The invention relates generally to rigging hardware, such as for lifting and towing, and more particularly, to an anti-fouling device placed on a thimble or a cable loop connected to a D-ring, shackle, clevis, or similar structure.
Generally, operators of boats, tractors, trucks, or other equipment often lift or tow large objects. The coupling between the vehicle and the object may be formed by a chain, a rope, a bar, a wire cable, or some other assembly for keeping the object connected to the vehicle while in motion. For example, in one exemplary towing operation, tractors may be coupled to one another to pull one machine away from or out of difficult terrain, such as in a field. The tractors often include a D-ring, shackle, clevis, or other device to facilitate coupling the chain/rope/bar/wire to the tractor. For example, a cable may include a loop at the end which extends around the d-ring/shackle/clevis. A thimble or U-shaped bolt is often installed inside the loop to reduce wear on the chain/rope/wire and to strengthen the connection.
Under certain conditions, such as turning on an uneven surface, the thimble or cable may twist to where an eye of the thimble or cable enters an end of the shackle or d-ring and bind to the end of a shackle or D-ring. For instance, on articulated agricultural tractors, turning while driving over a mound of soil can create slack in the cable. Once slack is created, the cable can twist around the D-ring. If the D-ring bolt is in contact with the thimble when the tractor straightens, the thimble and bolt can bind in a fouled position. This fouling can cause the towed object to be off center or angled, which may increase stress on the D-ring, the thimble, the cable, or a combination thereof. When this occurs, individuals who drive tractors may spend additional time to correct the binding, either with additional driving or physical removal.
Certain embodiments commensurate in scope with the originally claimed invention are summarized below. These embodiments are not intended to limit the scope of the claimed invention, but rather these embodiments are intended only to provide a brief summary of possible forms of the invention. Indeed, the invention may encompass a variety of forms that may be similar to or different from the embodiments set forth below.
Certain embodiments of the present disclosure block the thimble of a cable end from binding onto the end of a shackle or similar structure. In one embodiment, an anti-fouling system for a cable end includes a first plate configured to be received on a first side of a thimble of the cable end, wherein the first plate comprises at least one first fastener aperture and a first anti-fouling aperture, the first anti-fouling aperture is large enough to receive a shackle of a shackle assembly, but small enough to block at least part of a first end of the shackle assembly from entering an eye of the thimble, and a second plate configured to be received on a second side of the thimble, opposite the first side, wherein the second plate comprises at least one second fastener aperture and a second anti-fouling aperture, wherein the second anti-fouling aperture is large enough to receive the shackle, but small enough to prevent at least part of a second end of the shackle assembly from entering the eye of the thimble.
In another embodiments, a first plate configured to be received on a first side of a thimble for a cable end, and a second plate configured to be received on a second side of the thimble, opposite the first side, wherein the first plate and second plate are configured to enable the thimble to receive a ring of a shackle assembly, but to block at least one end of the shackle assembly from entering an eye of the thimble while the first and second plates are on the first and second sides of the thimble.
In yet another embodiment, an anti-fouling system includes a cable having an eye on at least one end, wherein the cable is configured to receive a ring of a shackle assembly through the eye, a thimble configured to partially surround the cable at the eye, and an anti-fouling device configured to be coupled to a mount, wherein the anti-fouling device is configured to be received through the eye of the cable, wherein the anti-fouling device is configured to secure the thimble in a centered position to substantially reduce or eliminate a possibility of the thimble from binding to at least part of a shackle assembly end.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present subject matter will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present subject matter, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments.
With the foregoing in mind,
It should be borne in mind that, while reference is made here to towing, and specifically to towing tractors and other vehicles, the disclosure is not limited to any such application, but may be related to a wide range of uses and systems, including those for towing, lifting, binding, and so forth. Similarly, while reference is made to “rope”, the devices described may be linked to cloth, fiber, and other ropes and lines, but also to wire ropes, cables, chains, rigid links, and so forth.
As discussed above, the anti-fouling system 10 is configured to block the thimble 12 from binding to an end of the shackle assembly 14, thereby substantially reducing or eliminating the possibility of fouling. In
The first plate 44 is configured to be received on the first side 36 of the rope eye thimble 12. The contour of the first plate 44 may be selected to match the shape of the thimble 12. This contour enables the first plate 44 to engage the thimble 12 without blocking the thimble 12 from a typical range of motion. The first plate 44 includes fastener apertures 50, 52, 54, a cleanout aperture 56, and an anti-fouling aperture 58. The fastener apertures 50, 52, 54 receive fasteners 48, such as bolts or screws. The bolts 48 extend through the fastener apertures and are secured by nuts and washers 60. One embodiment of the anti-fouling system 10 includes three fastener apertures 50, 52, 54, as illustrated. One aperture 50 may be located near the base of the thimble eye 34, while the two other fastener apertures 52, 54 may be located toward the end of the rope eye in opposite sides of the anti-fouling aperture 58. The positioning of the apertures may facilitate effective securing of the anti-fouling system 10 to the thimble 12.
Debris may build up in between the first plate 44 and the second plate 46. Thus, the first plate 44 may have a cleanout aperture 56 to facilitate debris removal. The first plate 44 may have an anti-fouling aperture 58 that is large enough to receive the ring 22 of the shackle 18, but small enough to block a shackle end 40, 42 (e.g., the bolt 20 and/or the part of the portion of the shackle 18 forming the aperture 26) from passing into the eye 34 of the thimble 12. As a result, the thimble 12 is blocked from binding to the shackle assembly 14, thereby substantially reducing or eliminating the possibility of fouling.
The second plate 46 of the anti-fouling system 10 may be similar or substantially identical to the first plate 44. The second plate 46 may have a similar or substantially identical contour matching the shape of the second side 38 of the thimble 12. The second plate 46 may also contain similar or substantially identical fastener apertures 50, 52, 54, cleanout apertures 56, and/or anti-fouling apertures 58 to the first plate 44. Employing substantially identical plates reduces the number of parts of the overall system. It should also be noted that an advantage of the systems disclosed herein is the ability to retrofit the anti-fouling hardware to existing rigging. Not all rigging requires such hardware, and kits may be created and sold or provided separately, when desired. Finally, in the first exemplary embodiment set forth above, the plates 44, 46 conform to, but do not extend beyond the periphery of the cable or rope 32 in the loop. As a result, the plates 44, 46 do not form an added impediment to movement of the cable and thimble 12. In some embodiments, the plates 44, 46 may have an outer contour that does not extend past the periphery of the thimble 12. In general, the plates 44, 46, when fixed to the thimble 12 and loop, will come to bear tightly against side flanges 62, 64 of the thimble 12 to block movement of the shackle or other connecting structure to the reduced area of the anti-fouling aperture.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application claims priority from and the benefit of U.S. Provisional Patent Application No. 62/025,352, entitled “CABLE END LOOP ANTI-FOULING SYSTEM,” filed Jul. 16, 2014, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1300794 | Wendt-Wriedt | Apr 1919 | A |
2189671 | Mardis | Feb 1940 | A |
2398403 | Borgelt | Apr 1946 | A |
2863198 | White | Dec 1958 | A |
3083991 | Gale | Apr 1963 | A |
3867046 | Fox | Feb 1975 | A |
3932697 | Hood | Jan 1976 | A |
4358212 | Compton | Nov 1982 | A |
5016026 | Flory | May 1991 | A |
5310274 | Arakawa | May 1994 | A |
6120074 | Hamrick | Sep 2000 | A |
6282879 | Bonaiti et al. | Sep 2001 | B1 |
6898827 | Postelwait et al. | May 2005 | B1 |
8201309 | Franta | Jun 2012 | B1 |
8256982 | Lindsey | Sep 2012 | B2 |
8607417 | Naquin | Dec 2013 | B2 |
20160002008 | Foley | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
2 333 154 | Jun 1977 | FR |
2 343 154 | Sep 1977 | FR |
2 353 761 | Dec 1977 | FR |
872658 | Jul 1961 | GB |
Number | Date | Country | |
---|---|---|---|
20160017911 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
62025352 | Jul 2014 | US |