BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a new I/O connection, and more particularly to a cable connector transmitting high speed signal.
2. Description of Related Art
Recently, personal computers (PC) are used of a variety of techniques for providing input and output. For example, Universal Serial Bus (USB) is a serial bus standard to the PC architecture with a focus on computer telephony interface, consumer and productivity applications. The design of USB is standardized by the USB Implementers Forum (USB-IF), an industry standard body incorporating leading companies from the computer and electronic industries. USB can connect peripherals such as mouse devices, keyboards, PDAs, gamepads and joysticks, scanners, digital cameras, printers, external storage, networking components, etc. For many devices such as scanners and digital cameras, USB has become the standard connection method.
As a trend of high speeding rates and miniaturization, from an electrical standpoint, the higher data transfer rates of non-USB protocols are highly desirable for certain applications.
Hence, it is desirable to have an improved structure of an electrical connector.
BRIEF SUMMARY OF THE INVENTION
Accordingly, the object of the present invention is to provide a cable connector with an improved grounding plate.
In order to achieve the above-mentioned object, a cable connector comprises an insulative housing comprising two sidewalls and a mating slot defined between said two sidewalls, and a plurality of terminals received in the insulative housing. The terminals comprise contacting portions exposed to the mating slot and connecting portions behind a rear end of the insulating housing. The two sidewalls are loaded with a first row and a second row of said plurality of terminals respectively, the first row comprises signal terminals and grounding terminals. A grounding plate is inserted in the insulating housing and between said two rows of the plurality of terminals. The grounding plate defines resilient arms and connecting legs, the resilient arms slant to the first row of the plurality of terminals and touch with the grounding terminals.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of the present embodiment when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an assembled perspective view of a cable connector in accordance with the present invention, which mates with a board connector;
FIG. 2 is a cross-sectional view of FIG. 1 taken along lines 2-2;
FIG. 3 is an exploded perspective view of the cable connector shown in FIG. 1 without the metallic shell;
FIG. 4 is a partially assembled perspective view of FIG. 3;
FIG. 5 is a partially assembled perspective view of FIG. 3; and
FIG. 6 is an assembled perspective view of FIG. 4.
DETAILED DESCRIPTION OF THE INVENTION
Reference will now be made to the drawing figures to describe the present invention in detail.
Referring to FIGS. 1-2, a cable connector 100 made in accordance with the present invention connecting with a cable 101, is engaging with a board connector 200 mounted on a printed circuit board 201. The cable connector 100 surrounded with a metallic shell 102, comprises a grounding plate 3 touching with grounding terminals 21a of conductive terminals 2 located therein. The board connector 200 comprises a grounding plate 8 touching with corresponding grounding terminals 76 of conductive terminals thereof Said two grounding plates benefit reduction of cross-talk produced between the upper and lower rows of the terminals and reduction of electrical length to modify resonance frequencies.
Referring to FIG. 3, the cable connector 100 comprises insulating housing 1 defining two front sidewalls 11, resulting in a mating slot 12 between said two front sidewalls 11. A plurality of passageways 13 are disposed along the inner of the sidewalls 11 and run through a rear end of the housing. Two rows of terminals 21, 22 are inserted forwardly into the passageways 13. The first row of terminals 21 has two wider grounding terminals 21a in the terminal row, which have a similar configuration to the reminder terminals and are used for power delivery and grounding function. The terminals comprise contacting portions 211 at one ends thereof and connecting portions 212 at another ends thereof Middle portions have bars for retaining with the passageways 13. After the terminals 2 are received in passageways 13 shown in FIG. 4, the contacting portions 211 are exposed to the mating slot 11 and arc free ends 213 of the contacting portions in the holes 111 defined in front edges of the sidewalls 11. The connecting portions 212 are located behind the rear edge of the housing. Please notes, the connecting portions 212a of the wider grounding terminals have a same wide dimension with other terminals. Therefore, a free space 214 is kept behind the grounding terminal, i.e., a larger interval is formed between a terminal and the grounding terminal. A pair of posts 14 are defined at two sides of the rear edge of the housing, an inverted U-shaped guiding recess 141 is defined at each post 14. The two guiding recesses 141 are aligned with a space between the connecting portions 212 of said two rows of terminals 2. Two latch arms 103 are received in grooves defined at two sides of the sidewalls, which can be formed with the metallic shell 102.
The grounding plate 3 comprises a main body 31, two resilient arms 43 slanting rearwards and two connecting legs 33 bending rearwards. The resilient arms and the connecting legs slant upward towards the first row of the terminals 21. The grounding plate 3 is inserted in a slit 15 running through the rear edge of the housing as best shown in FIG. 4. The grounding plate 3 partitions most of said two rows of terminals. The connecting legs 33 extend in the free space 214 adjacent to the connecting portion 212a, so that connecting portions in the first row have regular intervals.
Referring to FIG. 6, an electronic board 4 is inserted along the guiding recesses 141 of the post so as to connect with the connecting portions 212 of the terminals and the connecting legs 33 of the grounding plate 3. The adjacent connecting portion 212a of the grounding terminal and the connecting leg 33 of the grounding plate are seated on a same conductive pad 41 on one end of the board. The other end of the board has conductive pads 42 to connect with conductive wires of the cable 101.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.