The contents of the following Japanese patent application are incorporated herein by reference,
Japanese Patent Application NO. 2020-203405 filed on Dec. 8, 2020.
The present invention relates to a cable connector connected to a cable and a method for manufacturing the cable connector.
Automotive and other cable connectors desirably have high cable tensile strength, and improved strength has been demanded of cable connections heretofore.
Patent Literature 1 discloses a configuration related to a connector terminal fixed to a cable. In the disclosed configuration, a sleeve is located on the outer perimeter of a cable jacket, a shield braid in the cable is folded back over the outer perimeter of the sleeve, and a shield shell barrel is further caulked thereto from outside. However, since the cable jacket of the connector terminal disclosed in Patent Literature 1 is thick and elastic, there are concerns that application of a load toward the opening direction of the sleeve and the barrel can loosen the caulking and make the conduction between the shield and the barrel unstable, and that the fixing strength between the cable and the connector terminal can decrease.
In view of this, a cable connector in which a caulking section is soldered has been developed in order to resolve these foregoing concerns.
However, the cable connector with a soldered caulking section has problems of increasing machining cost and creating variations in quality.
An object of the present invention is to provide a cable connector that can suppress an increase in machining cost and variations in quality while preventing loosening of the caulking, stabilizing conduction with a conductive part of the cable, and preventing a decrease in the fixing strength to the cable.
A cable connector according to a first aspect of the present invention is a cable connector connected to a cable including a conductive part and an insulating part covering the conductive part. The cable connector includes: a conductive contact that is connected to the conductive part; an insulating insulator that holds the contact; a conductive shell that includes a caulking section caulked to the insulating part and covers the insulator; and a cylindrical conductive first sleeve that is located over the caulking section and caulked to the insulating part via the caulking section.
A method for manufacturing a cable connector according to a second aspect of the present invention is a method for manufacturing a cable connector connected to a cable including a conductive part and an insulating part covering the conductive part. The method includes the steps of: connecting a conductive contact to the conductive part; holding the contact by an insulating insulator; covering the insulator with a main body section of a conductive shell and caulking a caulking section of the shell to the insulating part; and locating a cylindrical conductive sleeve over the caulking section and then caulking the sleeve to the insulating part via the caulking section.
If a force in a direction of loosening the caulking of the caulking section is applied from the insulating part of the cable etc., the cylindrical first sleeve suppresses the force in the direction of loosening the caulking of the caulking section.
According to the aspect(s) of the present invention, an increase in machining cost and variations in quality can be suppressed while preventing loosening of the caulking, stabilizing conduction with the conductive part of the cable, and preventing a decrease in the fixing strength to the cable.
A cable connector according to an embodiment of the present invention will be described in detail below with reference to the drawings as appropriate.
<Configuration of Cable Connector>
A configuration of a cable connector 1 according to the embodiment of the present invention will be described in detail below with reference to
The cable connector 1 is connected to a cable 100, and includes contacts 10, an inner sleeve 20, an insulator 30, a shell 40, an outer sleeve 50, a housing 60, and a cover 70.
The cable 100 includes a plurality of internal conductive parts 101, a plurality of internal insulating parts 102 covering the respective plurality of internal conductive parts 101, a braid part 103 serving as an external conductive part covering the internal insulating parts 102, and an external insulating part 104 covering the braid part 103. In the illustrated example, the number of internal conductive parts 101 is four.
The contacts 10 are made of a conductive material. As illustrated in
The fixing sections 11 are fixed and connected to the internal conductive parts 101 of the cable 100.
The engaging sections 12 are each formed by stamping a metal plate and bending the metal plate outward. The engaging sections 12 are engaged with the insulator 30, whereby the contacts 10 are held by the insulator 30.
The connection sections 13 are connected to conductive contacts of a not-illustrated counterpart connector by elastic force. The connection sections 13 each include a connection piece 131 that is formed by stamping a metal plate and bending the metal plate inward. The connection pieces 131 are connected to the conductive contacts of the counterpart connector with elastic deformation.
The inner sleeve 20 is made of a conductive material and has an open barrel configuration. The inner sleeve 20 is located between the external insulating part 104 and a caulking section 42 of the shell 40 later described. The inner sleeve 20 is cylindrically caulked to the external insulating part 104 of the cable 100. The caulked inner sleeve 20 has a circular cross section when cut by a plane orthogonal to an axis P of the cable 100 illustrated in
The insulator 30 is made of an insulating material and has a rectangular shape as illustrated in
The shell 40 is made of a conductive material, and includes a main body section 41, the caulking section 42, and a connection section 43 as illustrated in
The main body section 41 covers the insulator 30. The main body section 41 includes engaging pieces 411 formed by cutting and erecting outward a metal plate. The main body section 41 is connected to a conductive part of the not-illustrated counterpart connector.
The caulking section 42 has an open barrel configuration and is located between the inner sleeve 20 and the outer sleeve 50. The caulking section 42 is caulked to the external insulating part 104 via the inner sleeve 20 so that the braid part 103 of the cable 100 folded back over the outer perimeter of the inner sleeve 20 is sandwiched between the caulking section 42 and the inner sleeve 20. The caulking section 42 is cylindrically caulked to the external insulating part 104 of the cable 100. The caulking section 42 is caulked to have a circular cross section when cut by a plane orthogonal to the axis P of the cable 100 illustrated in
The connection section 43 connects the main body section 41 to the caulking section 42.
The outer sleeve 50 is made of a conductive material. As illustrated in
The outer sleeve 50 is not limited to the hexagonal shape illustrated in
As illustrated in
The opening 61 is opened in the front end and exposes the insulator 30 to the outside. The not-illustrated counterpart connector is inserted into the opening 61.
The mating piece 62 is elastically deformable. The mating piece 62 is elastically deformed and mated with a not-illustrated lock part of the counterpart connector, whereby the cable connector 1 and the counterpart connector are connected.
The engaging protrusions 63 are located on the rear end side and protruded outward.
As illustrated in
<Method for Manufacturing Cable Connector>
A method for manufacturing the cable connector 1 according to the embodiment of the present invention will now be described in detail.
As illustrated in
Next, the external insulating part 104 of the cable 100 is partly cut off to expose the braid part 103 from the external insulating part 104. The external insulating part 104 of the cable 100 is then inserted through the inner sleeve 20, and the inner sleeve 20 is caulked to the external insulating part 104 as illustrated in
Here, the inner sleeve 20 is caulked to the external insulating part 104 with a circumferential end 20a and the other circumferential end 20b in contact with each other. This prevents excessive caulking of the inner sleeve 20, whereby disconnection of the cable 100 resulting from caulking can be prevented.
Next, as illustrated in
Next, the cable 100 is inserted through the cover 70 and through the outer sleeve 50. The step of inserting the cable 100 through the cover 70 and the step of inserting the cable 100 through the outer sleeve 50 may be performed at any timing before the step of folding back the braid part 103 over the outer perimeter of the inner sleeve 20.
Next, as illustrated in
Next, as illustrated in
Next, the outer sleeve 50 is moved to cover the caulking section 42. As illustrated in
Next, the housing 60 is attached to the shell 40 in order to cover the shell 40.
Next, the cover 70 is moved to the rear of the housing 60 to engage the engaging pieces 71 of the cover 70 with the engaging protrusions 63 of the housing 60, whereby the cable connector 1 is complete.
With the cable connector 1 produced by the abovementioned manufacturing method, the tensile strength of the cable 100 can be improved by sandwiching the braid part 103 between the inner sleeve 20 and the shell 40.
Moreover, the placement of the outer sleeve 50 can prevent the decrease in strength caused by the elastic nature of the external insulating part 104 serving as a cushion and preventing rigidity of the inner sleeve 20 and by force being applied in the loosening direction of the caulking acting on the inner sleeve 20 and the caulking section 42 of the shell 40.
Caulking the external insulating part 104 of the cable 100 via the inner sleeve 20 can maintain caulking strength while avoiding deterioration in signal transmission performance due to excessive caulking and preventing disconnection of the cable 100 resulting from the caulking.
Sandwiching the braid part 103 between the caulking section 42 of the shell 40 and the inner sleeve 20 and caulking the caulking section 42 to the external insulating part 104 can stabilize contact with the braid part 103 and prevent a decrease in caulking strength.
Forming the outer sleeve 50 in the circumferentially seamless cylindrical shape can reliably prevent the inner sleeve 20 and the caulking section 42 of the shell 40 being expanded by the external insulating part 104 and the like.
Incidentally, if the thickness of the shell 40 is increased to improve the caulking strength to the cable 100, the spring property of the shell 40 decreases. This lowers the contact performance between the shell 40 and the counterpart connector, and lowers the attachability of the shell 40 to the insulator 30 and the housing 60.
According to the present embodiment, the caulking section 42 is caulked to the external insulating part 104. The conductive shell 40 covers the insulator 30, and the cylindrical conductive outer sleeve 50 is placed over the caulking section 42 and caulked to the external insulating part 104 via the caulking section 42. The provision of such members can suppress an increase in machining cost and restrict variations in quality while preventing loosening of the caulking, stabilizing conduction with the conductive parts of the cable, and preventing a decrease in the fixing strength to the cable.
It will be understood that the types, arrangement, and number of members according to the present invention are not limited to the aforementioned embodiment, and modifications can be made appropriately without departing from the gist of the invention, like replacing the components with ones of similar operations and effects.
Specifically, in the present embodiment, the cable connector 1 is connected to the cable 100 including the internal conductive parts 101, the internal insulating parts 102, the braid part 103, and the external insulating part 104. However, the present invention is not limited thereto, and the cable connector 1 may be connected to a cable including conductive parts and insulating parts covering the conductive parts.
In the aforementioned embodiment, the cable connector 1 is connected to the cable 100 including four internal conductive parts 101. However, the present invention is not limited thereto, and the cable connector 1 may be configured to connect to a cable including one or a plurality of internal conductive parts other than four.
In the present embodiment, the caulking section 42 of the shell 40 is caulked with the braid part 103 sandwiched between the inner sleeve 20 and the caulking section 42. However, the present invention is not limited thereto, and the caulking section 42 of the shell 40 may be caulked without the braid part 103 sandwiched between the inner sleeve 20 and the caulking section 42.
In the aforementioned embodiment, the cable connector 1 includes the inner sleeve 20. However, the present invention is not limited thereto, and the inner sleeve 20 may be omitted.
The cable connector and the method for manufacturing the cable connector according to the embodiment of the present invention are suitable to suppress an increase in machining cost and restrict variations in quality while preventing loosening of the caulking, stabilizing the conduction with the conductive parts of the cable, and preventing a decrease in the fixing strength to the cable.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-203405 | Dec 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4634208 | Hall | Jan 1987 | A |
4799902 | Laudig | Jan 1989 | A |
7909647 | Kawaguchi | Mar 2011 | B2 |
9537231 | Hall | Jan 2017 | B2 |
10594057 | Kanemura | Mar 2020 | B2 |
20040018771 | Togashi | Jan 2004 | A1 |
20120202372 | Hardy | Aug 2012 | A1 |
20170110838 | Sasaki | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
2014017181 | Jan 2014 | JP |
2019200898 | Nov 2019 | JP |
2020092063 | Jun 2020 | JP |
Entry |
---|
Office Action issued for counterpart Japanese Application No. 2020-203405, issued by the Japan Patent Office dated Oct. 26, 2021 (drafted on Oct. 20, 2021). |
Number | Date | Country | |
---|---|---|---|
20220181818 A1 | Jun 2022 | US |