Cable comprising sinusoidal paths along longitudinal surfaces for use in distributed sensing

Information

  • Patent Grant
  • 10788359
  • Patent Number
    10,788,359
  • Date Filed
    Thursday, June 21, 2018
    6 years ago
  • Date Issued
    Tuesday, September 29, 2020
    4 years ago
Abstract
A distributed fiber optic cable including an elongate body and optical fibers longitudinally housed in the elongate body. The optical fibers lie in in sinusoidal paths along longitudinal surfaces of a prism. The distributed fiber optic cable can be used for sensing an acoustic wave by measuring backscattered light from a laser pulse input into the optical fibers in the fiber optic cable.
Description
FIELD OF THE INVENTION

The invention relates to fiber optic devices and in particular to a fiber optical Distributed Acoustic Sensing (DAS) assembly that is adapted to sense the magnitude and direction of acoustic signals, and particularly those signals that are travelling at an angle or substantially perpendicular to the device.


BACKGROUND OF THE INVENTION

Various attempts have been made to provide sensing capabilities in the context of petroleum exploration, production, and monitoring, with varying degrees of success. Recently, these attempts have included the use of fiber optic cables to detect acoustic energy. Because the cables typically comprise optically conducting fiber containing a plurality of backscattering inhomogeneities along the length of the fiber, such systems allow the distributed measurement of optical path length changes along an optical fiber by measuring backscattered light from a laser pulse input into the fiber. Because they allow distributed sensing, such systems may be referred to as “distributed acoustic sensing” or “DAS” systems. One use of DAS systems is in seismic applications, in which seismic sources at known locations transmit acoustic signals into the formation, and/or passive seismic sources emit acoustic energy. The signals are received at seismic sensors after passing through and/or reflecting through the formation. The received signals can be processed to give information about the formation through which they passed. This technology can be used to record a variety of seismic information. Another application is in the field of in-well applications and acoustic fluid monitoring.


DAS systems typically detect backscattering of short (1-10 meter) laser pulses from impurities or inhomogeneities in the optical fiber. If fiber is deformed by an incident seismic wave then 1) the distance between impurities changes and 2) the speed of the laser pulses changes. Both of these effects influence the backscattering process. By observing changes in the backscattered signal it is possible to reconstruct the seismic wave amplitude. The first of the above effects appears only if the fiber is stretched or compressed axially. The second effect is present in case of axial as well as radial fiber deformations. The second effect is, however, several times weaker than the first. Moreover, radial deformations of the fiber are significantly damped by materials surrounding the fiber. As a result, a conventional DAS system with a straight fiber is mainly sensitive to seismic waves polarized along the cable axis, such as compression (P) waves propagating along the cable or shear (S) waves propagating perpendicular to the cable. The strength of the signal varies approximately as cos3 θ, where θ is the angle between the fiber axis and the direction of wave propagation (for P waves). Thus, while there exists a variety of commercially available DAS systems that have varying sensitivity, dynamic range, spatial resolution, linearity, etc., all of these systems are primarily sensitive to axial strain. Acoustic signals travelling normal to the fiber axis may sometimes be referred to as “broadside” signals and, for P waves, result in radial strain on the fiber. Thus, as the angle between direction of travel of the acoustic signal and the fiber axis approaches 90°, DAS cables become much less sensitive to the signal and may even fail to detect it. The Appendix attached hereto provides further discussion of the mathematics of sinusoidal fibers.


Hence, it is desirable to provide an improved cable that is more sensitive to signals travelling normal to its axis and enables distinguishing radial strain from the axial strain. Sensitivity to broadside waves is particularly important for seismic or microseismic applications, with cables on the surface or downhole. In addition to broadside sensitivity, it is also desirable to provide three-component (3C) sensing, from which the direction of travel of the sensed signal can be determined.


SUMMARY OF THE INVENTION

In accordance with preferred embodiments of the invention there is provided a distributed fiber optic cable comprising an elongate body and a first optical fiber longitudinally housed in the body, wherein the fiber describes a sinusoid having an amplitude and a first wavelength along the length of the body and wherein the sinusoid rotates along the length of the body so as to describe a twisted sinusoid having a twist wavelength.


The cable may provide a plurality of sensing channels and the first wavelength may be a function of a desired channel length. The first wavelength may also be a function of the amplitude.


The first wavelength may be between 0.001 and 0.1 m, between 0.005 and 0.1 m, or more preferably between 0.005 and 0.05 m. The twist wavelength may be between 1 m and 50 m, between 2 m and 20 m, or more preferably approximately 10 m.


The fiber optic cable may define a helix.


The amplitude may be a function of the thickness of the body.


The invention further provides a method for sensing an acoustic wave, comprising a) providing a set of signals collected from a distributed fiber optic cable comprising an elongate body and a first optical fiber longitudinally housed in said body, wherein the fiber describes a sinusoid having an amplitude and a first wavelength along the length of the body and wherein the sinusoid rotates along the length of the body so as to describe a twisted sinusoid having a twist wavelength, b) processing the signals so as to divide the fiber in each twist wavelength of cable into a predetermined number of channels, c) measuring the amplitudes in each channel and calculating the maximum and minimum amplitude in a preselected length of cable, and d) using the calculated maximum and minimum for the preselected length of cable to determine the amplitude and direction of the wave at the preselected length of cable.


The preselected length of cable in step c) may be equal to one-half of the twist wavelength. The twist wavelength may be between 1 m and 50 m and the predetermined number of channels may be 10. The twist wavelength is between 2 m and 20 m. More preferably, the twist wavelength is 10 m and the preselected length of cable in step c) is 5 m.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more detailed understanding of the invention, reference is made to the accompanying Figures wherein:



FIG. 1 is a schematic view of a triangular prism having a sinusoidal path along each of its longitudinal surfaces;



FIG. 2 is a schematic view of a coordinate system;



FIG. 3 is an illustration of a possible combination of coordinate systems;



FIG. 4 is a diagram showing orientation of the ζ-axis with respect to the prism coordinate system; and



FIG. 5 is a schematic illustration of a twisted strip in accordance with an embodiment of the invention.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

An initial analysis starts with a configuration in which three sinusoidal fibers lie in the three longitudinal surfaces of a triangular prism as shown below. All three fibers are assumed to have the same shape.


A coordinate system (x, y, z) is chosen such that the z axis is directed along the prism, and x- and y-axes lie in its cross-section. One of the prism sides lies in the (x, z) plane, as illustrated in FIG. 2. Two other sides lie in the (x′, z) and (x″, z) planes. The x′ and x″ axes are rotated with respect the x-axis on angles ψ=60 and ψ−=120° correspondingly.


Generally speaking, the strain tensor ejk has 6 independent components. Using three fibers one can do only 3 independent measurements. These 3 measurements are not sufficient to deduce 6 unknown components of the strain tensor.


One way to obtain sufficient data may be to combine triangular bodies to form a larger body, as shown in FIG. 3. If the angles are selected to provide sufficient information, all 6 unknown components of the strain tensor may be calculated.


However, the strain tensor can be determined uniquely if with particular types of elastic deformations are assumed. In most geophysical application one measures primary seismic waves. The waves coming from distant targets can be approximately considered as plane waves.


Transformation of the Strain Sensor


Suppose that a plane primary wave propagates along the ζ-axis. Orientation of the ζ-axis with respect to the prism coordinate system can be specified by two angles, θ and ϕ, as is shown in FIG. 4. The strain tensor has only one component eζζ in the coordinate system (ξ,η,ζ), where ζ and η are arbitrary axes so that the three axes ξ, η and ζ form an orthogonal basis. Components of the strain tensor in two different coordinate systems are related as











e


x




x




=






χ





ξ







χ





ξ




e
ξξ


+





χ





η







χ





η




e
ηη


+





χ





ζ







χ





ζ




e
ζζ


+


(






χ





ξ







χ





η



+





χ





η







χ





ξ




)



e
ξη


+


(






χ





ξ







χ





ζ



+





χ





ζ







χ





ξ




)



e
ξζ


+


(






χ





η







χ





ζ



+





χ





ζ







χ





η




)




e
ηζ

.








From






which





it





follows





that















e
xx

=


e
ζζ



sin
2



θcos
2


ϕ


,














e
yy

=


e
ζζ



sin
2



θsin
2


ϕ


,










e
xy

=


e
ζζ



sin
2


θ





sin





ϕ





cos





ϕ


,














e
zz

=


e
ζζ



cos
2



θ
.








(
2
)







In what follows that eζζ is positive and it refers to the maximum strain in the wave. Equation (2) shows that the strain tensor in plane primary waves is fully determined by three variables: eζζ, θ, and φ, that can be reconstructed from three independent measurements. Transition between the coordinate systems (x′, y′, z) and (x, y, z) is given by the equations

x′=x cos ψ+y sin ψ, y′=−x sin ψ+y cos ψ.  (3)

Using Eq. (3) and Eq. (1), gives

ex′x′=cos2 ψexx+2 sin ψ cos ψexy+sin2 ψeyy.  (4)

The expression for ex″x″ is obtained by making the replacement ψ→π−ψ is Eq. (4),

ex″x″=cos2 ψexx−2 sin ψ cos ψexy+sin2 ψeyy.  (5)

Twisted Sinusoid


Another approach is to use a single twisted strip, so that s orientation angle ψ varies with z. The signal measured by this strip is equal to

S(ψ)=α(cos2 ψexx+2 sin ψ cos ψexy+sin2 ψeyy)+ezz.  (18)

Taking the derivative of S with respect to angle ψ, gives










dS
dz

=


α


[



-
sin






2

ψ






(


e
xx

-

e
yy


)


+

2





cos





2

ψ






e
xy



]


.





(
19
)








Using Eq. (2) to calculate components of the strain tensor, reduces Eq. (19) to










dS
dz

=


-
α







e
ζζ



sin
2






θ







sin


[

2


(

ϕ
-
ψ

)


]


.






(
20
)








The signal has extrema at the points where dS/dz=0, i.e. at

ψ=ϕ and ψ=ϕ±(π/2)

It is straightforward to check that the signal has a maximum at ψ=ϕ and a minimum at ψ=ϕ±(π/2). The correspondent values of the signal are equal to

Smax=eζζ(α sin2 θ+cos2 θ), Smin=eζζ cos2 θ.  (23)

From Eq. 23 it follows that











tan
2


θ

=




S
max

-

S
min



α






S
min



.





(
24
)








Solving Eq. 24 and substituting the result into Eq. 23 allows one to reconstruct eζζ.


EXAMPLE

A hypothetical cable has a radius for outer fibers with a 30-degree wrapping angle of 17.4 mm. A flat strip with a sinusoidal fiber described in the plane of the strip by:

y(x)=a·sin(bx)=α·sin(φ)

with x=the inline distance along the strip. For a strip length of x=2π/b, the length of the fiber equals







4




1
+


(

a





b

)

2



b





0

π
2





d






φ
(

1
-




(

a





b

)

2


1
+


(

a





b

)

2



·


sin
2



(
φ
)









=

4





1
+


(

a





b

)

2



b

·
E







(




(

a





b

)

2


1
+


(

a





b

)

2




)






E is a complete elliptic integral of the second kind, which can be expressed as a power series.


Continuing the hypothetical, a channel is required every 2 m along the cable, while the channel length measured along the fiber is 8 m. Using a=0.0174 m, it can be calculated that 343.5 sinusoids need to be fitted into 2 m, corresponding to a wavelength λ1=0.0183 m.


A flat strip is only sensitive in the x- and y-directions, but by twisting the strip it can be made sensitive to all 3 directions. FIG. 5 (not to scale) illustrates a twisted strip.


Assuming that the strip is twisted by π radians over a distance λ2=10 m, within each 10 m there will be 10 m/2 m=5 measurements, each with a different rotation along the cable axis, and each stepping on average by 180/5=36 degrees.


It may further be assumed that over the distance λ2 the incident seismic wave is approximately a plane wave. For the highest frequencies in the groundroll this assumption may not be optimal, but otherwise it is reasonable.


As set out in detail above, by measuring the amplitudes over these 5 channels per 10 m and determining (e.g. by interpolation) the maximum and minimum amplitudes, it is possible to determine all 3 components of a wavefield using a single fiber. Reliability of the amplitudes measurements is essential in this process.


There is a risk that the fiber may bend instead of being compressed in the desired geometry, i.e. with an amplitude in the strip of 1.74 cm and a sinusoid length of 1.83 cm. Since at least 5 sample points per 10 m are required, (the maximum station spacing assuming plane waves), a maximum of 2 m are available for the channel spacing along the cable. If it were possible to shift the channels between time samples by a fraction of a m, it would be possible to use large channel spacings along the cable, resulting in longer sinusoid lengths and reduced risk of bending of the fiber.


In preferred embodiments, the cable described herein is used on the earth's surface for detecting/monitoring seismic signals travelling through the subsurface. Thus, it may be used in conjunction with a ground anchor such as is known in the art. Similarly, the cable may be used in one or more boreholes to for detecting/monitoring detect seismic signals travelling through the subsurface.


In addition to the various applications mentioned above, the cables described herein can be used as towed streamer cables or deployed on the seabed (OBC).


The embodiments described herein can be used advantageously alone or in combination with each other and/or with other fiber optic concepts. The methods and apparatus described herein can be used to measure arrival times and waveforms of acoustic signals and in particular broadside acoustic waves. Arrival times and waveforms give information about the formation and can be used in various seismic techniques.


In still other applications, the methods and apparatus described herein can be used to detect microseisms and the data collected using the present invention, including broadside wave signals, can be used in microseismic localization. In these embodiments, the data are used to generate coordinates of a microseism. In still other applications, ability of the present systems to detect broadside waves and axial waves distinguishably can be used in various DAS applications, including but not limited to intruder detection, monitoring of traffic, pipelines, or other environments, and monitoring of various conditions in a borehole, including fluid inflow.


While preferred embodiments have been disclosed and described, it will be understood that various modifications can be made thereto without departing from the scope of the invention as set out in the claims that follow.

Claims
  • 1. A distributed fiber optic cable comprising: an elongate body comprising a prism having a plurality of longitudinal surfaces; anda plurality of optical fibers longitudinally housed in said elongate body, wherein each of said optical fibers lie in a different one of the plurality of longitudinal surfaces of the prism, and wherein each of the optical fibers has a sinusoidal shape along said different one of the plurality of longitudinal surfaces of the prism.
  • 2. The distributed fiber optic cable of claim 1, wherein said prism is a triangular prism comprising three longitudinal surfaces.
  • 3. The distributed fiber optic cable of claim 2, wherein said plurality of optical fibers comprises three optical fibers lying in said three longitudinal surfaces.
  • 4. The distributed fiber optic cable of claim 3, wherein said three optical fibers have the same sinusoidal shape.
  • 5. The distributed fiber optic cable of claim 2 further comprising a coordinate system (x, y, z) is chosen whereby a z-axis is directed longitudinally along the prism, and an x-axis and a y-axis lie in its cross-section, wherein one of the prism sides lies in an (x, z) plane, and two other sides lie in an (x′, z) plane and an (x″, z) plane, and wherein an x′-axis of the (x′, z) plane and an x″-axis of the (x″, z) plane of which are rotated with respect to the x-axis by angles ψ=60° and ψ−π=120°, respectively.
  • 6. A method for optically sensing an acoustic wave using a fiber optic distributed acoustic sensing assembly, comprising steps of providing the distributed fiber optic cable of claim 1 and measuring backscattered light from a laser pulse input into the optical fibers in the distributed fiber optic cable of claim 1.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a Divisional application of U.S. application Ser. No. 14/418,393, filed Jan. 29, 2015, which is a National Stage (§ 371) application of PCT/US2013/052647, filed Jul. 30, 2013, which claims the benefit of U.S. Provisional Application No. 61/678,482, filed Aug. 1, 2012. This case is also related to U.S. application Ser. No. 61/576,192, filed Dec. 15, 2011, and entitled “Detecting Broadside Acoustic Signals with a Fiber Optical Distributed Acoustic Sensing (Das) Assembly,” which is incorporated herein by reference in its entirety.

US Referenced Citations (57)
Number Name Date Kind
4141623 Dubost et al. Feb 1979 A
4524436 Hall et al. Jun 1985 A
4568408 Schmadel et al. Feb 1986 A
4634852 Shaw Jan 1987 A
5504720 Meyer et al. Apr 1996 A
5696628 Sutton et al. Dec 1997 A
6004639 Quigley et al. Dec 1999 A
6211964 Luscombe et al. Apr 2001 B1
6269198 Hodgson et al. Jul 2001 B1
6281489 Tubel et al. Aug 2001 B1
6510103 Knudsen et al. Jan 2003 B1
6588266 Tubel et al. Jul 2003 B2
6601671 Zhao et al. Aug 2003 B1
6840114 Niezgorski et al. Jan 2005 B2
6853780 Brandi et al. Feb 2005 B1
6874361 Meltz et al. Apr 2005 B1
7201221 Tubel et al. Apr 2007 B2
7224872 Goldner et al. May 2007 B2
7284903 Hartog Oct 2007 B2
7315666 Van Der Spek Jan 2008 B2
7369716 Berg et al. May 2008 B2
7668411 Davies et al. Feb 2010 B2
7740064 McCoy et al. Jun 2010 B2
7946341 Hartog et al. May 2011 B2
7954560 Mathiszik et al. Jun 2011 B2
8131121 Huffman Mar 2012 B2
8505625 Ravi et al. Aug 2013 B2
8848485 Bostick Sep 2014 B2
8924158 Kragh et al. Dec 2014 B2
9080949 Mestayer et al. Jul 2015 B2
9250120 Smith et al. Feb 2016 B2
9766119 Den Boer et al. Sep 2017 B2
20040043501 Means et al. Mar 2004 A1
20050115741 Terry et al. Jun 2005 A1
20060233482 Rambow Oct 2006 A1
20090132183 Hartog et al. May 2009 A1
20090219171 Vigneaux Sep 2009 A1
20100107754 Hartog et al. May 2010 A1
20100207019 Hartog et al. Aug 2010 A1
20100254650 Rambow Oct 2010 A1
20100315630 Ramos et al. Dec 2010 A1
20110044574 Strong Feb 2011 A1
20110069302 Hill et al. Mar 2011 A1
20110088462 Samson et al. Apr 2011 A1
20110088910 McCann et al. Apr 2011 A1
20110149688 Hill et al. Jun 2011 A1
20110185815 McCann Aug 2011 A1
20110216996 Rogers Sep 2011 A1
20110292763 Coates et al. Dec 2011 A1
20110320147 Brady et al. Dec 2011 A1
20120017687 Davis et al. Jan 2012 A1
20120018149 Fidan et al. Jan 2012 A1
20120020184 Wilson et al. Jan 2012 A1
20120057432 Hill et al. Mar 2012 A1
20120111104 Taverner et al. May 2012 A1
20120287749 Kutlik et al. Nov 2012 A1
20130242698 McEwen-King et al. Sep 2013 A1
Foreign Referenced Citations (14)
Number Date Country
2009158630 Dec 2009 WO
2010010318 Jan 2010 WO
2010034986 Apr 2010 WO
2010136810 Dec 2010 WO
2011010110 Jan 2011 WO
2011039501 Apr 2011 WO
2011058312 May 2011 WO
2011058313 May 2011 WO
2011058314 May 2011 WO
2011058322 May 2011 WO
2011067554 Jun 2011 WO
2011076850 Jun 2011 WO
2011141537 Nov 2011 WO
2011148128 Dec 2011 WO
Non-Patent Literature Citations (8)
Entry
Alexis Méndez et al., Overview of fiber optic sensors for NDT applications, Oct. 2007, IV NDT Panamerican Conference Buenos Aires, pp. 1-11 (Year: 2007).
Leno S. Pedrotti, Basic Geometrical Optics, In Fundamentals of Photonics, Module 1. 3, pp. 73-116, https://doi.org/10.1117/3.784938.ch3 (Year: 2008).
Unknown, Fiber-Optic Sensing Technologies, 2012, Pinnacle A Haliburton Service, Haliburton, pp. 1-12 (Year: 2012).
Xin Liu et al., Distributed Fiber-Optic Sensors for Vibration Detection, 2016, Sensors, 16, 1164, pp. 1-31 (Year: 2016).
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/052647, dated Jan. 2, 2014, 6 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/069464, dated Mar. 28, 2013, 12 pages.
Barrias et al., “A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications”, vol. 16, Issue No. 5, Sensors, May 23, 2016, 35 pages.
“Fiber Optic Sensor Technology”, Luna Innovations, Products and Services, Jun. 2015, Web link—www.AutomotiveTestingTechnologyInternational.com, 2 pages.
Related Publications (1)
Number Date Country
20180299322 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
61678482 Aug 2012 US
Divisions (1)
Number Date Country
Parent 14418393 US
Child 16014670 US