1. Field of the Invention
The present invention relates to an cable connector assembly, and more particularly to structure of the cable connector connecting with the cable.
2. Description of Related Arts
U.S. Pat. No. 8,794,981, issued on Aug. 5, 2014, discloses a cable connector assembly. The cable connector assembly includes a PCB having a number of contacts, a cord coupled to the contacts on the PCB, and a ground bar coupled with some contact on the PCB. The ground bar may be made of a conductive material. The PCB has a ground node coupling to the ground bar via one or more wires inside the PCB. The ground bar provides grounding to the connector and a mating connector into which the connector is inserted. The cord includes a wire coupled to the ground node.
U.S. Pat. No. 7,534,143, issued on May 19, 2009, discloses a cable connector assembly. The cable connector assembly includes a cable connector and a cable connecting with the cable connector. The cable connector includes an insulative housing and a number of conductive terminals mounted on the insulative housing. The conductive terminal includes two pairs of differential contacts and a grounding contact located between the two pairs of differential contacts for preventing cross-talk. The cable includes first set of wires and second set of wires. The second set wires include a pair of differential pairs, a grounding conductor, and an outer jacket enclosing the differential pair and the grounding conductor. The grounding contact has a tail portion defining a pair of wire-receiving slots communicating with each other and forming an angle therebetween. The grounding conductors are angled out from the outer jackets and toward each other to be received and soldered in the wire-receiving slots of the tail portion of the grounding contact.
Hence, the existing cable connector only connect with a kind of cable. When needing another kind of cable, structures of the cable connectors need be redesigned.
An object of the present invention is to provide an cable connector. The cable connector can connect with two kinds of cables.
To achieve the above-mentioned object, a cable connector assembly includes a cable connector comprising an insulative housing and a plurality of conductive terminals mounted in the insulative housing, the conductive terminal having a connecting portion; a cable having a plurality of wires electrically connecting with the connecting portions, the wire comprising a core, an insulative layer enclosing the core, and a grounding layer enclosing the insulative layer, the core extending beyond the grounding layer; and a conductive element electrically connecting with the connecting portion of a selected conductive terminal. The conductive element electrically connects the grounding layers; and the cores of the wires electrically connect with the connecting portions of the remaining conductive terminals.
According to the present invention, the conductive element makes the assembly convenient for adapting to different kinds of cable wires.
Reference will now be made in detail to a preferred embodiment of the present invention.
Referring to
The insulative housing 10 includes a base 11, a tongue plate 12 forward extending from the base 11, and a supporting portion 13 backward extending from the base 11. The base 11 is thicker than the tongue plate 12 and the supporting portion 13. The insulative housing 10 defines a number of position grooves 14 receiving the wires 201 for welding easily.
The conductive terminals 20 includes five first terminals 21 and four second terminals 22. The five first terminals 21 include two pairs of signal terminals for transmitting the high speed signal and a grounding terminal between the two pairs of the signal terminals. Speed of each pair of the signal terminals is 10 G/s. The four second terminals 22 transmit the signal of the USB 2.0. The first terminal 21 has a first contact section 210 in front end and a first connecting portion 211 in rear end for welding with the wire 201 of the cable 200. The first connecting portions 211 are arranged in a row. The second terminal 22 has a second contact section 220 in front end and a second connecting portion 221 in rear end for welding with the wire 201 of the cable 200. The second connecting portions 221 are arranged in another row. The wires 201 are arranged two rows. One row of the wires 201 weld with the first connecting portions 211, and the other row of the wires 201 weld with the second connecting portions 221. The first contact sections 210 are behind the second contact seconds 220. The first connecting portions 211, the first contact sections 210, and the second contact sections 220 are in a same side of the insulative housing 10, and the second connecting portions 221 are in opposite side of the insulative housing 10. The first contact sections 210 are bending and elastic of the structure, the second contact sections 220 are flat and non elastic of the structure.
The conductive element 30 includes a main body 31 being parallel to the arrangement direction of the first connection portions 211 and a contact end 32 forward extending from the main body 31. The contact end 32 electrically connects with a first connecting portion 211 of the grounding terminal. A length of the main body 31 is larger than the length of a row of first connecting portions 211. So the grounding layers 204 of the wires 201 welding on the main body 31 more conveniently. The contact end 32 has a number of holes 320 in the middle and a number of cutouts 321 in two sides. The holes 320 and the cutouts 321 make the contact end 32 to weld with the selected first connecting portion 211 more easily.
The cable connector 100 can also connect with a shielded twisted pair cable. The shielded twisted pair cable has a number of signal wires and grounding wires. Both of the signal wires and the grounding wires are arranged side by side. At this time, the grounding wire can directly weld with the first connecting portion 211 of the grounding terminal or the contact end 32. The cable connector 100 can weld with two kinds of cables, so then generality of the cable connector 100 is increased.
Referring to
The insulative housing 310 has three mounting holes 313 in the rear end face. The sorting block 360 has an upper surface 361, a bottom surface 362, a front surface 363 connecting with the upper surface 361 and the bottom surface 362, and three mounting posts 364 forward extending from the front surface 363. The mounting posts 364 receive in the mounting holes 313. So the sorting block 360 can directly mount on an existing insulative housing 310. The insulative housing 310 do not need remark.
The bottom surface 362 defines a first slot 365 and a second slot 366 forward extending from the first slot 365, and a number of first position grooves 367 in two sides of the second slot 366. The first slot 365 connects with the second slot 366. The conductive element 330 includes a main body 331 and a contact end 332 forward extending from the main body 331. The main body 331 is received in the first slot 365. The contact end 322 is received in the second slot 366 and extends beyond the second slot 366 to weld with selected conductive terminal 320. The upper surface 361 of the sorting block 360 defines a number of second position grooves 368. The wires 401 respectively receive in the corresponding first position grooves 367 and second position grooves 368.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0032336 | Jan 2014 | CN | national |
2014 2 0812502 | Dec 2014 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4975069 | Fedder | Dec 1990 | A |
7534143 | Tsao | May 2009 | B1 |
7717733 | Yi et al. | May 2010 | B1 |
8062050 | Wu | Nov 2011 | B2 |
8133070 | Hsueh | Mar 2012 | B2 |
8303329 | Wu | Nov 2012 | B2 |
8398427 | Wu | Mar 2013 | B2 |
8708718 | Li | Apr 2014 | B2 |
8721361 | Wu | May 2014 | B2 |
8794981 | Rodriguez et al. | Aug 2014 | B1 |
8956167 | Wu | Feb 2015 | B2 |
20090047825 | Wu | Feb 2009 | A1 |
20090197459 | Yu | Aug 2009 | A1 |
20110256764 | Wu | Oct 2011 | A1 |
20130164990 | Tsai | Jun 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150214672 A1 | Jul 2015 | US |