly closable about the stranded cable by the compression tool. This will reduce spaces between strands of the stranded cable.
In another aspect, an assembly terminates a stranded cable to a cable connector. The assembly comprises an operable compression tool. A pair of cable compression dies is insertable into the compression tool for compression of the stranded cable. This will reduce spaces between strands of the stranded cable. A pair of connector crimping dies is insertable into the compression tool. The dies receive the cable connector and the compressed stranded cable therebetween for crimping the cable connector to the compressed stranded cable.
In yet another aspect, a method of terminating a stranded cable to a cable connector comprises the steps of providing a compression tool. A pair of cable compression dies is inserted into the compression tool. The stranded cable is inserted between the cable compression dies. The stranded cable is compressed between the cable compression dies with the compression tool. This will reduce spaces between wire strands of the stranded cable. The compressed stranded cable is removed from the compression tool.
The cable compression dies are removed from the compression tool. A pair of connector crimping dies is inserted into the compression tool. The cable connector is inserted between the connector crimping dies. The compressed stranded cable is inserted into the cable connector. The cable connector is crimped about the compressed stranded cable using the compression tool.
These and other aspects, objectives, features, and advantages of the disclosed technologies will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
It should be noted that the drawings herein are not to scale.
Describing now in further detail these exemplary embodiments with reference to the
The compression tool 44 has an upper jaw 46 and a lower jaw 48 adapted for moving toward one another. The cable 42 has a predetermined cable first radius R1 prior to compressing, as shown in
The cable compression die assembly 40 comprises a lower compression die 50 having a lower groove 52 semicircular about a lower axis 54. The lower groove 52 has a radius generally equal to the cable second radius R2. The lower groove 52 is adapted to receive and compress the cable 42. The lower compression die 50 is adapted for mounting in the compression tool lower jaw 48.
An upper compression die 70 has an upper groove 58 semicircular about an upper axis 74. The upper groove 58 has a radius generally equal to the cable second radius R2. The upper groove 58 is adapted to receive and compress the cable 42. The upper compression die 70 is adapted for mounting in the compression tool upper jaw 46 opposite the lower compression die 50 so that the lower axis 54 and the upper axis 74 are generally parallel.
Upon moving the lower jaw 48 and the upper jaw 46 toward one another, the lower compression die 50 and the upper compression die 70 will move toward one another in a closing direction 66. The lower axis 54 and the upper axis 74 will converge, as shown in
As shown in
As shown in
A pair of the upper guide blocks 76 is adapted to straddle and slidingly engage a one of the lower guide blocks 56. Similarly, a pair of the lower guide blocks 56 is adapted to straddle and slidingly engage a one of the upper guide blocks 76. This occurs upon moving the lower compression die 50 and the upper compression die 70 toward one another. This will serve to guide the lower 50 and upper 70 compression dies into alignment together axially. The upper guide block upper terminal ends 78 are adapted to contact the lower compression die lower base flats 60 and the lower guide block lower terminal ends 58 are adapted to contact the upper compression die upper base flats 80 to delimit the moving toward one another. Thus, the upper 78 and lower 58 terminal ends will establish a solid purchase upon the upper 80 and lower 60 base flats as the upper 70 and lower 50 dies contact one another. This limit is essential to preclude overcompressing the cable which could extrude cable material in an axial direction. The limit also serves to preclude damaging the dies.
The lower compression die 50 includes a plurality of lower outward facets 62 that are beveled and face outward, generally away from the lower axis 54. The lower guide blocks 56 have a plurality of lower inward facets 64 that are beveled and face inward generally toward the lower axis 54.
The upper compression die 70 includes a plurality of upper outward facets 82 that are beveled and facing outward generally away from the upper axis 74. The upper guide blocks 76 have a plurality of upper inward facets 84 that are beveled and face inward generally toward the upper axis 74.
The upper compression die upper outward facets 82 are adapted to engage the lower guide blocks lower inward facets 64 and the lower compression die lower outward facets 62 are adapted to engage the upper guide blocks upper inward facets 84. In the event that the dies are not precisely aligned in the compression tool 20, the upper 84 and lower 64 inward facets will guide the upper 70 and lower 50 compression dies into alignment together transversely. In the event that the dies are precisely aligned in the compression tool, the upper 84 and lower 64 inward facets will touch as the dies reach the limit of moving together in the closing direction 66. Furthermore, it often happens that one or more wire strands 36 are bent or displaced outward away from the cable 42 sufficiently that they will not fit into the cable compression die. In these cases, the upper 84 and lower 64 inward facets are adapted to push outward displaced wire strands 36 inward toward the cable 42 so that the wire strands 36 are closely adjacent, in preparation for compression. Closely adjacent means all strands of the multiple stranded wire cable are sufficiently close to one another that the cable will fit into the cable compression die in preparation for compressing. Yet furthermore, the upper 84 and lower 64 inward facets are adapted to guide the cable 42 into the upper 72 and lower 52 grooves for compression. The compression die assembly 40 is circumferentially closed as the compression of the stranded cable 42 begins. Thus, no stray outward displaced wire strands 36 can escape compression in the compression die assembly 40.
After compression of two stranded cables 42, the resultant compressed cables are ready to be connected together in the crimp connector 30. As shown in
The air spaces 38 between the wire strands 36 are greatly reduced and generally or almost eliminated. Generally eliminating air spaces means the included air spaces after compression and crimping are fewer than with crimping alone. Generally eliminating air spaces can also be defined to mean minimizing air spaces.
The structure of the resultant connection is generally or nearly monolithic, as shown in
In the preferred embodiment shown, the upper 70 and lower 50 compression dies are identical to one another. Furthermore, the die assembly 40 can be oriented in any direction. The preferred embodiment shows a vertical orientation with the compression tool upper jaw 46 at the top and the lower jaw 48 at the bottom of
Although the invention has been described in detail above, it is expressly understood that it will be apparent to persons skilled in the relevant art that the invention may be modified without departing from the spirit of the invention. Various changes of form, design, or arrangement may be made to the invention without departing from the spirit and scope of the invention. Therefore, the above mentioned description is to be considered exemplary, rather than limiting, and the true scope of the invention is that defined in the following claims.
This application claims priority to U.S. Provisional Patent Application No. 62/189,514, filed on Jul. 7, 2015, the contents of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3800584 | Edwards, Sr. et al. | Apr 1974 | A |
4942757 | Pecora | Jul 1990 | A |
5421186 | Lefavour | Jun 1995 | A |
5511307 | Reiersgaard et al. | Apr 1996 | A |
5592738 | Reiersgaard et al. | Jan 1997 | A |
5775158 | Hensley | Jul 1998 | A |
5802908 | Frenken | Sep 1998 | A |
6035692 | Lucas | Mar 2000 | A |
6170145 | Lucas | Jan 2001 | B1 |
7010857 | Gloaguen | Mar 2006 | B2 |
7544892 | Susai et al. | Jun 2009 | B2 |
8312625 | Kumakura | Nov 2012 | B2 |
20090255319 | Sokol | Oct 2009 | A1 |
20100120288 | Drew et al. | May 2010 | A1 |
20110030211 | Kumakura | Feb 2011 | A1 |
20150229091 | Loncar | Aug 2015 | A1 |
20170012398 | Dinh | Jan 2017 | A1 |
20170201056 | Malloy | Jul 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20170012398 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62189514 | Jul 2015 | US |