Cable connectors are widely used in various industries to connect two portions of a cable inline with each other or to connect one portion with a header. Cables come in many different sizes and configurations. For example, in a multiple core configuration, each cable has more than one terminal. In a single core configuration, each cable has only one terminal. Often times, cables of these or other configuration must pass through holes of varying sizes and possibly connect to a cable of a different size. Space is often limited in the devices that use such cables, and the cable is often too large to fit through the hole.
The number of components in the cable connector directly affects the size of the cable connector. First, each cable connector includes an outer shell with an integrally formed connector housing, a shield, a shell, and two seals: a peripheral seal and a cable seal. Both seals are enclosed in the cable connector and disposed about the cable. Having both seals increases the number of components, size, and cost of the cable connector. Moreover, integrally forming the connector housing with the outer shell increases the size of the cable connector and limits molding options and material choices. Furthermore, integrally forming the connector housing with the outer shell reduces the effectiveness of a shield because it requires the shield to have additional slots that may fail to prevent unwanted signal leaks.
Accordingly, a cable connector is needed that has a reduced size and cost while still providing a durable and robust cable connection.
In one exemplary approach, a cable connector includes a connector housing removably attached to an outer shell. A seal is disposed at least partially between the outer shell and the connector housing. A shield is at least partially disposed about the connector housing adjacent to the seal. In another exemplary approach, the seal has unitary configuration.
The foregoing description will be understood more completely from the following detailed description of the exemplary drawings, in which:
A cable connector includes a connector housing, a seal, and a shield disposed within an outer shell. In one embodiment, the seal has a unitary configuration, which enables smaller spacing between cables and significantly reduces the effective surface area that must be sealed to improve connector reliability. Not only does this eliminate the need for peripheral and cable seal retainers, it also reduces the size, number of components, and cost of the cable connector. Moreover, the connector housing is removably attached to the outer shell. Such a configuration reduces the size of the cable connector, increases the effectiveness of the shield by reducing the number of slots needed, and provides greater flexibility in material choice. Accordingly, the resulting cable connector has a smaller size and cost, and is more durable and robust.
As previously discussed, the connector housing 24 is removably attached to the outer shell 18. In one embodiment, each connector housing 24 may include integrally formed clips 30 that snap into recessed portions 32 of the outer shell 18. The clips 30 hold the connector housing 24 onto the outer shell 18 while the first portion 12 is connected to the second portion 16, but the clips 30 have a spring-like characteristic that allows the connector housing 24 to be removed from the outer shell 18 if necessary. This way, the first and second portions 12 and 16 may be disconnected from one another.
The cable connector 10 may further include at least one ferrule stop 34 integrally formed with the outer shell 18. The ferrule stop 34 engages the ferrule 22 to prevent the cables 14 from disconnecting within the cable connector 10. Specifically, the ferrule stop 34 causes the ferrule 22 to bottom out on the shield 28 when the cable 14 is pulled, which provides strain relief and seal protection. Therefore, if one or both of the cables 14 are pulled, the terminals 20 are less likely to disconnect and break the electronic communication between the first and second portions 12 and 16. Accordingly, integrally forming the ferrule stop 34 into the outer shell 18 not only reduces strain on the cable 14, but it provides a more robust and durable cable connector 10.
In the embodiment illustrated in
As in the previous embodiment, the seal 26 and shield 28 are disposed about the connector housing 24, and the first portion 12 is electrically connected to the header 36 via their respective connector housings 24. For example, as shown in
Referring now to
The above description is intended to be illustrative and not restrictive. Many alternative approaches or applications other than the examples provided would be apparent to those of skill in the art upon reading the above description. The scope of the invention should be determined, not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. It is anticipated and intended that future developments will occur in the arts discussed herein, and that the disclosed systems and methods will be incorporated into such future examples. In sum, it should be understood that the invention is capable of modification and variation and is limited only by the following claims.
The present embodiments have been particularly shown and described, which are merely illustrative of the best modes. It should be understood by those skilled in the art that various alternatives to the embodiments described herein may be employed in practicing the claims without departing from the spirit and scope as defined in the following claims. It is intended that the following claims define the scope of the invention and that the method and apparatus within the scope of these claims and their equivalents be covered thereby. This description should be understood to include all novel and non-obvious combinations of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. Moreover, the foregoing embodiments are illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application.
All terms used in the claims are intended to be given their broadest reasonable constructions and their ordinary meanings as understood by those skilled in the art unless an explicit indication to the contrary is made herein. In particular, use of the singular articles such as “a,” “the,” “said,” etc. should be read to recite one or more of the indicated elements unless a claim recites an explicit limitation to the contrary.
Number | Name | Date | Kind |
---|---|---|---|
3702895 | de Sio | Nov 1972 | A |
3805216 | Gaspar et al. | Apr 1974 | A |
4272148 | Knack, Jr. | Jun 1981 | A |
4820201 | Van Brunt et al. | Apr 1989 | A |
5171161 | Kachlic | Dec 1992 | A |
5191172 | Garganese | Mar 1993 | A |
5236375 | Kachlic | Aug 1993 | A |
5777269 | Handley | Jul 1998 | A |
5833495 | Ito | Nov 1998 | A |
6250963 | Wright | Jun 2001 | B1 |
6338644 | Fritzinger et al. | Jan 2002 | B1 |
7275960 | Fukushima et al. | Oct 2007 | B2 |
20080188119 | Okamura et al. | Aug 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100062631 A1 | Mar 2010 | US |