The present disclosure relates generally to the field of cable connectors (e.g., coaxial cable connectors) used to connect cables to various electronic devices such as televisions, antennas, set-top boxes, and similar devices. More specifically, the present disclosure relates to a cable connector having features to facilitate maintaining a conductive path through the connector.
Conventional coaxial cable connectors generally include a connector body, a nut coupled to the connector body, and an annular post coupled to the nut and/or the body. A locking sleeve may further be used to secure a coaxial cable within the body of the coaxial cable connector. Typically, the nut and the annular post are constructed of conductive metals or conductive plastics. A conductive path is formed from an outer conductor of the cable to the electronic device via the post of the connector.
It would be advantageous to provide a connector with an improved conductive path formed between the post and nut.
One embodiment relates to a cable connector. The cable connector includes a body having a forward end and a rearward end opposite the forward end, a post disposed at least partially within the body, a fastener coupled to the forward end of the body, and a compressible member disposed on an outer surface of the body. The rearward end of the body is configured to receive a cable. The post includes a flange portion extending radially from a forward end of the post. The fastener is configured to engage a mating connector. The fastener is axially movable between a forward position and a rearward position, and wherein the fastener comprises an interior surface configured to contact the flange portion of the post when the fastener is in the forward position. The compressible member is configured to force the fastener toward the forward position such that the interior surface of the fastener provides a continuous pressure against the flange of the post when the fastener is in the forward position.
Another embodiment relates to a coaxial cable connector. The coaxial cable connector includes a connector body having a forward end and a rearward end opposite the forward end, an annular post disposed at least partially within the connector body, a fastener coupled to the forward end of the body and configured to engage a mating connector, and a spring element disposed between the fastener and an outer surface of the connector body. The rearward end of the body is configured to receive a coaxial cable. The post includes a flange portion extending radially from a forward end of the annular post. The fastener is axially movable between a forward position and a rearward position. The fastener comprises an interior surface configured to contact the flange portion of the post when the fastener is in the forward position. The spring element is configured to exert a force on the fastener in a forward direction toward the forward position such that the interior surface of the fastener remains in substantially continuous contact with the flange of the post unless another force is exerted on the fastener in a rearward direction.
Yet another embodiment relates to a coaxial cable connector including a connector body having a forward end and a rearward end opposite the forward end, an annular post disposed at least partially within the connector body, a fastener coupled to the forward end of the body and configured to engage a mating connector, and an elastomeric element having a flat, elongated inner surface. The body includes a rearward end configured to receive a coaxial cable. The annular post includes a flange portion extending radially from a forward end of the annular post. The fastener is axially movable between a forward position and a rearward position. The fastener comprises an interior surface configured to contact the flange portion of the post when the fastener is in the forward position. The elastomeric element is disposed over at least a portion of an outer surface of the fastener. The elastomeric element is compressed between the connector body and the fastener in both the forward position and the rearward position and configured to exert force on the fastener to press the fastener in a forward direction toward the forward position.
Referring to the FIGURES generally, coaxial cable connectors typically include a connector body (e.g., an annular collar) for accommodating a coaxial cable. A fastener (e.g., an annular nut) may be rotatably connected to the body for providing mechanical attachment of the connector to an external device (e.g., a mating connector). An annular post may be coupled to the body. The nut may include a threaded portion or other attachment feature (e.g., for attachment to an F-type port, RCA port, a BNC port, another connector such as a coupling connector, etc.) that enables attachment of the connector to a mating connector or other device. The body includes a rearward portion configured to receive the coaxial cable. The connector may further include a locking sleeve or other component intended to facilitate retention of the cable within the connector. Various exemplary embodiments are provided that are configured to facilitate a solid physical and electrical connection between the fastener and the post by providing a force or pressure in the forward direction (e.g., toward an end of the connector configured to contact the port or other connector). In some embodiments, the force or pressure may be exerted on the fastener by a compressible member disposed on an outer surface of the body (e.g., between the body and the fastener). In some embodiments, connectors may continue to propagate and shield RF signals regardless of torque requirements (e.g., as recommended by the Society of Cable Telecommunications Engineers).
Referring to
Referring to
Connector body 22 can be made of a metallic material such as aluminum or copper that can be casted, extruded, or machined. In other embodiments, connector body 22 may be made of a polymer, another material, or combination of materials. Connector body 22 is a generally cylindrical body including a first end 30 (e.g., rear end, cable receiving end, etc.) with an inner diameter sized to receive the outer diameter of the outer jacket 18 with a small amount of excess space.
First end 30 of body 22 may be configured to receive sleeve 24 and may include an inwardly extending projection 32 for coupling with locking sleeve 24. In other embodiments, connector body 22 may include another feature such as a groove, recess, or detent for coupling connector body 22 to locking sleeve 24. Coupling features may be provided on the inner surface or outer surface of connector body 22. Locking sleeve 24 is a substantially tubular member that receives the end of coaxial cable 10. Locking sleeve 24 may include one or more ridges or projections 34, which cooperate with the projection 32 on the connector body 22 to couple locking sleeve 24 to connector body 22.
Connector body 22 has an opposite second end 40 (e.g., front end, forward end, etc.). Second end 40 is operatively coupled to post 26 and fastener 28. Post 26 and fastener 28 may be at least partially formed of a conductive material. According to one exemplary embodiment, post 26 and fastener 28 are formed from a metallic material such as aluminum or copper that can be casted, extruded, or machined. According to other exemplary embodiments, post 26 and fastener 28 are formed from another suitable material such as a conductive polymer.
Post 26 may include a flange 42 for securing an axial relationship between post 26 and fastener 28 and/or connector body 22. Flange 42 contacts second end 40 of connector body 22 to limit the movement of post 26 relative to connector body 22. Post 26 may also include an annular extension 44 that is received in connector body 22. An annular chamber 46 is formed between extension 44 and connector body 22 for receiving outer conductor 16 and outer jacket 18 of coaxial cable 10. According to an exemplary embodiment, the distal end of annular extension 44 includes an outwardly extending ramped flange portion or “barb” 48 to compress outer conductor 16 and outer jacket 18 of coaxial cable 10 in annular chamber 46 and facilitate the retention of coaxial cable 10 in connector body 22.
According to an exemplary embodiment, connector 20 may further include a sealing member 60 to provide a seal between fastener 28 and connector body 22. Sealing member 60 reduces the likelihood that moisture, debris or other undesirable materials will enter the interior of connector 20 (e.g., annular chamber 46). According to an exemplary embodiment, sealing member 60 is an 0-ring that is compressed in a radial direction between connector body 22 and fastener 28. In other exemplary embodiments, sealing member 60 may be another resilient body such as a gasket or an elastomeric material integrally formed with connector body 22 or fastener 28 or coupled to connector body 22 or fastener 28.
Fastener 28 is rotatably coupled to second end 40 of connector body 22. Fastener 28 may include an inwardly extending shoulder or flange 62. The axial movement of fastener 28 in a forward direction relative to connector body 22 and post 26 is limited by the contact of flange 62 of fastener 28 with flange 42 of post 26.
Fastener 28 may include various features to facilitate the rotation of fastener 28 relative to connector body 22. For instance, according to various exemplary embodiments, fastener 28 may comprise a hex nut, a wing nut, a nut with a knurled surface for finger-tightening, a nut with an overmold feature (see
As shown in
According to another embodiment, the number of threads per inch (TPI) 122 of inner threads 66 is reduced (e.g., less than 32 TPI) to increase the likelihood that internal threads 66 are always in contact with the thread of the port or terminal on the device, connector or coupling device engaging internal threads 66. The number of threads 66 may be similarly reduced to avoid damaging the mating threads. According to an exemplary embodiment, threads 66 have a pitch between 32 and 30 TPI. According to one particular embodiment, fastener 28 may include a minimum of 3 full threads 66 but no more than 4 full threads 66 at a pitch of between 31 and 32 TPI. In one embodiment, fastener 28 may have threads 66 with both a reduced pitch diameter and a reduced TPI. In some embodiments, connectors including a fastener with a reduced pitch diameter and/or a reduced TPI may also include a compressible member configured to apply a force against the fastener to press the fastener into contact with a post of the connector.
As shown in
In a first position, flange 62 of fastener 28 contacts flange 42 of post 26 to form a conductive path via annular contact surface 68 on flange 42 and annular contact surface 69 (e.g., interior surface) on flange 62. In a second position, flange 62 of fastener 28 is moved in a rearward direction relative to post 26, breaking the conductive path between fastener 28 and post 36. A compressible member (e.g., spring element, flexible element, compressible material, etc.) is provided to apply a force (e.g., a continuous pressure) in the forward direction to fastener 28 (e.g., away from first end 30 of connector body 22) and maintain the contact between surface 68 and 69. The compressible member may be compressed in a linear direction, axial direction, radial direction, etc. While being forced in a forward direction by the compressible member, in the first position, fastener 28 is able to be rotated to couple connector 20 to the terminal of an electronic device. According to an exemplary embodiment, a force of at least approximately ½ lb. is applied to maintain the contact between surface 68 and 69.
According to an exemplary embodiment, the force exerted by the compressible member on fastener 28 is sufficient to maintain contact between contact surfaces 68 and 69 not only if fastener 28 is fully tightened (i.e., tightened to a torque of 25-30 in/lb as recommended by the Society of Cable Telecommunication Engineers), but also through approximately 3 or 4 rotations of fastener 28 (e.g., sealing against egress). While the compressible member is under compression (e.g., exerting an opposite and equal force against flange 62 of fastener 28 and flange 64 of body 22), signals continue to pass through a front surface plane of fastener 28. Electrical and RF signals may pass through fastener 28 during rotation of fastener 28. In some embodiments, there may be a slight (angular) center line misalignment of the male and female connectors (e.g., perpendicular to both reference planes) to prevent signal loss (e.g., ingress and egress). In some embodiments, the compressible member may apply a force that causes flange 62 of fastener 28 to contact flange 42 of post 26 with a gap or clearance between the flanges of less than 0.012 nominal inches. In some embodiments, The compressible member may apply a force to fastener 28 in both the first position and the second position. In some embodiments, at least a portion of the compressible member may be external to fastener 28 in one or both of an axial and a radial direction. The compressible member may be used with one or more modifications to threads 66, as described above, to further improve the conductive coupling of post 26 and fastener 28.
As shown in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
By providing a compressible element to apply an axial force in the forward direction to fastener 28, a more consistent surface-to-surface contact is maintained between fastener 28 and post 26 via contact surfaces 68 and 69. In this way, a more consistent conductive path (e.g., a grounding path) is maintained between outer conductor 16 and a device to which cable 10 is coupled via connector 20. Improved contact between surfaces 68 and 69 may also provide power bonding and grounding (e.g., helps promote a safer bond connection per NEC® (National Electricl Code) Article 250). The improved conductive contact between fastener 28 and post 26 further improves RF shielding (e.g., signal ingress and egress).
References herein to the positions of elements (e.g., “front”, “rear”, “top,” “bottom,” “above,” “below,” etc.) are merely used to describe the orientation of various elements in the FIGURES. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
It should be noted that for purposes of this disclosure, the term coupled means the joining of two members directly or indirectly to one another. Such joining may be stationary in nature or moveable in nature and/or such joining may allow for the flow of fluids, electricity, electrical signals, or other types of signals or communication between the two members. Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another. Such joining may be permanent in nature or alternatively may be removable or releasable in nature.
The construction and arrangement of the elements of the connector as shown in the exemplary embodiments are illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements. Some like components have been described in the present disclosure using the same reference numerals in different figures (e.g., fastener 28). This should not be construed as an implication that these components are identical in all embodiments; various modifications may be made in various different embodiments. It should be noted that the elements and/or assemblies of the enclosure may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Additionally, in the subject description, the word “exemplary” is used to mean serving as an example, instance or illustration. Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the word exemplary is intended to present concepts in a concrete manner. Accordingly, all such modifications are intended to be included within the scope of the present inventions. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the appended claims.