As demand for telecommunications increases, fiber optic networks are being extended in more and more areas. In facilities such as multiple dwelling units (MDU's), apartments, condominiums, businesses, etc., fiber optic distribution terminals and boxes are used to provide subscriber access points to the fiber optic network. Cables are also used to interconnect the subscriber access points provided by the fiber distribution terminals with subscriber interface units (e.g., Optical Network Terminals) provided at subscriber locations (e.g., at each residence of an MDU). With respect to such fiber distribution systems, there is a need for techniques to effectively manage cables and optical splitters while also taking into consideration space constraints.
A cable distribution system is provided wherein a feeder cable with one or more feeder fibers is received by a distribution terminal, device, or box. The feeder fibers are spliced to a feeder fan out device. Customers can directly connect to the feeder fan out device by patching between the feeder fan out device and a distribution fan out device that is spliced to a distribution cable. This connection creates a point-to-point connection. The number of fan out devices in the system can be increased as needed. Alternatively, a splitter input can be connected to the feeder fan out device, such as through a pigtail extending from the splitter, wherein the splitter splits the signal as desired into a plurality of outputs. The outputs of the splitters can be in the form of connectors or adapters. The connectors or adapters are then connected to the distribution fan out device and customers can receive a split signal through the distribution cable that is spliced with the distribution fan out device. The system allows for the use of un-connectorized distribution cables.
The cable distribution system allows for mixing of connection types to the customer(s) such as a direct connection (point-to-point), or a split signal connection. Further, the types of splitters can be mixed and varied as desired, such as 1×2, 1×4, 1×8, 1×16, 1×32, 2×4, etc., or other. Different combinations of splitters can be used in the distribution device, such as one or more 1×4 splitters, one or more 1×8 splitters, and/or one or more 1×16 splitters. Further the types of fan out devices can be mixed and varied as desired, such as fan out devices having 8, 16, 24, 32 outputs, etc., or other. Other combinations are possible.
The fan out devices and splitters can be stored in the system using a tower that is configured to receive a plurality of fan out devices or splitters. Adjacent the tower can be cable management modules that each include spools and together form a vertical trough that runs next to the tower.
The fan out devices and splitters can also be stored in a stacking arrangement. In such an arrangement, the fan out devices and splitters can be stacked on top of one another in an internal tray. The tray is then stacked on top of a base. The base is configured to hold a plurality of splice trays for splicing a feeder cable.
The fan out devices and splitters can also be stored in another stacking arrangement. In such an arrangement, the fan out devices and splitters can form multiple stacks in an internal tray. The tray is then stacked on top of a base that is configured to hold a plurality of splice trays for splicing a feeder cable. The system also includes an integral feeder port device that is spliced to the feeder cable and provides a plurality of outputs, effectively fanning out the feeder cable.
The inputs and outputs of the splitters and fan out devices can be in the form of connectors or adapters mounted at or within the device housings, or connectors or adapters on the ends of stubs extending from the housings. The stubs (semi-rigid) can improve density and improve connector and/or adapter access through movement of the stubs. Preferably the stubs are not so flexible that the stubs become easily tangled up with each other.
Protective covers may be provided for the overall device, the feeder cable, the fan out devices, any splices, and the splitters.
The connectors and adapters utilized in the cable distribution system can be any desired connection type, such as SC type, or LC type. MPO types may also be used. Another example is a connector and adapter system as shown in international patent publication Nos. WO2012/112344 and WO 2013/117598, the entire disclosures of which are hereby incorporated by reference. This connector and mating adapter may also be referred to as a LightPlug connector and adapter, or an LP connector and adapter, in the accompanying pages. The LightPlug connector system utilizes ferruleless connectors, with bare fiber to bare fiber connections. This connector type can be terminated to a bare fiber in the factory or in the field using a LightPlug termination tool. With respect to LightPlug connectors and adapters, some cost savings may be realized by adding the adapter at a later date when connectivity is desired. A hybrid adapter can be used to connect a ferruleless LightPlug connector to a ferruled connector, like an SC type.
Growing capacity may occur where the customer wants more splitters and point-to-point (double density) at the same location. Therefore, the number of fan out devices and splitters can be increased. Alternatively, a second box or cabinet can be mounted next to the initially installed box or cabinet; one un-used fiber bundle/tube from the feeder cable is routed to the new box or cabinet and the new box or cabinet can be installed similar to the first box. Depending on the feeder cable, more boxes or cabinets can be connected.
Growing capacity in another case can occur where the customer wants a second box at a nearby location. A second box can be mounted somewhere in the neighborhood; feeder fibers from un-used bundles/tubes are spliced to a feeder cable which runs to the second box; this spliced feeder stub enters the second box in the same way the feeder enters the first box. Depending on the feeder cable, more boxes can be connected in a daisy-chaining manner.
In one aspect of the present disclosure, a fiber distribution system is disclosed. The fiber distribution system includes a feeder cable and a base defining a breakout region. At the breakout region, a plurality of optical cables of the feeder cable can be accessed. The breakout region includes at least one splice tray. The fiber distribution system also includes at least one feeder fan out device that has a single input and a plurality of outputs. The single input of the at least one feeder fan out device is spliced with the feeder cable. The fiber distribution system further includes at least one splitter that has a single input and a plurality of outputs. The single input of the at least one splitter is a connectorized end plugged into one of the outputs of the at least one fan out device. The fiber distribution system includes at least one distribution fan out device having a plurality of inputs and a single output. The plurality of inputs are configured to receive a connection from an output of the at least one feeder fan out device or an output of the at least one splitter. The single output of the at least one distribution fan out device is spliced with a distribution cable to provide a single service output.
In another aspect of the present disclosure, a fiber distribution system is disclosed. The fiber distribution system includes a base that defines a breakout region. The breakout region includes at least one splice tray. The fiber distribution system includes at least one feeder fan out device that has at least one input and a plurality of outputs. The at least one input of the at least one feeder fan out device is connectable with a feeder cable. The fiber distribution system includes at least one distribution fan out device that has a plurality of inputs and at least one output. The plurality of inputs are configured to receive a connection from an output of the at least one feeder fan out device. The at least one output of the at least one distribution fan out device is connectable with a distribution cable to provide a single service output.
In another aspect of the present disclosure, a method of assembling a fiber distribution system is disclosed. The method includes providing a feeder cable at a breakout region of a base and splicing or otherwise connecting the feeder cable to an at least one input of an at least one feeder fan out device, the at least one feeder fan out device having a plurality of outputs. The method includes connecting an at least one input of an at least one splitter with one of the outputs of the at least one feeder fan out device. The at least one input has a connectorized end and the at least one splitter has a plurality of outputs. The method includes providing a single service output at an at least one output of an at least one distribution fan out device, the at least one distribution fan out device including a plurality of inputs. The plurality of inputs are configured to receive a connection from an output of the at least one feeder fan out device or an output of the at least one splitter.
A variety of additional aspects will be set forth in the description that follows. The aspects can relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad inventive concepts upon which the embodiments disclosed herein are based.
The following drawings are illustrative of particular embodiments of the present disclosure and therefore do not limit the scope of the present disclosure. The drawings are not to scale and are intended for use in conjunction with the explanations in the following detailed description. Embodiments of the present disclosure will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.
Various embodiments will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the appended claims.
Referring now to
A variety of splitter and fan out devices are shown having housings mounted to distribution boxes or cabinets. The splitters used are for splitting of the signals of the fanned out feeder fibers. Within the interior of the splitter, the splitter input is split into a plurality of outputs. The distribution box can hold one or more splitters and fan out devices. The preferred distribution box or cabinet allows for: 1) split outputs of a splitter input cable connected at the termination field; 2) point-to-point connection with an output cable at the termination field; or 3) both split feeder signal and point-to-point feeder signals.
Referring further to
The tower 46 is positioned on the opposite side of the distribution box or cabinet 12. Adjacent the tower 46 is a vertical stack of cable management modules 52. The modules 52 create a vertical trough 53 so as to organize cabling (such as patch cables 32) connecting the fan out devices 24/25 with the splitters 18.
The modules 52 are configured to first allow cables to pass through and over the cable arm 56. The cable arm 56 supports cabling passing therethrough, and keeps the cabling from sagging. Once passed through the cable arm 56, the spool 54 of each module 52 is configured to house any slack left in the cables. The cables can then be routed in the vertical trough 53 so as to allow cabling to travel to other components of the system 10. For instance, a patch cable 32 can be routed from a splitter 18 to a fan out device 24/25 by traveling from the splitter 18, to the vertical trough 53, and then back over to the fan out device 24/25. The modules 52 allow the front of the tower 46 to stay free of excess cabling. This allows the user to quickly and easily find connectors on the splitters 18 and the fan out devices 24/25 during service and installation.
Referring now to
The spliced feeder cables 220 can enter the internal cover 216 through feeder ports 230. From the feeder ports 230, cables can travel to a fan out device 224. From the fan out device 224, cables can then travel to either a splitter 218, which can be stacked with the fan out device 224, or cables can be output to the customer in the form of a distribution cable 236 for a point-to-point connection. If the cables travel to a splitter 218, the signal is then split and the multiple distribution cables 236 can be connected to the outputs of the splitter to achieve a split signal to multiple customers.
In other embodiments, the feeder ports 230 can instead function as fan out devices 224. In such an embodiment, the fan out devices 224 are positioned adjacent the stack of splitters 218 within the distribution box or cabinet 212. From the fan out device 224, cables can then be run either to the splitters 218 for a split signal output, or cables can run directly out of the box of cabinet 212 through the channel 237 in the form of distribution cables 236.
In the depicted embodiment, the system 300 receives the feeder cables 320 at the base 314 of the box or cabinet 312. The cables 320 are then spliced with an input 333 of at least one feeder port device 330. The feeder port devices 330 can operate as a fan out device, thereby separating the individual fibers of the feeder cable 320 and providing an output connector 331 for each fiber of the feeder cables 320.
From the outputs 331 of the feeder port devices 330, patch cables 332 can connect to either to an input of one splitter 318 or connect to a fan out device 324. Additional splitters 318, fan out devices 324, and feeder port devices 330 can be added at a later date after the initial installation, as desired. This helps defer costs. If connected to the splitter 318, a split signal will be produced, and the output of the splitter 318 will be connected to the input of the fan out device 324 and will exit out of the distribution box or cabinet 312 as a multi-fiber distribution cable 336, similar to the system 10. This connection example is shown by the dotted lines in
A second storage area 346 can be used to store a plurality of splitters 318, and a third storage area 348 is used to store a plurality of feeder port devices 330.
In some embodiments, a second box substantially similar to box 312 can be mounted somewhere in the neighborhood, near box 312. Unused feeder-fibers can be spliced back into a feeder cable and run to the second box. The second box can operate identical to the box 312. Depending on the feeder cable, more boxes can be connected in a daisy-chaining manner.
As noted, various implementations of the systems 10, 100, 200, 300 are provided for adding capacity over time. One implementation is to add the splitters or fan out devices as needed over time. Another implementation for adding capacity uses two distribution boxes. Splitters from the second distribution box can be connected to point-to-point connections of the first distribution box. Another implementation for adding capacity includes a feeder cable connected to two (or more) distribution boxes as desired. This provides additional feeder connections to customers directly, or through splitters. Another implementation for increasing capacity includes adding a second (or more) distribution box at a remote location, wherein a further feeder cable is spliced to the first feeder cable to link the two distribution boxes. Another implementation in systems 200 and 300 is to add a new additional internal cover 216, 316 to the distribution box or cabinet 212, 312 to add increased outputs through the use of larger splitters.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the claims attached hereto. Those skilled in the art will readily recognize various modifications and changes that may be made without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/261,606, filed Dec. 1, 2015, which application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4650933 | Benda et al. | Mar 1987 | A |
4768961 | Lau | Sep 1988 | A |
4770639 | Lau | Sep 1988 | A |
4797114 | Lau | Jan 1989 | A |
4820200 | Lau | Apr 1989 | A |
4840568 | Burroughs et al. | Jun 1989 | A |
5189410 | Kosugi et al. | Feb 1993 | A |
5199878 | Dewey et al. | Apr 1993 | A |
5214673 | Morgenstern et al. | May 1993 | A |
5317663 | Beard et al. | May 1994 | A |
5339379 | Kutsch et al. | Aug 1994 | A |
5363465 | Korkowski et al. | Nov 1994 | A |
5393249 | Morgenstern et al. | Feb 1995 | A |
5432875 | Korkowski et al. | Jul 1995 | A |
5467062 | Burroughs | Nov 1995 | A |
5497444 | Wheeler | Mar 1996 | A |
5582525 | Louwagie et al. | Dec 1996 | A |
5613030 | Hoffer et al. | Mar 1997 | A |
5627925 | Alferness et al. | May 1997 | A |
5685741 | Dewey et al. | Nov 1997 | A |
5688780 | Chong et al. | Nov 1997 | A |
5694511 | Pimpinella et al. | Dec 1997 | A |
5701380 | Larson et al. | Dec 1997 | A |
5717810 | Wheeler | Feb 1998 | A |
5740298 | Macken et al. | Apr 1998 | A |
5768463 | Foss et al. | Jun 1998 | A |
5937807 | Peters et al. | Aug 1999 | A |
5946440 | Puetz | Aug 1999 | A |
6061492 | Strause et al. | May 2000 | A |
6116961 | Henneberger et al. | Sep 2000 | A |
6208796 | Vigliaturo | Mar 2001 | B1 |
6226111 | Chang et al. | May 2001 | B1 |
6263136 | Jennings et al. | Jul 2001 | B1 |
6307998 | Vigliaturo | Oct 2001 | B2 |
6328608 | Olson et al. | Dec 2001 | B1 |
6363183 | Koh | Mar 2002 | B1 |
6370294 | Pfeiffer et al. | Apr 2002 | B1 |
6418262 | Puetz et al. | Jul 2002 | B1 |
6424781 | Puetz et al. | Jul 2002 | B1 |
6427035 | Mahoney | Jul 2002 | B1 |
6507691 | Hunsinger et al. | Jan 2003 | B1 |
6511330 | Norris | Jan 2003 | B1 |
6532332 | Solheid et al. | Mar 2003 | B2 |
6535682 | Puetz et al. | Mar 2003 | B1 |
6554652 | Musolf et al. | Apr 2003 | B1 |
6556738 | Pfeiffer et al. | Apr 2003 | B2 |
6556763 | Puetz et al. | Apr 2003 | B1 |
6579014 | Melton et al. | Jun 2003 | B2 |
6597014 | Melton et al. | Jun 2003 | B1 |
6591051 | Solheid et al. | Jul 2003 | B2 |
6599024 | Zimmel | Jul 2003 | B2 |
6614953 | Strasser et al. | Sep 2003 | B2 |
6616459 | Norris | Sep 2003 | B2 |
6632106 | Musolf et al. | Oct 2003 | B2 |
RE38311 | Wheeler | Nov 2003 | E |
6647197 | Marrs et al. | Nov 2003 | B1 |
6668108 | Helkey et al. | Dec 2003 | B1 |
6688780 | Duran | Feb 2004 | B2 |
6719382 | Sucharczuk et al. | Apr 2004 | B2 |
6760531 | Solheid et al. | Jul 2004 | B1 |
6761594 | Johnson et al. | Jul 2004 | B2 |
6792191 | Clapp, Jr. et al. | Sep 2004 | B1 |
6810193 | Mueller | Oct 2004 | B1 |
6822874 | Marler | Nov 2004 | B1 |
6824312 | McClellan et al. | Nov 2004 | B2 |
6830465 | Norris et al. | Dec 2004 | B2 |
6832035 | Daoud et al. | Dec 2004 | B1 |
6848952 | Norris | Feb 2005 | B2 |
6850685 | Tinucci et al. | Feb 2005 | B2 |
6863446 | Ngo | Mar 2005 | B2 |
6885798 | Zimmel | Apr 2005 | B2 |
6890187 | Norris | May 2005 | B2 |
6937807 | Franklin et al. | Aug 2005 | B2 |
6983095 | Reagan et al. | Jan 2006 | B2 |
7029322 | Ernst et al. | Apr 2006 | B2 |
7118284 | Nakajima et al. | Oct 2006 | B2 |
7142764 | Allen et al. | Nov 2006 | B2 |
7149398 | Solheid et al. | Dec 2006 | B2 |
7190874 | Barth et al. | Mar 2007 | B1 |
7194181 | Holmberg et al. | Mar 2007 | B2 |
7218827 | Vongseng et al. | May 2007 | B2 |
7218828 | Feustel et al. | May 2007 | B2 |
7233731 | Solheid et al. | Jun 2007 | B2 |
7303220 | Zellak | Dec 2007 | B2 |
7310474 | Kanasaki et al. | Dec 2007 | B2 |
7333606 | Swam et al. | Feb 2008 | B1 |
7333706 | Parikh et al. | Feb 2008 | B2 |
7346254 | Kramer et al. | Mar 2008 | B2 |
7376322 | Zimmel et al. | May 2008 | B2 |
7376323 | Zimmel | May 2008 | B2 |
7400813 | Zimmel | Jul 2008 | B2 |
7418181 | Zimmel et al. | Aug 2008 | B2 |
7418184 | Gonzales et al. | Aug 2008 | B1 |
7453706 | Clark et al. | Nov 2008 | B2 |
7470068 | Kahle et al. | Dec 2008 | B2 |
7495931 | Clark et al. | Feb 2009 | B2 |
7509016 | Smith et al. | Mar 2009 | B2 |
7536075 | Zimmel | May 2009 | B2 |
7593617 | Zimmel et al. | Sep 2009 | B2 |
7606459 | Zimmel et al. | Oct 2009 | B2 |
7636507 | Lu et al. | Dec 2009 | B2 |
7697812 | Parikh et al. | Apr 2010 | B2 |
7706656 | Zimmel | Apr 2010 | B2 |
7751673 | Anderson et al. | Jul 2010 | B2 |
7760984 | Solheid et al. | Jul 2010 | B2 |
7816602 | Landry et al. | Oct 2010 | B2 |
7835611 | Zimmel | Nov 2010 | B2 |
7853112 | Zimmel et al. | Dec 2010 | B2 |
7885505 | Zimmel | Feb 2011 | B2 |
7912336 | Zimmel | Mar 2011 | B2 |
8019191 | Laurisch | Sep 2011 | B2 |
8023791 | Zimmel et al. | Sep 2011 | B2 |
8086084 | Bran de Leon et al. | Dec 2011 | B2 |
8107816 | Bolster et al. | Jan 2012 | B2 |
8121457 | Zimmel et al. | Feb 2012 | B2 |
8180192 | Zimmel | May 2012 | B2 |
8189983 | Brunet et al. | May 2012 | B2 |
8297708 | Mizobata et al. | Oct 2012 | B2 |
8331753 | Zimmel et al. | Dec 2012 | B2 |
8340491 | Zimmel | Dec 2012 | B2 |
8346045 | Zimmel et al. | Jan 2013 | B2 |
8488934 | Zhou et al. | Jul 2013 | B2 |
8494329 | Nhep et al. | Jul 2013 | B2 |
8520997 | Zimmel | Aug 2013 | B2 |
8542972 | Zimmel | Sep 2013 | B2 |
8554044 | Bran de Leon et al. | Oct 2013 | B2 |
8577198 | Solheid et al. | Nov 2013 | B2 |
8634689 | Zimmel | Jan 2014 | B2 |
8660429 | Bolster et al. | Feb 2014 | B2 |
8705928 | Zimmel et al. | Apr 2014 | B2 |
8774585 | Kowalczyk et al. | Jul 2014 | B2 |
8798428 | Zimmel et al. | Aug 2014 | B2 |
8929708 | Pimentel et al. | Jan 2015 | B2 |
9146371 | Zimmel | Sep 2015 | B2 |
9197346 | Bolster et al. | Nov 2015 | B2 |
9213159 | Zimmel et al. | Dec 2015 | B2 |
9239442 | Zhang | Jan 2016 | B2 |
9274285 | Courchaine et al. | Mar 2016 | B2 |
9335504 | Solheid et al. | May 2016 | B2 |
9417401 | Zhang | Aug 2016 | B2 |
9494760 | Simmons et al. | Nov 2016 | B2 |
9563017 | Zimmel et al. | Feb 2017 | B2 |
9678292 | Landry et al. | Jun 2017 | B2 |
10031305 | Leeman et al. | Jul 2018 | B2 |
20040175090 | Vastmans et al. | Sep 2004 | A1 |
20050053341 | Zimmel | Mar 2005 | A1 |
20050129379 | Reagan et al. | Jun 2005 | A1 |
20050232551 | Chang et al. | Oct 2005 | A1 |
20050232565 | Heggestad et al. | Oct 2005 | A1 |
20060008231 | Reagan | Jan 2006 | A1 |
20060228086 | Holmberg et al. | Oct 2006 | A1 |
20070036503 | Solheid et al. | Feb 2007 | A1 |
20070147765 | Gniadek et al. | Jun 2007 | A1 |
20070165995 | Reagan | Jul 2007 | A1 |
20070189691 | Barth | Aug 2007 | A1 |
20070189692 | Zimmel et al. | Aug 2007 | A1 |
20080031585 | Solheid | Feb 2008 | A1 |
20080079341 | Anderson | Apr 2008 | A1 |
20080124038 | Kowalczyk et al. | May 2008 | A1 |
20080170824 | Hendrickson | Jul 2008 | A1 |
20080175550 | Coburn et al. | Jul 2008 | A1 |
20090022468 | Zimmel | Jan 2009 | A1 |
20090060440 | Wright et al. | Mar 2009 | A1 |
20090067802 | Hoehne et al. | Mar 2009 | A1 |
20090103879 | Tang | Apr 2009 | A1 |
20090110359 | Smith et al. | Apr 2009 | A1 |
20090263097 | Solheid | Oct 2009 | A1 |
20090290842 | Bran de Leon et al. | Nov 2009 | A1 |
20090317047 | Smith | Dec 2009 | A1 |
20090324187 | Wakileh et al. | Dec 2009 | A1 |
20100129030 | Giraud et al. | May 2010 | A1 |
20100226654 | Smith | Sep 2010 | A1 |
20100322580 | Beamon et al. | Dec 2010 | A1 |
20100329623 | Smith et al. | Dec 2010 | A1 |
20100329624 | Zhou et al. | Dec 2010 | A1 |
20110026894 | Rudenick et al. | Feb 2011 | A1 |
20110058785 | Solheid et al. | Mar 2011 | A1 |
20110091170 | Bran de Leon et al. | Apr 2011 | A1 |
20110164853 | Corbille et al. | Jul 2011 | A1 |
20110211799 | Conner et al. | Sep 2011 | A1 |
20110262095 | Fabrykowski | Oct 2011 | A1 |
20110274403 | LeBlanc | Nov 2011 | A1 |
20110293235 | Nieves et al. | Dec 2011 | A1 |
20120027355 | LeBlanc | Feb 2012 | A1 |
20130114930 | Smith et al. | May 2013 | A1 |
20130114937 | Zimmel et al. | May 2013 | A1 |
20130170810 | Badar et al. | Jul 2013 | A1 |
20130243386 | Pimentel et al. | Sep 2013 | A1 |
20140219622 | Coan et al. | Aug 2014 | A1 |
20140334790 | Zhang | Nov 2014 | A1 |
20150110442 | Zimmel et al. | Apr 2015 | A1 |
20150137461 | Coenegracht et al. | May 2015 | A1 |
20150241654 | Allen et al. | Aug 2015 | A1 |
20150286023 | Van Baelen et al. | Oct 2015 | A1 |
20150301301 | Mullaney | Oct 2015 | A1 |
20150355428 | Leeman et al. | Dec 2015 | A1 |
20160370551 | Hill et al. | Dec 2016 | A1 |
20170097486 | Barrantes et al. | Apr 2017 | A1 |
20170123175 | Van Baelen et al. | May 2017 | A1 |
20190036316 | Van Baelen | Jan 2019 | A1 |
20190056559 | Leeman et al. | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
2008264211 | Jan 2009 | AU |
203101690 | Jul 2013 | CN |
103238095 | Aug 2013 | CN |
4130706 | Mar 1993 | DE |
4229510 | Mar 1994 | DE |
20201170 | May 2002 | DE |
10350954 | May 2005 | DE |
102009008068 | Aug 2010 | DE |
0828356 | Mar 1998 | EP |
0730177 | Sep 1999 | EP |
1092996 | Apr 2001 | EP |
1107031 | Jun 2001 | EP |
1179745 | Feb 2002 | EP |
1473578 | Nov 2004 | EP |
1626300 | Jul 2005 | EP |
2434317 | Mar 2012 | EP |
2300978 | Nov 1996 | GB |
2007121398 | May 2007 | JP |
2010122597 | Jun 2010 | JP |
9636896 | Nov 1996 | WO |
007053 | Feb 2000 | WO |
0075706 | Dec 2000 | WO |
02099528 | Dec 2002 | WO |
02103429 | Dec 2002 | WO |
03093889 | Nov 2003 | WO |
2005045487 | May 2005 | WO |
2006127397 | Nov 2006 | WO |
2010040256 | Apr 2010 | WO |
2010134157 | Nov 2010 | WO |
2012074688 | Jun 2012 | WO |
2012112344 | Aug 2012 | WO |
2013117598 | Aug 2013 | WO |
2015193384 | Dec 2015 | WO |
2016066780 | May 2016 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/EP2016/079513 dated Mar. 3, 2017. |
International Search Report and Written Opinion for Application No. PCT/EP2013/077292 dated May 28, 2014. |
International Search Report and Written Opinion for Application No. PCT/EP2015/063620 dated Feb. 5, 2016. |
International Search Report and Written Opinion of the International Searching Authority for International Patent Application No. PCT/EP2017/051908 dated Jul. 18, 2017, 19 pages. |
ADC Telecommunications, Inc., “DSX-3 Digital Signal Cross-Connect (DSX3) System Application Guide,” Document No. ADCP-80-323, 1st Edition, Issue 2, Dec. 1996, p. 1-10; p. 1-11. |
ADC Telecommunications, Inc., “DSX-1 Digital Signal Cross Connect PIX-DSX-1—Fifth Edition,” dated Oct. 1994, 36 Pages. |
ADC Telecommunications, Inc., “DSX-3 Digital Signal Cross-Connect, Front and Rear Cross-Connect Products, 2nd Edition,” Doc. No. 274, dated Oct. 2004, 65 pp. |
ADC Telecommunications, Inc., “OmniReach FTTP Solutions,” Doc. No. 1276550, dated May 2004, 13 pp. |
ADC Telecommunications, Inc., “PxPlus™ DS1 Digital Signal Cross-Connect,” dated Jan. 1997, 12 Pages. |
AFL Global: “LGX Optical Coupler Modules,” May 17, 2012, XP002744968, retrieved from the Internet: URL.https://web.archive.org/web/20120517022939/http://www.aflglobal.com/Products/Fiber-Inside-Plant/Couplers-Splitters/Optical-Coupler-Modules.aspx. |
Number | Date | Country | |
---|---|---|---|
20170153407 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62261606 | Dec 2015 | US |