This disclosure relates to a cable head for a wireline tool, a wireline tool, and a method of retrieving a lost wireline tool.
During the lifetime of a drilling well, workover and intervention activities are sometimes necessary. Workover refers to maintenance or remedial work on a well that restores, prolongs, or enhances hydrocarbon production. Wireline tools are often used for workover activities. For example, wireline tools are used to evaluate the properties of a reservoir, locate equipment within a wellbore, determine formation pressure and pore size, identify liquids found in the reservoir, and capture fluid samples in the reservoir for evaluation at a topside facility. Generally, a wireline tool is connected to the end of a wireline and lowered into the wellbore. A cable head is a device that mechanically, and in some cases also electrically, connects the wireline tool to the wireline.
In an example implementation, a cable head for a wireline tool includes a housing that includes an outlet opening for a wireline and an interface configured to connect the housing to the wireline tool, a spool rotatably mounted in the housing, an anchoring point configured for mechanical attachment to an end of the wireline, and a drive configured to rotate the spool and thereby wrap a portion of the wireline around the spool to and retract the wireline into the housing.
In an aspect combinable with the example implementation, the interface includes a fastener for fastening the housing to the wireline tool.
In another aspect combinable with the example implementation, the drive includes a motor configured to rotate the spool to wrap a portion of the wireline around the spool, and a control unit configured to control the motor.
In another aspect combinable with the example implementation, the interface includes an electrical connection configured to connect to an external power supply.
In another aspect combinable with the example implementation, the cable head includes a battery connected to the motor.
In another aspect combinable with the example implementation, the cable head includes a sensor configured detect an electrical connection to aboveground equipment through the wireline, wherein the control unit is configured to control the motor based on the detected electrical connection.
In another aspect combinable with the example implementation, the cable head includes an accelerometer configured to detect an acceleration of the cable head, wherein the control unit is configured to control the motor based on the detected acceleration. For example, the control unit can be configured to determine the location of the cable head within a wellbore based on the detected acceleration.
In another aspect combinable with the example implementation, the cable head includes a wireless transmitter configured to wirelessly transmit the location of the cable head in response to a signal from the control unit.
In another aspect combinable with the example implementation, the cable head includes a tension sensor configured to detect the tension of the wireline, wherein the control unit is configured to control the motor based on the tension detected by the tension sensor.
In a further example implementation, a wireline tool includes a housing that includes an outlet opening for a wireline, one or more sensors arranged in the housing and configured to detect one or more physical properties of a wellbore, a spool rotatably mounted in the housing, an anchoring point inside the housing that is configured for mechanical attachment to an end of the wireline, and a drive configured to rotate the spool and thereby wrap a portion of the wireline around the spool to and retract the wireline into the housing.
In an aspect combinable with the example implementation, the drive includes a motor configured to rotate the spool to wrap a portion of the wireline around the spool, a power supply connected to the motor and the one or more sensors arranged in the housing, and a control unit configured to control the motor.
In a further aspect combinable with the example implementation, the wireline tool includes a sensor configured detect an electrical connection to aboveground equipment through the wireline, wherein the control unit is configured to control the motor based on the detected electrical connection.
In a further aspect combinable with the example implementation, the wireline tool includes an accelerometer configured to detect an acceleration of the cable head, wherein the control unit is configured to control the motor based on the detected acceleration. For example, the control unit can be configured to determine the location of the cable head within a wellbore based on the detected acceleration.
In a further aspect combinable with the example implementation, the wireline tool includes a wireless transmitter configured to wirelessly transmit the location of the cable head in response to a signal from the control unit.
In a further aspect combinable with the example implementation, the wireline tool includes a tension sensor configured to detect the tension of the wireline, wherein the control unit is configured to control the motor based on the tension detected by the tension sensor.
In yet a further example implementation, a method of retrieving a lost wireline tool includes connecting a first wireline to an anchoring point of a wireline tool, lowering, by the first wireline, the wireline tool into a wellbore, determining that the first wireline has been severed, and in response to determining that the first wireline has been severed, wrapping a portion of the severed first wireline around a spool of the wireline tool.
In an aspect combinable with the example implementation, wrapping a portion of the severed first wireline around a spool of the wireline tool includes rotating the spool using a motor.
In a further aspect combinable with the example implementation, determining that the first wireline has been severed includes detecting an interruption in an electrical connection to aboveground equipment through the first wireline.
In a further aspect combinable with the example implementation, determining that the first wireline has been severed includes detecting a downward acceleration of the wireline tool down the wellbore.
In a further aspect combinable with the example implementation, determining that the first wireline has been severed includes detecting a decrease in tension on the first wireline.
In a further aspect combinable with the example implementation, the method includes transmitting a location of the wireline tool within the wellbore to an aboveground receiver.
In a further aspect combinable with the example implementation, the method includes lowering, by a second wireline, a fishing tool into the wellbore, grasping the wireline tool with the fishing tool, and raising, by the second wireline, the fishing tool and the wireline tool from the wellbore.
The details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
Like reference numbers and designations in the various drawings indicate like elements.
The wellbore system 10 is designed to access a subterranean formation and provide access to hydrocarbons located in the subterranean formation. As illustrated in
The drilling assembly 12 may be any appropriate assembly or drilling rig used to form wellbores or boreholes in the Earth. The drilling assembly 12 may use traditional techniques to form such wellbores, such as the wellbore 16, or may use nontraditional or novel techniques. In some embodiments, the drilling assembly 12 may use rotary drilling equipment to form such wellbores. Rotary drilling equipment generally includes a drill string and the downhole tool (not shown). Rotating drilling equipment on such a rotary drilling rig may include components that serve to rotate a drill bit, which in turn forms a wellbore, such as the wellbore 16, deeper and deeper into the ground. The illustrated drilling assembly 12 includes a blowout preventer 18 positioned at the surface of the wellbore 16. The blowout preventer 18 can close around (and in some instances, pass through) the drill string to seal off the space between the drill string and the wellbore wall. The illustrated wellbore system is only one example. Other wellbore systems 10 can include a circulation system for drilling fluid or a topside facility, for example.
In some embodiments, the wellbore 16 may be cased with one or more casings. As illustrated, the wellbore 16 includes a conductor casing 20 that extends from the terranean surface 14 a short distance into the Earth. In some cases, a portion of the wellbore 16 enclosed by the conductor casing 20 may be a large diameter borehole. In some cases, the wellbore 16 may include additional casings (not shown) downhole from the conductor casing 20. For example, an additional surface casing may enclose a slightly smaller borehole and protect the wellbore 16 from intrusion of, for example, freshwater aquifers located near the terranean surface 14.
During the lifetime of the wellbore system 10, workover and intervention activities are sometimes necessary. Workover refers to maintenance or remedial work on to restore, prolong, or enhance hydrocarbon production. Wireline tools are often used for such workover activities. For example, wireline tools are used to evaluate the reservoir, locate equipment within a wellbore, determine formation pressure and pore size, identify liquids found in the reservoir, and capture fluid and other samples in the reservoir for evaluation at a topside facility.
As shown, the wireline 26 is connected at one end to the wireline tool 22 by a cable head 28. The opposite end of the wireline 26 is connected to a vehicle, such as a truck 30. The end of the wireline 26 is wrapped around a drum that is mounted to the truck 30 (not shown). The wireline 26 and the tool 22 are raised and lowered by reeling the wire wrapped around the drum in and out. In the illustrated implementation, the drilling assembly 12 includes a pulley 32 that supports the wireline 26.
Although the wireline 26 is made of robust materials, there are times when the wireline 26 may sever. The wireline 26 may sever due to mechanical failure, e.g., when the tool 22 becomes stuck in the wellbore 16 and the truck 30 attempts to reel in the wireline 26. The material of the wireline 26 may also be compromised by the substances found at the bottom 24 of the wellbore 16. When the wireline 26 severs, a first part of the wireline 26 remains attached to the truck 30 and the pulley 32. A second part of the severed wireline 26 remains connected to the tool 22 via the cable head 28. Since the severed wireline 26 can no longer support the tool 22, the tool 22 may fall to the bottom 24 of the wellbore 16, as shown in
In implementations of the present disclosure, the cable head 28 is configured to retract the second part of the severed wireline 26 into a body of the cable head 28. In contrast,
In
In some implementations, the cable head 28 may be configured to transmit a wireless signal that indicates the location of the wireline tool 22, as depicted in
The illustrated cable head 200 includes an interface 202 that connects to the tool 100. The interface 202 can be implemented in a variety of ways. For example, the interface 202 may include a fastener that creates a non-permanent joint between the cable head 200 and the tool 100. Examples of fasteners are one or more threaded fasteners, bolts, clamps, flanges, or pins. In other examples, the interface 202 may form a bonded or welded connection between the cable head 200 and the tool 100. In other examples, the cable head 200 and the tool 100 may be integrally formed and contained, for example, in a common housing. The type of interface 202 may be tailored to maintenance and form factor considerations. For example, a releasable interface 202 may be used with a variety of tools and may be restored to its initial state after a retrieval operation. In contrast, a common housing may reduce the overall package size of the cable head and tool assembly and make it easier to navigate complex wellbore geometries.
In some implementations, the cable head 200 includes a housing 204 that includes an upper housing part 204a, a lower housing part 204b, and a guide 206. The upper housing part 204a contains a spool (
In one example implementation, the spool in the upper housing part 204a may be connected to a coiled spring contained in the lower housing part 204b. During logging operations, the weight of the tool 100 and the cable head 200 may cause the coiled spring to uncoil as the tool 100 is suspended in the wellbore. If the wireline 300 is severed, the force of the coiled spring turns the spool and winds the severed portion of the wireline 300 around the spool. As described in more detail in reference to
As shown in
The spool 400 is configured to reel in and store the severed wireline 300. The spool 400 includes a core 410 and two end plates 412 and is supported in the housing (not shown) of the cable head so that the spool 400 can rotate relative to the rest of the cable head components. For example, the core 410 may have a bore for mounting the core 410 on a shaft (not shown). As shown in
One end 302 of the wireline 300 is anchored to the spool 400 at an anchoring point. The wireline 300 extends from this anchoring point along the axial length of the core 410 of the spool 400. The wireline 300 further extends through the feed notch 414 in the end plate 412 of the spool 400 and through a guide 416 arranged on the end plate 412. The guide 416 may correspond to the guide 206 depicted in
The wireline sensor 402 is configured to detect that the wireline 300 has been severed. In implementations of the present disclosure, a severed wireline 300 can be detected based on an electrical connection through the wireline 300 to aboveground equipment, on the movement of the wireline tool, and on tension applied to the wireline 300. In some implementations, the wireline sensor 402 can detect a severed wireline 300 based on a combination of two or more of these factors.
As described above, the wireline 300 can establish both a mechanical and an electrical connection to aboveground equipment. In this case, the wireline sensor 402 can be configured to detect the electrical connection to aboveground equipment via the wireline 300. When the wireline 300 is severed, the electrical connection is also severed. The wireline sensor 402 can output a signal that represents this electrical connection to the control unit 406, for example. When the signal is interrupted over a period of time, the control unit 406 can be configured to determine that the wireline 300 has been severed.
In some implementations, the wireline sensor 402 includes an accelerometer that detects the movement of the cable head and wireline tool along the wellbore. When the wireline 300 is severed, the accelerometer can detect that the cable head and wireline tool have begun to fall. Similarly, the accelerometer can detect when the cable head and wireline tool come to rest, for example, at the bottom of the wellbore. The control unit 406 can be configured to receive output from the accelerometer to detect the duration and speed of the fall and estimate the approximate position of the wireline tool.
In some implementations, the wireline sensor 402 is configured to sense whether tension is applied to the wireline 300. For example, in normal operations of the wireline tool, the wirelines is connected to an aboveground structure and the weight of the tool places the wireline 300 under tension that is detected by the wireline sensor 402. In this case, the wireline sensor 402 may be located adjacent to the anchoring point of the wireline 300, as shown in
In some implementations, the control unit 406 is configured to control the motor 404 based on input from the wireline sensor 402. For example, the control unit 406 is configured to determine that the wireline 300 has been severed and control the motor 404 in response to this. The motor 404 is configured to rotate the spool 400 about its support shaft for a predetermined time period that allows an appropriate length of severed wireline to be reeled in. Alternatively, the motor 404 can rotate the spool 400 until an onboard battery (not shown) is empty. As shown in
In some implementations, the control unit 406 includes a power supply and memory, for example, for recording the tension values detected by the wireline sensor 402. In some cases, the power supply and the memory can be common to both the cable head and the wireline tool. For example, the interface 202 shown in
In some implementations, the severed part of the wireline 300 is completely wrapped around the core 410 of the spool 400, as shown in
The method 500 includes connecting 502 a first wireline to an anchoring point of a wireline tool. In some cases, the anchoring point is provided in a cable head that connects to the wireline tool. In other cases, the wireline tool itself provides the anchoring point for the wireline. The method 500 also includes lowering 504, by the first wireline, the wireline tool into a wellbore. As shown above in reference to
In some implementations, the method further includes transmitting a location of the wireline tool within the wellbore to an aboveground receiver.
In some implementations, the method 500 includes lowering 510, by a second wireline, a fishing tool into the wellbore; grasping 512 the wireline tool with the fishing tool; and raising 514, by the second wireline, the fishing tool and the wireline tool from the wellbore. Since the method 500 includes retracting a portion of the severed to first wireline by wrapping the severed first wireline around a spool of the wireline tool, the fishing tool is able to more easily engage the wireline tool for retrieval. Thus, the described implementations provide a simple and effective method for retrieving a lost wireline tool.
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, example operations, methods, or processes described herein may include more steps or fewer steps than those described. Further, the steps in such example operations, methods, or processes may be performed in different successions than that described or illustrated in the figures.
In some embodiments, the wellbore system may be deployed on a body of water rather than the terranean surface, as depicted in the figures. For instance, in some embodiments, the terranean surface may be an ocean, gulf, sea, or any other body of water under which hydrocarbon-bearing formations may be found. In short, reference to the terranean surface includes both land and water surfaces and contemplates forming and developing one or more wellbore systems from either or both locations.
Although the wellbore depicted in the figures extends in a vertical direction, in some embodiments, the wellbore may be offset from the vertical (for example, a slant wellbore). Even further, in some embodiments, the wellbore may be a stepped wellbore, such that a portion is drilled vertically downward and then curved to a substantially horizontal wellbore portion. Additional substantially vertical and horizontal wellbore portions may be added according to, for example, the type of terranean surface, the depth of one or more target subterranean formations, the depth of one or more productive subterranean formations, or other criteria.
Accordingly, other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
880404 | Sanford | Feb 1908 | A |
1033655 | Baker | Jul 1912 | A |
1258273 | Titus et al. | Mar 1918 | A |
1392650 | Mcmillian | Oct 1921 | A |
1491066 | Patrick | Apr 1924 | A |
1580352 | Ercole | Apr 1926 | A |
1591264 | Baash | Jul 1926 | A |
1621947 | Moore | Mar 1927 | A |
1638494 | Lewis et al. | Aug 1927 | A |
1789993 | Switzer | Jan 1931 | A |
1896236 | Howard | Feb 1933 | A |
1896482 | Crowell | Feb 1933 | A |
1897297 | Brown | Feb 1933 | A |
1949498 | Frederick et al. | Mar 1934 | A |
2047774 | Greene | Jul 1936 | A |
2121002 | Baker | Jun 1938 | A |
2121051 | Ragan et al. | Jun 1938 | A |
2187487 | Burt | Jan 1940 | A |
2189697 | Baker | Feb 1940 | A |
2222233 | Mize | Nov 1940 | A |
2286075 | Evans | Jun 1942 | A |
2304793 | Bodine | Dec 1942 | A |
2316402 | Canon | Apr 1943 | A |
2327092 | Botkin | Aug 1943 | A |
2377249 | Lawrence | May 1945 | A |
2411260 | Glover et al. | Nov 1946 | A |
2481637 | Yancey | Sep 1949 | A |
2546978 | Collins et al. | Apr 1951 | A |
2638988 | Williams | May 1953 | A |
2663370 | Robert et al. | Dec 1953 | A |
2672199 | McKenna | Mar 1954 | A |
2701019 | Steed | Feb 1955 | A |
2707998 | Baker et al. | May 1955 | A |
2708973 | Twining | May 1955 | A |
2728599 | Moore | Dec 1955 | A |
2734581 | Bonner | Feb 1956 | A |
2745693 | Mcgill | May 1956 | A |
2751010 | Trahan | Jun 1956 | A |
2762438 | Naylor | Sep 1956 | A |
2778428 | Baker et al. | Jan 1957 | A |
2806532 | Baker et al. | Sep 1957 | A |
2881838 | Morse et al. | Apr 1959 | A |
2887162 | Le Bus et al. | May 1959 | A |
2912053 | Bruekelman | Nov 1959 | A |
2912273 | Chadderdon et al. | Nov 1959 | A |
2915127 | Abendroth | Dec 1959 | A |
2935020 | Howard et al. | May 1960 | A |
2947362 | Smith | Aug 1960 | A |
2965175 | Ransom | Dec 1960 | A |
2965177 | Le Bus et al. | Dec 1960 | A |
2965183 | Le Bus et al. | Dec 1960 | A |
3005506 | Le Bus et al. | Oct 1961 | A |
3023810 | Anderson | Mar 1962 | A |
3116799 | Lemons | Jan 1964 | A |
3147536 | Lamphere | Sep 1964 | A |
3191677 | Kinley | Jun 1965 | A |
3225828 | Wisenbaker et al. | Dec 1965 | A |
3308886 | Evans | Mar 1967 | A |
3352593 | Webb | Nov 1967 | A |
3369603 | Trantham | Feb 1968 | A |
3376934 | William | Apr 1968 | A |
3380528 | Durwood | Apr 1968 | A |
3381748 | Peters et al. | May 1968 | A |
3382925 | Jennings | May 1968 | A |
3409084 | Lawson, Jr. et al. | Nov 1968 | A |
3437136 | Young | Apr 1969 | A |
3667721 | Vujasinovic | Jun 1972 | A |
3747674 | Murray | Jul 1973 | A |
3752230 | Bernat et al. | Aug 1973 | A |
3897038 | Le Rouax | Jul 1975 | A |
3915426 | Le Rouax | Oct 1975 | A |
4030354 | Scott | Jun 1977 | A |
4039798 | Lyhall et al. | Aug 1977 | A |
4042019 | Henning | Aug 1977 | A |
4059155 | Greer | Nov 1977 | A |
4099699 | Allen | Jul 1978 | A |
4190112 | Davis | Feb 1980 | A |
4227573 | Pearce et al. | Oct 1980 | A |
4254983 | Harris | Mar 1981 | A |
4276931 | Murray | Jul 1981 | A |
4285400 | Mullins | Aug 1981 | A |
4289200 | Fisher | Sep 1981 | A |
4296822 | Ormsby | Oct 1981 | A |
4349071 | Fish | Sep 1982 | A |
4391326 | Greenlee | Jul 1983 | A |
4407367 | Kydd | Oct 1983 | A |
4412130 | Winters | Oct 1983 | A |
4413642 | Smith et al. | Nov 1983 | A |
4422948 | Corley et al. | Dec 1983 | A |
4467996 | Baugh | Aug 1984 | A |
4478286 | Fineberg | Oct 1984 | A |
4515212 | Krugh | May 1985 | A |
4538684 | Sheffield | Sep 1985 | A |
4562888 | Collet | Jan 1986 | A |
4603578 | Stolz | Aug 1986 | A |
4611658 | Salemi et al. | Sep 1986 | A |
4616721 | Furse | Oct 1986 | A |
4696502 | Desai | Sep 1987 | A |
4791992 | Greenlee et al. | Dec 1988 | A |
4834184 | Streich et al. | May 1989 | A |
4836289 | Young | Jun 1989 | A |
4869321 | Hamilton | Sep 1989 | A |
4877085 | Pullig, Jr. | Oct 1989 | A |
4898240 | Wittrisch | Feb 1990 | A |
4898245 | Braddick | Feb 1990 | A |
4928762 | Mamke | May 1990 | A |
4953617 | Ross et al. | Sep 1990 | A |
4997225 | Denis | Mar 1991 | A |
5012863 | Springer | May 1991 | A |
5054833 | Bishop et al. | Oct 1991 | A |
5060737 | Mohn | Oct 1991 | A |
5117909 | Wilton et al. | Jun 1992 | A |
5129956 | Christopher et al. | Jul 1992 | A |
5176208 | Lalande et al. | Jan 1993 | A |
5178219 | Streich et al. | Jan 1993 | A |
5197547 | Morgan | Mar 1993 | A |
5203646 | Landsberger et al. | Apr 1993 | A |
5295541 | Ng et al. | Mar 1994 | A |
5330000 | Givens et al. | Jul 1994 | A |
5343946 | Morrill | Sep 1994 | A |
5348095 | Worrall | Sep 1994 | A |
5358048 | Brooks | Oct 1994 | A |
5392715 | Pelrine | Feb 1995 | A |
5456312 | Lynde et al. | Oct 1995 | A |
5507346 | Gano et al. | Apr 1996 | A |
5580114 | Palmer | Dec 1996 | A |
5584342 | Swinford | Dec 1996 | A |
5605366 | Beeman | Feb 1997 | A |
5639135 | Beeman | Jun 1997 | A |
5667015 | Harestad et al. | Sep 1997 | A |
5673754 | Taylor | Oct 1997 | A |
5678635 | Dunlap et al. | Oct 1997 | A |
5685982 | Foster | Nov 1997 | A |
5698814 | Parsons | Dec 1997 | A |
5775420 | Mitchell et al. | Jul 1998 | A |
5806596 | Hardy et al. | Sep 1998 | A |
5833001 | Song et al. | Nov 1998 | A |
5842518 | Soybel et al. | Dec 1998 | A |
5881816 | Wright | Mar 1999 | A |
5899796 | Kamiyama et al. | May 1999 | A |
5924489 | Hatcher | Jul 1999 | A |
5931443 | Corte, Sr. | Aug 1999 | A |
5944101 | Hearn | Aug 1999 | A |
6070665 | Singleton et al. | Jun 2000 | A |
6112809 | Angle | Sep 2000 | A |
6130615 | Poteet | Oct 2000 | A |
6138764 | Scarsdale et al. | Oct 2000 | A |
6155428 | Bailey et al. | Dec 2000 | A |
6247542 | Kruspe et al. | Jun 2001 | B1 |
6276452 | Davis et al. | Aug 2001 | B1 |
6371204 | Singh et al. | Apr 2002 | B1 |
6378627 | Tubel et al. | Apr 2002 | B1 |
6491108 | Slup et al. | Dec 2002 | B1 |
6510947 | Schulte et al. | Jan 2003 | B1 |
6595289 | Tumlin et al. | Jul 2003 | B2 |
6637511 | Linaker | Oct 2003 | B2 |
6679330 | Compton et al. | Jan 2004 | B1 |
6688386 | Comelssen | Feb 2004 | B2 |
6698712 | Milberger et al. | Mar 2004 | B2 |
6729392 | DeBerry et al. | May 2004 | B2 |
6768106 | Gzara et al. | Jul 2004 | B2 |
6808023 | Smith et al. | Oct 2004 | B2 |
6811032 | Schulte et al. | Nov 2004 | B2 |
6854521 | Echols et al. | Feb 2005 | B2 |
6880639 | Rhodes et al. | Apr 2005 | B2 |
6899178 | Tubel | May 2005 | B2 |
6913084 | Boyd | Jul 2005 | B2 |
7049272 | Sinclair et al. | May 2006 | B2 |
7051810 | Halliburton | May 2006 | B2 |
7082994 | Frost, Jr. et al. | Aug 2006 | B2 |
7090019 | Barrow et al. | Aug 2006 | B2 |
7096950 | Howlett et al. | Aug 2006 | B2 |
7117941 | Gano | Oct 2006 | B1 |
7117956 | Grattan et al. | Oct 2006 | B2 |
7128146 | Baugh | Oct 2006 | B2 |
7150328 | Marketz et al. | Dec 2006 | B2 |
7174764 | Oosterling et al. | Feb 2007 | B2 |
7188674 | McGavern, III et al. | Mar 2007 | B2 |
7188675 | Reynolds | Mar 2007 | B2 |
7218235 | Rainey | May 2007 | B1 |
7231975 | Lavaure et al. | Jun 2007 | B2 |
7249633 | Ravensbergen et al. | Jul 2007 | B2 |
7275591 | Allen et al. | Oct 2007 | B2 |
7284611 | Reddy et al. | Oct 2007 | B2 |
7303010 | de Guzman et al. | Dec 2007 | B2 |
7363860 | Wilson | Apr 2008 | B2 |
7383889 | Ring | Jun 2008 | B2 |
7398832 | Brisco | Jul 2008 | B2 |
7405182 | Verrett | Jul 2008 | B2 |
7418860 | Austerlitz et al. | Sep 2008 | B2 |
7424909 | Roberts et al. | Sep 2008 | B2 |
7488705 | Reddy et al. | Feb 2009 | B2 |
7497260 | Telfer | Mar 2009 | B2 |
7533731 | Corre | May 2009 | B2 |
7591305 | Brookey et al. | Sep 2009 | B2 |
7600572 | Slup et al. | Oct 2009 | B2 |
7617876 | Patel et al. | Nov 2009 | B2 |
7621324 | Atencio | Nov 2009 | B2 |
7712527 | Roddy | May 2010 | B2 |
7735564 | Guerrero | Jun 2010 | B2 |
7762323 | Frazier | Jul 2010 | B2 |
7762330 | Saylor, III et al. | Jul 2010 | B2 |
7802621 | Richards et al. | Sep 2010 | B2 |
7878240 | Garcia | Feb 2011 | B2 |
7934552 | La Rovere | May 2011 | B2 |
7965175 | Yamano | Jun 2011 | B2 |
8002049 | Keese et al. | Aug 2011 | B2 |
8056621 | Ring et al. | Nov 2011 | B2 |
8069916 | Giroux et al. | Dec 2011 | B2 |
8157007 | Nicolas | Apr 2012 | B2 |
8201693 | Jan | Jun 2012 | B2 |
8210251 | Lynde et al. | Jul 2012 | B2 |
8376051 | McGrath et al. | Feb 2013 | B2 |
8424611 | Smith et al. | Apr 2013 | B2 |
8453724 | Zhou | Jun 2013 | B2 |
8496055 | Mootoo et al. | Jul 2013 | B2 |
8579024 | Mailand et al. | Nov 2013 | B2 |
8579037 | Jacob | Nov 2013 | B2 |
8596463 | Burkhard | Dec 2013 | B2 |
8662182 | Redlinger et al. | Mar 2014 | B2 |
8726983 | Khan | May 2014 | B2 |
8770276 | Nish et al. | Jul 2014 | B1 |
8899338 | Elsayed et al. | Dec 2014 | B2 |
8991489 | Redlinger et al. | Mar 2015 | B2 |
9079222 | Burnett et al. | Jul 2015 | B2 |
9109433 | DiFoggio et al. | Aug 2015 | B2 |
9133671 | Kellner | Sep 2015 | B2 |
9163469 | Broussard et al. | Oct 2015 | B2 |
9181782 | Berube et al. | Nov 2015 | B2 |
9212532 | Leuchtenberg et al. | Dec 2015 | B2 |
9234394 | Wheater et al. | Jan 2016 | B2 |
9353589 | Hekelaar | May 2016 | B2 |
9359861 | Burgos | Jun 2016 | B2 |
9410066 | Ghassemzadeh | Aug 2016 | B2 |
9416617 | Wiese et al. | Aug 2016 | B2 |
9441441 | Hickie | Sep 2016 | B1 |
9441451 | Jurgensmeier | Sep 2016 | B2 |
9528354 | Loiseau et al. | Dec 2016 | B2 |
9551200 | Read et al. | Jan 2017 | B2 |
9574417 | Laird et al. | Feb 2017 | B2 |
9617829 | Dale et al. | Apr 2017 | B2 |
9657213 | Murphy et al. | May 2017 | B2 |
9903192 | Entchev | Feb 2018 | B2 |
9976407 | Ash et al. | May 2018 | B2 |
10087752 | Bedonet | Oct 2018 | B2 |
10161194 | Clemens et al. | Dec 2018 | B2 |
10198929 | Snyder | Feb 2019 | B2 |
10266698 | Cano et al. | Apr 2019 | B2 |
10280706 | Sharp, III | May 2019 | B1 |
10301898 | Orban | May 2019 | B2 |
10301989 | Imada | May 2019 | B2 |
10544640 | Hekelaar et al. | Jan 2020 | B2 |
10584546 | Ford | Mar 2020 | B1 |
10626698 | Al-Mousa et al. | Apr 2020 | B2 |
10787888 | Andersen | Sep 2020 | B2 |
10837254 | Al-Mousa et al. | Nov 2020 | B2 |
10975654 | Neacsu et al. | Apr 2021 | B1 |
10982504 | Al-Mousa et al. | Apr 2021 | B2 |
11187072 | Downey | Nov 2021 | B2 |
20020053428 | Maples | May 2002 | A1 |
20020060079 | Metcalfe | May 2002 | A1 |
20020195252 | Maguire | Dec 2002 | A1 |
20030047312 | Bell | Mar 2003 | A1 |
20030098064 | Kohli et al. | May 2003 | A1 |
20030132224 | Spencer | Jul 2003 | A1 |
20030150608 | Smith | Aug 2003 | A1 |
20030221840 | Whitelaw | Dec 2003 | A1 |
20040040707 | Dusterhoft et al. | Mar 2004 | A1 |
20040065446 | Tran et al. | Apr 2004 | A1 |
20040074819 | Burnett | Apr 2004 | A1 |
20040095248 | Mandel | May 2004 | A1 |
20040168796 | Baugh et al. | Sep 2004 | A1 |
20040216891 | Maguire | Nov 2004 | A1 |
20050024231 | Fincher et al. | Feb 2005 | A1 |
20050056427 | Clemens et al. | Mar 2005 | A1 |
20050087585 | Copperthite et al. | Apr 2005 | A1 |
20050167097 | Sommers et al. | Aug 2005 | A1 |
20050263282 | Jeffrey et al. | Dec 2005 | A1 |
20060082462 | Crook | Apr 2006 | A1 |
20060105896 | Smith et al. | May 2006 | A1 |
20060243453 | McKee | Nov 2006 | A1 |
20070114039 | Hobdy et al. | May 2007 | A1 |
20070137528 | Le Roy-Ddelage et al. | Jun 2007 | A1 |
20070181304 | Rankin et al. | Aug 2007 | A1 |
20070204999 | Cowie et al. | Sep 2007 | A1 |
20070256867 | DeGeare et al. | Nov 2007 | A1 |
20080007421 | Liu et al. | Jan 2008 | A1 |
20080087439 | Dallas | Apr 2008 | A1 |
20080236841 | Howlett et al. | Oct 2008 | A1 |
20080251253 | Lumbye | Oct 2008 | A1 |
20080314591 | Hales et al. | Dec 2008 | A1 |
20090194290 | Parks et al. | Aug 2009 | A1 |
20090250220 | Stamoulis | Oct 2009 | A1 |
20090308656 | Chitwood | Dec 2009 | A1 |
20100051265 | Hurst | Mar 2010 | A1 |
20100193124 | Nicolas | Aug 2010 | A1 |
20100258289 | Lynde et al. | Oct 2010 | A1 |
20100263856 | Lynde et al. | Oct 2010 | A1 |
20100270018 | Howlett | Oct 2010 | A1 |
20110036570 | La Rovere et al. | Feb 2011 | A1 |
20110056681 | Khan | Mar 2011 | A1 |
20110067869 | Bour et al. | Mar 2011 | A1 |
20110079401 | Gambier | Apr 2011 | A1 |
20110168411 | Braddick | Jul 2011 | A1 |
20110203794 | Moffitt et al. | Aug 2011 | A1 |
20110259609 | Hessels et al. | Oct 2011 | A1 |
20110273291 | Adams | Nov 2011 | A1 |
20110278021 | Travis et al. | Nov 2011 | A1 |
20120012335 | White et al. | Jan 2012 | A1 |
20120067447 | Ryan et al. | Mar 2012 | A1 |
20120085538 | Guerrero | Apr 2012 | A1 |
20120118571 | Zhou | May 2012 | A1 |
20120170406 | DiFoggio et al. | Jul 2012 | A1 |
20120285684 | Crow et al. | Nov 2012 | A1 |
20130062055 | Tolman | Mar 2013 | A1 |
20130134704 | Klimack | May 2013 | A1 |
20130213654 | Dewey et al. | Aug 2013 | A1 |
20130240207 | Frazier | Sep 2013 | A1 |
20130269097 | Alammari | Oct 2013 | A1 |
20130296199 | Ghassemzadeh | Nov 2013 | A1 |
20130299194 | Bell | Nov 2013 | A1 |
20140138091 | Fuhst | May 2014 | A1 |
20140158350 | Castillo et al. | Jun 2014 | A1 |
20140231068 | Isaksen | Aug 2014 | A1 |
20140251616 | O'Rourke et al. | Sep 2014 | A1 |
20150013994 | Bailey et al. | Jan 2015 | A1 |
20150096738 | Atencio | Apr 2015 | A1 |
20150152704 | Tunget | Jun 2015 | A1 |
20150275649 | Orban | Oct 2015 | A1 |
20160076327 | Glaser et al. | Mar 2016 | A1 |
20160084034 | Roane et al. | Mar 2016 | A1 |
20160130914 | Steele | May 2016 | A1 |
20160160106 | Jamison et al. | Jun 2016 | A1 |
20160237810 | Beaman et al. | Aug 2016 | A1 |
20160281458 | Greenlee | Sep 2016 | A1 |
20160305215 | Harris et al. | Oct 2016 | A1 |
20160340994 | Ferguson et al. | Nov 2016 | A1 |
20170044864 | Sabins et al. | Feb 2017 | A1 |
20170058628 | Wijk et al. | Mar 2017 | A1 |
20170067313 | Connell et al. | Mar 2017 | A1 |
20170089166 | Sullivan | Mar 2017 | A1 |
20170159388 | Volgmann | Jun 2017 | A1 |
20170204703 | Mair | Jul 2017 | A1 |
20170350237 | Giem | Dec 2017 | A1 |
20180010418 | VanLue | Jan 2018 | A1 |
20180030809 | Harestad et al. | Feb 2018 | A1 |
20180058167 | Finol et al. | Mar 2018 | A1 |
20180187498 | Soto et al. | Jul 2018 | A1 |
20180209565 | Lingnau | Jul 2018 | A1 |
20180245427 | Jimenez et al. | Aug 2018 | A1 |
20180252069 | Abdollah et al. | Sep 2018 | A1 |
20190024473 | Arefi | Jan 2019 | A1 |
20190049017 | McAdam et al. | Feb 2019 | A1 |
20190087548 | Bennett et al. | Mar 2019 | A1 |
20190186232 | Ingram | Jun 2019 | A1 |
20190203551 | Davis et al. | Jul 2019 | A1 |
20190284894 | Schmidt et al. | Sep 2019 | A1 |
20190284898 | Fagna et al. | Sep 2019 | A1 |
20190301258 | Li | Oct 2019 | A1 |
20190316424 | Robichaux et al. | Oct 2019 | A1 |
20190338615 | Landry | Nov 2019 | A1 |
20200032604 | Al-Ramadhan | Jan 2020 | A1 |
20200056446 | Al-Mousa et al. | Feb 2020 | A1 |
20200240225 | King et al. | Jul 2020 | A1 |
20210025259 | Al-Mousa et al. | Jan 2021 | A1 |
20210054696 | Golinowski et al. | Feb 2021 | A1 |
20210054706 | Al-Mousa et al. | Feb 2021 | A1 |
20210054708 | Al-Mousa et al. | Feb 2021 | A1 |
20210054710 | Neacsu et al. | Feb 2021 | A1 |
20210054716 | Al-Mousa et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
636642 | May 1993 | AU |
2007249417 | Nov 2007 | AU |
1329349 | May 1994 | CA |
2441138 | Mar 2004 | CA |
2762217 | May 2015 | CA |
2802988 | Oct 2015 | CA |
2879985 | Apr 2016 | CA |
2734032 | Jun 2016 | CA |
203292820 | Nov 2013 | CN |
103785923 | Jun 2016 | CN |
104712320 | Dec 2016 | CN |
107060679 | Aug 2017 | CN |
107191152 | Sep 2017 | CN |
107227939 | Oct 2017 | CN |
2545245 | Apr 2017 | DK |
2236742 | Aug 2017 | DK |
0792997 | Jan 1999 | EP |
2119867 | Nov 2009 | EP |
2964874 | Jan 2016 | EP |
2545245 | Apr 2017 | EP |
958734 | May 1964 | GB |
2021178 | Nov 1979 | GB |
2392183 | Feb 2004 | GB |
2396634 | Jun 2004 | GB |
2414586 | Nov 2005 | GB |
2425138 | Oct 2006 | GB |
2453279 | Jan 2009 | GB |
2492663 | Jan 2014 | GB |
333538 | Jul 2013 | NO |
20170293 | Aug 2018 | NO |
5503 | Apr 1981 | OA |
WO 1989012728 | Dec 1989 | WO |
WO 1996039570 | Dec 1996 | WO |
WO 2002090711 | Nov 2002 | WO |
WO 2004046497 | Jun 2004 | WO |
WO 2010132807 | Nov 2010 | WO |
WO 2012161854 | Nov 2012 | WO |
WO 2012164023 | Dec 2012 | WO |
WO 2013109248 | Jul 2013 | WO |
WO 2015112022 | Jul 2015 | WO |
WO 2016011085 | Jan 2016 | WO |
WO 2016040310 | Mar 2016 | WO |
WO 2016140807 | Sep 2016 | WO |
WO 2017043977 | Mar 2017 | WO |
WO 2018017104 | Jan 2018 | WO |
WO 2018164680 | Sep 2018 | WO |
WO 2019027830 | Feb 2019 | WO |
WO 2019132877 | Jul 2019 | WO |
WO 2019231679 | Dec 2019 | WO |
Entry |
---|
Al-Ansari et al., “Thermal Activated Resin to Avoid Pressure Build-Up in Casing-Casing Annulus (CCA),” SA-175425-MS, Society of Petroleum Engineers (SPE), presented at the SPE Offshore Europe Conference and Exhibition, Sep. 8-11, 2015, 11 pages. |
Al-Ibrahim et al., “Automated Cyclostratigraphic Analysis in Carbonate Mudrocks Using Borehole Images,” Article #41425, posted presented at the 2014 AAPG Annual Convention and Exhibition, Search and Discovery, Apr. 6-9, 2014, 4 pages. |
Bautista et al., “Probability-based Dynamic TimeWarping for Gesture Recognition on RGB-D data,” WDIA 2012: Advances in Depth Image Analysis and Application, 126-135, International Workshop on Depth Image Analysis and Applications, 2012, 11 pages. |
Boriah et al., “Similarity Measures for Categorical Data: A Comparative Evaluation,” presented at the SIAM International Conference on Data Mining, SDM 2008, Apr. 24-26, 2008, 12 pages. |
Bruton et al., “Whipstock Options for Sidetracking,” Oilfield Review, Spring 2014, 26:1, 10 pages. |
Edwards et al., “Assessing Uncertainty in Stratigraphic Correlation: A Stochastic Method Based on Dynamic Time Warping,” RM13, Second EAGE Integrated Reservoir Modelling Conference, Nov. 16-19, 2014, 2 pages. |
Edwards, “Construction de modéles stratigraphiques ápartir de données éparses,” Stratigraphic, Universitéde Lorraine, 2017, 133 pages, English abstract. |
Fischer, “The Lofer Cyclothems of the Alpine Triassic,” published in Merriam, Symposium on Cyclic Sedimentation: Kansas Geological Survey (KGS), Bulletin, 1964, 169: 107-149, 50 pages. |
Forum Energy Technologies “Drill Pipe Float Valves,” 2019, Catalog, 6 pages. |
Hernandez-Vela et al., “Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for human Gesture Recognition in RGB-D,” Pattern Recognition Letters, 2014, 50: 112-121, 10 pages. |
Herrera and Bann, “Guided seismic-to-well tying based on dynamic time warping,” SEG Las Vegas 2012 Annual Meeting, Nov. 2012, 6 pages. |
Hydril “Checkguard” Kelly guard Drill Stem Valves, Catalog DSV 2003, Brochure, 9 pages. |
Keogh and Ratanamahatana, “Exact indexing of dynamic time warping,” Knowledge and Information Systems, Springer-Verlag London Ltd., 2004, 29 pages. |
Lallier et al., “3D Stochastic Stratigraphic Well Correlation of Carbonate Ramp Systems,” IPTC 14046, International Petroleum Technology Conference (IPTC), presented at the International Petroleum Technology Conference, Dec. 7-9, 2009, 5 pages. |
Lallier et al., “Management of ambiguities in magneto stratigraphic correlation,” Earth and Planetary Science Letters, 2013, 371-372: 26-36, 11 pages. |
Lallier et al., “Uncertainty assessment in the stratigraphic well correlation of a carbonate ramp: Method and application of the Beausset Basin, SE France,” C. R. Geoscience, 2016, 348: 499-509, 11 pages. |
Lineman et al., “Well to Well Log Correlation Using Knowledge-Based Systems and Dynamic Depth Warping,” SPWLA Twenty-Eighth Annual Logging Symposium, Jun. 29-Jul. 2, 1987, 25 pages. |
Nakanishi and Nakagawa, “Speaker-Independent Word Recognition by Less Cost and Stochastic Dynamic Time Warping Method,” ISCA Archive, European Conference on Speech Technology, Sep. 1987, 4 pages. |
Packardusa.com [online], “Drop-in Check Valves,” Packard International, available on or before Jul. 6, 2007, via Internet Archive: Wayback Machine URL <http://web.archive.org/web/20070706210423/http://packardusa.com/productsandservices5.asp>, retreived on May 11, 2021, URL <www.packardusa.com/productsandservices5.asp>, 2 pages. |
Pels et al., “Automated biostratigraphic correlation of palynological records on the basis of shapes of pollen curves and evaluation of next-best solutions,” Paleogeography, Paleoclimatology, Paleoecology, 1996, 124: 17-37, 21 pages. |
Pollack et al., “Automatic Well Log Correlation,” AAPG Annual Convention and Exhibition, Apr. 3, 2017, 1 page, Abstract Only. |
Rudman and Lankston, “Stratigraphic Correlation of Well Logs by Computer Techniques,” The American Association of Petroleum Geologists, Mar. 1973, 53:3 (557-588), 12 pages. |
Sakoe and Chiba, “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-26:!, Feb. 1978, 7 pages. |
Salvador and Chan, “FastDTW: Toward Accurate Dynamic Time Warping in Linear Time and Space,” presented at the KDD Workshop on Mining Temporal and Sequential Data, Intelligent Data Analysis, Jan. 2004, 11:5 (70-80), 11 pages. |
Sayhi, “peakdet: Peak detection using MATLAB,” Jul. 2012, 4 pages. |
Scribd.com [online], “Milling Practices and Procedures,” retrieved from URL <https://www.scribd.com/document/358420338/Milling-Rev-2-Secured>, 80 pages. |
Silva and Koegh, “Prefix and Suffix Invariant Dynamic Time Warping,” IEEE Computer Society, presented at the IEEE 16th International Conference on Data Mining, 2016, 6 pages. |
Smith and Waterman, “New Stratigraphic Correlation Techniques,” Journal of Geology, 1980, 88: 451-457, 8 pages. |
Startzman and Kuo, “A Rule-Based System for Well Log Correlation,” SPE Formative Evaluation, Society of Petroleum Engineers (SPE), Sep. 1987, 9 pages. |
TAM International Inflatable and Swellable Packers, “TAM Scab Liner brochure,” Tam International, available on or before Nov. 15, 2016, 4 pages. |
Tomasi et al., “Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data,” Journal of Chemometrics, 2004, 18: 231-241, 11 pages. |
Uchida et al., “Non-Markovian Dynamic Time Warping,” presented at the 21st International Conference on Pattern Recognition (ICPR), Nov. 11-15, 2012, 4 pages. |
Waterman and Raymond, “The Match Game: New Stratigraphic Correlation Algorithms,” Mathematical Geology, 1987, 19:2, 19 pages. |
Weatherford, “Micro-Seal Isolation System-Bow (MSIS-B),” Weatherford Swellable Well Construction Products, Brochure, 2009-2011, 2 pages. |
Zoraster et al., “Curve Alignment for Well-to-Well Log Correlation,” SPE 90471, Society of Petroleum Engineers (SPE), presented at the SPE Annual Technical Conference and Exhibition, Sep. 26-29, 2004, 6 pages. |