Cable head for a wireline tool

Information

  • Patent Grant
  • 11448026
  • Patent Number
    11,448,026
  • Date Filed
    Monday, May 3, 2021
    3 years ago
  • Date Issued
    Tuesday, September 20, 2022
    2 years ago
Abstract
The present disclosure describes a cable head for a wireline tool that includes a housing that comprises an outlet opening for a wireline and an interface configured to connect the housing to the wireline tool; a spool rotatably mounted in the housing; an anchoring point configured for mechanical attachment to an end of the wireline; and a drive configured to rotate the spool and thereby wrap a portion of the wireline around the spool to and retract the wireline into the housing. A wireline tool and a method of retrieving a lost wireline tool are also described.
Description
TECHNICAL FIELD

This disclosure relates to a cable head for a wireline tool, a wireline tool, and a method of retrieving a lost wireline tool.


BACKGROUND

During the lifetime of a drilling well, workover and intervention activities are sometimes necessary. Workover refers to maintenance or remedial work on a well that restores, prolongs, or enhances hydrocarbon production. Wireline tools are often used for workover activities. For example, wireline tools are used to evaluate the properties of a reservoir, locate equipment within a wellbore, determine formation pressure and pore size, identify liquids found in the reservoir, and capture fluid samples in the reservoir for evaluation at a topside facility. Generally, a wireline tool is connected to the end of a wireline and lowered into the wellbore. A cable head is a device that mechanically, and in some cases also electrically, connects the wireline tool to the wireline.


SUMMARY

In an example implementation, a cable head for a wireline tool includes a housing that includes an outlet opening for a wireline and an interface configured to connect the housing to the wireline tool, a spool rotatably mounted in the housing, an anchoring point configured for mechanical attachment to an end of the wireline, and a drive configured to rotate the spool and thereby wrap a portion of the wireline around the spool to and retract the wireline into the housing.


In an aspect combinable with the example implementation, the interface includes a fastener for fastening the housing to the wireline tool.


In another aspect combinable with the example implementation, the drive includes a motor configured to rotate the spool to wrap a portion of the wireline around the spool, and a control unit configured to control the motor.


In another aspect combinable with the example implementation, the interface includes an electrical connection configured to connect to an external power supply.


In another aspect combinable with the example implementation, the cable head includes a battery connected to the motor.


In another aspect combinable with the example implementation, the cable head includes a sensor configured detect an electrical connection to aboveground equipment through the wireline, wherein the control unit is configured to control the motor based on the detected electrical connection.


In another aspect combinable with the example implementation, the cable head includes an accelerometer configured to detect an acceleration of the cable head, wherein the control unit is configured to control the motor based on the detected acceleration. For example, the control unit can be configured to determine the location of the cable head within a wellbore based on the detected acceleration.


In another aspect combinable with the example implementation, the cable head includes a wireless transmitter configured to wirelessly transmit the location of the cable head in response to a signal from the control unit.


In another aspect combinable with the example implementation, the cable head includes a tension sensor configured to detect the tension of the wireline, wherein the control unit is configured to control the motor based on the tension detected by the tension sensor.


In a further example implementation, a wireline tool includes a housing that includes an outlet opening for a wireline, one or more sensors arranged in the housing and configured to detect one or more physical properties of a wellbore, a spool rotatably mounted in the housing, an anchoring point inside the housing that is configured for mechanical attachment to an end of the wireline, and a drive configured to rotate the spool and thereby wrap a portion of the wireline around the spool to and retract the wireline into the housing.


In an aspect combinable with the example implementation, the drive includes a motor configured to rotate the spool to wrap a portion of the wireline around the spool, a power supply connected to the motor and the one or more sensors arranged in the housing, and a control unit configured to control the motor.


In a further aspect combinable with the example implementation, the wireline tool includes a sensor configured detect an electrical connection to aboveground equipment through the wireline, wherein the control unit is configured to control the motor based on the detected electrical connection.


In a further aspect combinable with the example implementation, the wireline tool includes an accelerometer configured to detect an acceleration of the cable head, wherein the control unit is configured to control the motor based on the detected acceleration. For example, the control unit can be configured to determine the location of the cable head within a wellbore based on the detected acceleration.


In a further aspect combinable with the example implementation, the wireline tool includes a wireless transmitter configured to wirelessly transmit the location of the cable head in response to a signal from the control unit.


In a further aspect combinable with the example implementation, the wireline tool includes a tension sensor configured to detect the tension of the wireline, wherein the control unit is configured to control the motor based on the tension detected by the tension sensor.


In yet a further example implementation, a method of retrieving a lost wireline tool includes connecting a first wireline to an anchoring point of a wireline tool, lowering, by the first wireline, the wireline tool into a wellbore, determining that the first wireline has been severed, and in response to determining that the first wireline has been severed, wrapping a portion of the severed first wireline around a spool of the wireline tool.


In an aspect combinable with the example implementation, wrapping a portion of the severed first wireline around a spool of the wireline tool includes rotating the spool using a motor.


In a further aspect combinable with the example implementation, determining that the first wireline has been severed includes detecting an interruption in an electrical connection to aboveground equipment through the first wireline.


In a further aspect combinable with the example implementation, determining that the first wireline has been severed includes detecting a downward acceleration of the wireline tool down the wellbore.


In a further aspect combinable with the example implementation, determining that the first wireline has been severed includes detecting a decrease in tension on the first wireline.


In a further aspect combinable with the example implementation, the method includes transmitting a location of the wireline tool within the wellbore to an aboveground receiver.


In a further aspect combinable with the example implementation, the method includes lowering, by a second wireline, a fishing tool into the wellbore, grasping the wireline tool with the fishing tool, and raising, by the second wireline, the fishing tool and the wireline tool from the wellbore.


The details of one or more implementations of the subject matter described in this disclosure are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic diagram of an example wellbore system with a wireline tool that includes a cable head according to the present disclosure.



FIG. 1B is a schematic diagram of the wellbore system in FIG. 1A when the wireline is severed from the cable head.



FIG. 2 is a schematic diagram of a wireline tool connected to a tangled and severed wireline.



FIG. 3 is a schematic diagram of an example implementation of a wireline tool that includes a cable head according to the present disclosure.



FIG. 4A to 4C are schematic diagrams of the components of an example implementation of a cable head according to the present disclosure.



FIG. 5 depicts an example method of retrieving a lost wireline tool in accordance with implementations of the present disclosure.





Like reference numbers and designations in the various drawings indicate like elements.


DETAILED DESCRIPTION


FIG. 1A is a schematic diagram of an example wellbore system 10 with a wireline tool that includes a cable head according to the present disclosure. Generally, FIG. 1A illustrates a portion of one embodiment of a wellbore system 10 in which a wireline tool is connected to a wireline by the cable head. The cable head, as described more fully in the present disclosure, includes a housing that includes an outlet opening for a wireline and an interface configured to connect the housing to the wireline tool; a spool rotatably mounted in the housing; and an anchoring point configured for mechanical attachment to an end of the wireline. The spool is configured to rotate and wrap a portion of the wireline around the spool to retract the wireline into the housing. Other aspects of the disclosure include a wireline tool and a method of retrieving a lost wireline tool.


The wellbore system 10 is designed to access a subterranean formation and provide access to hydrocarbons located in the subterranean formation. As illustrated in FIG. 1A, the wellbore system 10 includes a drilling assembly 12 deployed on a terranean surface 14. The drilling assembly 12 may be used to form a wellbore 16 extending from the terranean surface 14 and through one or more geological formations in the Earth.


The drilling assembly 12 may be any appropriate assembly or drilling rig used to form wellbores or boreholes in the Earth. The drilling assembly 12 may use traditional techniques to form such wellbores, such as the wellbore 16, or may use nontraditional or novel techniques. In some embodiments, the drilling assembly 12 may use rotary drilling equipment to form such wellbores. Rotary drilling equipment generally includes a drill string and the downhole tool (not shown). Rotating drilling equipment on such a rotary drilling rig may include components that serve to rotate a drill bit, which in turn forms a wellbore, such as the wellbore 16, deeper and deeper into the ground. The illustrated drilling assembly 12 includes a blowout preventer 18 positioned at the surface of the wellbore 16. The blowout preventer 18 can close around (and in some instances, pass through) the drill string to seal off the space between the drill string and the wellbore wall. The illustrated wellbore system is only one example. Other wellbore systems 10 can include a circulation system for drilling fluid or a topside facility, for example.


In some embodiments, the wellbore 16 may be cased with one or more casings. As illustrated, the wellbore 16 includes a conductor casing 20 that extends from the terranean surface 14 a short distance into the Earth. In some cases, a portion of the wellbore 16 enclosed by the conductor casing 20 may be a large diameter borehole. In some cases, the wellbore 16 may include additional casings (not shown) downhole from the conductor casing 20. For example, an additional surface casing may enclose a slightly smaller borehole and protect the wellbore 16 from intrusion of, for example, freshwater aquifers located near the terranean surface 14.


During the lifetime of the wellbore system 10, workover and intervention activities are sometimes necessary. Workover refers to maintenance or remedial work on to restore, prolong, or enhance hydrocarbon production. Wireline tools are often used for such workover activities. For example, wireline tools are used to evaluate the reservoir, locate equipment within a wellbore, determine formation pressure and pore size, identify liquids found in the reservoir, and capture fluid and other samples in the reservoir for evaluation at a topside facility.



FIG. 1A depicts a wireline tool 22 is shown near a bottom 24 of the wellbore 16. The wireline tool 22 is connected to the end of a wireline 26 and lowered into the wellbore 16. In some implementations, the wireline 26 includes a single-strand wire or cable. In other cases, the wireline 26 may include braided wire or cable. In some cases, the wireline can include electrical conductors that are used to transmit data between the tool 22 and surface equipment. In some contexts, a wire or cable that incorporates electrical conductors is referred to as a “wireline” and a thin cable without electrical conductors is referred to as a “slickline.” However, the present disclosure applies the term “wireline” to both types of cables.


As shown, the wireline 26 is connected at one end to the wireline tool 22 by a cable head 28. The opposite end of the wireline 26 is connected to a vehicle, such as a truck 30. The end of the wireline 26 is wrapped around a drum that is mounted to the truck 30 (not shown). The wireline 26 and the tool 22 are raised and lowered by reeling the wire wrapped around the drum in and out. In the illustrated implementation, the drilling assembly 12 includes a pulley 32 that supports the wireline 26.


Although the wireline 26 is made of robust materials, there are times when the wireline 26 may sever. The wireline 26 may sever due to mechanical failure, e.g., when the tool 22 becomes stuck in the wellbore 16 and the truck 30 attempts to reel in the wireline 26. The material of the wireline 26 may also be compromised by the substances found at the bottom 24 of the wellbore 16. When the wireline 26 severs, a first part of the wireline 26 remains attached to the truck 30 and the pulley 32. A second part of the severed wireline 26 remains connected to the tool 22 via the cable head 28. Since the severed wireline 26 can no longer support the tool 22, the tool 22 may fall to the bottom 24 of the wellbore 16, as shown in FIG. 1B, or remain stuck at an intermediate location in the wellbore 16.


In implementations of the present disclosure, the cable head 28 is configured to retract the second part of the severed wireline 26 into a body of the cable head 28. In contrast, FIG. 2 depicts a wellbore system 10 that does not include such a cable head 28. In such cases, the second part 26′ of the severed wireline 26 is prone to tangle or form a bird's nest. The size of the bird's nest correlates with the length of the second part 26′ of the severed wireline 26. In general, the bird's nest makes it difficult to grasp the lost tool 22 for retrieval from the wellbore 16. For example, multiple tools and operations may be required to gain access to the tool 22 at the bottom 24 of the wellbore 16.


In FIG. 1B, the second part 26′ of the wireline 26 is fully retracted into the body of the cable head 28, making it easier for retrieval tools to grasp the cable head 28 and wireline tool 22. Depending on the length of the second part 26′ of the severed wireline, a small portion of the wireline 26 may still protrude from the cable head 28 in some implementations. Even in such cases, the cable head 28 of the present disclosure minimizes the obstructions caused by the severed wireline 26 and improves the retrieval process for lost wireline tools.


In some implementations, the cable head 28 may be configured to transmit a wireless signal that indicates the location of the wireline tool 22, as depicted in FIG. 1B. For example, the wellbore 16 may not necessarily extend in a straight vertical direction, as shown in FIG. 1B. Some wellbores may be offset from the vertical (for example, a slant wellbore). Other wellbores may be a stepped wellbore, such that a portion is drilled vertically downward and then curved to a substantially horizontal wellbore portion. Depending on the depth and location of the target subterranean formations, other wellbores may include multiple vertical and horizontal wellbore portions. In all of these cases, the wireless signal emitted by the cable head 28 may help to locate and recover the lost wireline tool 22.



FIG. 3 is a schematic diagram of an example implementation of a wireline tool 100 that includes a cable head 200 according to the present disclosure. In some aspects, the wireline tool 100 and the cable head 200 may be part of wireline tool 22 and the cable head 28 shown in FIGS. 1A and 1B. In the illustrated example, the wire line tool 100 is depicted as a logging tool. A logging tool can be used to obtain a record of the rock properties of a subterranean formation. The logging tool includes one or more instruments and sensors that detect and record the physical properties of the formation as the tool 100 moves along the length of the wellbore (not shown). In some implementations, the tool 100 is used for other purposes, such as, locating equipment within the wellbore or capturing samples from the reservoir for analysis.


The illustrated cable head 200 includes an interface 202 that connects to the tool 100. The interface 202 can be implemented in a variety of ways. For example, the interface 202 may include a fastener that creates a non-permanent joint between the cable head 200 and the tool 100. Examples of fasteners are one or more threaded fasteners, bolts, clamps, flanges, or pins. In other examples, the interface 202 may form a bonded or welded connection between the cable head 200 and the tool 100. In other examples, the cable head 200 and the tool 100 may be integrally formed and contained, for example, in a common housing. The type of interface 202 may be tailored to maintenance and form factor considerations. For example, a releasable interface 202 may be used with a variety of tools and may be restored to its initial state after a retrieval operation. In contrast, a common housing may reduce the overall package size of the cable head and tool assembly and make it easier to navigate complex wellbore geometries.


In some implementations, the cable head 200 includes a housing 204 that includes an upper housing part 204a, a lower housing part 204b, and a guide 206. The upper housing part 204a contains a spool (FIG. 4A-4C) for winding a severed portion of the wireline 300. The lower housing part 204b contains a drive that rotates the spool when the wireline 300 is severed. The guide 206 is provided at a top surface of the housing 204 and provides an outlet for the wireline 300 to extend from the housing 204 and an inlet for wireline 300 to be retracted into housing 204, if needed.


In one example implementation, the spool in the upper housing part 204a may be connected to a coiled spring contained in the lower housing part 204b. During logging operations, the weight of the tool 100 and the cable head 200 may cause the coiled spring to uncoil as the tool 100 is suspended in the wellbore. If the wireline 300 is severed, the force of the coiled spring turns the spool and winds the severed portion of the wireline 300 around the spool. As described in more detail in reference to FIG. 4A to 4C, the spool can also be driven by a motor. In both examples, the cable head 200 is designed to retract part of the severed wireline 300 into the housing 204 of the cable head 200.



FIG. 4A to 4C are schematic diagrams of the components of an example implementation of a cable head according to the present disclosure. In some aspects, the components depicted in FIG. 4A to 4C may be part of the cable head 200 shown in FIG. 3. More specifically, FIG. 4A is a schematic diagram of the inner components of the cable head when the wireline 300 is not severed. For example, the wireline 300 may be connected to a truck parked at the surface of the wellbore system, as shown in FIGS. 1A and 1B. In FIG. 4A, the weight of the wireline tool and the cable head apply tension to the wireline 300, as indicated by the direction of the solid upward arrow. FIG. 4B is a schematic diagram of the inner components of the cable head after the wireline 300 has been severed. In comparison to FIG. 4A, the wireline 300 is slack. Further, the cable head has begun reeling in the wireline 300, as schematically represented by the dashed arrow. FIG. 4C is a schematic diagram of the inner components of the wireline 300 after the wireline has been completely retracted.


As shown in FIG. 4A, the components of the cable head include a spool 400, a wireline sensor 402, a motor 404, a control unit 406, and a wireless transmitter 408. The components 400-408 are contained in a housing of the cable head (not shown). For example, the spool 400 and the wireline sensor 402 can be contained in the upper housing part 204a shown in FIG. 3, whereas the motor 404, the control unit 406, and the wireless transmitter 408 can be contained in the housing 204b.


The spool 400 is configured to reel in and store the severed wireline 300. The spool 400 includes a core 410 and two end plates 412 and is supported in the housing (not shown) of the cable head so that the spool 400 can rotate relative to the rest of the cable head components. For example, the core 410 may have a bore for mounting the core 410 on a shaft (not shown). As shown in FIG. 4C, the outer diameter and length of the core 410 are selected so that a suitable length of severed wireline 300 can be wrapped around the core 410. As shown in FIG. 4A, an upper end plate 412 includes a feed notch or groove 414 that guides the wireline 300 as the wireline 300 is wrapped onto the core 410. In some implementations, the housing of the cable head may include a loop or eyelet to guide the wireline 300 as the wireline 300 is wrapped onto the core 410.


One end 302 of the wireline 300 is anchored to the spool 400 at an anchoring point. The wireline 300 extends from this anchoring point along the axial length of the core 410 of the spool 400. The wireline 300 further extends through the feed notch 414 in the end plate 412 of the spool 400 and through a guide 416 arranged on the end plate 412. The guide 416 may correspond to the guide 206 depicted in FIG. 3. Although FIG. 4A schematically depicts the anchoring point near the core 410 of the spool 400, the anchoring point for the end 302 of the wireline 300 may be provided on a different part of the cable head, e.g., the shaft on which the spool 400 is mounted.


The wireline sensor 402 is configured to detect that the wireline 300 has been severed. In implementations of the present disclosure, a severed wireline 300 can be detected based on an electrical connection through the wireline 300 to aboveground equipment, on the movement of the wireline tool, and on tension applied to the wireline 300. In some implementations, the wireline sensor 402 can detect a severed wireline 300 based on a combination of two or more of these factors.


As described above, the wireline 300 can establish both a mechanical and an electrical connection to aboveground equipment. In this case, the wireline sensor 402 can be configured to detect the electrical connection to aboveground equipment via the wireline 300. When the wireline 300 is severed, the electrical connection is also severed. The wireline sensor 402 can output a signal that represents this electrical connection to the control unit 406, for example. When the signal is interrupted over a period of time, the control unit 406 can be configured to determine that the wireline 300 has been severed.


In some implementations, the wireline sensor 402 includes an accelerometer that detects the movement of the cable head and wireline tool along the wellbore. When the wireline 300 is severed, the accelerometer can detect that the cable head and wireline tool have begun to fall. Similarly, the accelerometer can detect when the cable head and wireline tool come to rest, for example, at the bottom of the wellbore. The control unit 406 can be configured to receive output from the accelerometer to detect the duration and speed of the fall and estimate the approximate position of the wireline tool.


In some implementations, the wireline sensor 402 is configured to sense whether tension is applied to the wireline 300. For example, in normal operations of the wireline tool, the wirelines is connected to an aboveground structure and the weight of the tool places the wireline 300 under tension that is detected by the wireline sensor 402. In this case, the wireline sensor 402 may be located adjacent to the anchoring point of the wireline 300, as shown in FIG. 4A. In some implementations, the wireline sensor 402 is configured to send the detected tension values to the control unit 406. Based on the tension values output by the wireline sensor 402, the control unit 406 is configured to detect whether the wireline 300 has been severed. In some cases, the wireline sensor 402 is configured to detect the tension of the wireline 300 over a period of time, and the control unit 406 is configured to determine that the wireline 300 has been severed based on the detected tension. Accordingly, the control unit 406 may distinguish a continuous drop in tension from a temporary change in tension. For example, a stable drop in tension may indicate that the wireline has been severed, while a temporary change in tension may indicate a snag or jog in a wireline that remains connected to aboveground structures.


In some implementations, the control unit 406 is configured to control the motor 404 based on input from the wireline sensor 402. For example, the control unit 406 is configured to determine that the wireline 300 has been severed and control the motor 404 in response to this. The motor 404 is configured to rotate the spool 400 about its support shaft for a predetermined time period that allows an appropriate length of severed wireline to be reeled in. Alternatively, the motor 404 can rotate the spool 400 until an onboard battery (not shown) is empty. As shown in FIG. 4B, rotation of the spool 400 causes the wireline 300 to wrap around the core 410, thus retracting the severed portion of the wireline 300 into the housing of the cable head. In the illustrated implementation, the motor 404 and the spool 400 are arranged coaxially along an axis of the wireline tool and the wellbore. However, in other implementations, the spool 400 may have different dimensions and be arranged to rotate about an axis that is perpendicular to the axis of the wireline tool and the wellbore.


In some implementations, the control unit 406 includes a power supply and memory, for example, for recording the tension values detected by the wireline sensor 402. In some cases, the power supply and the memory can be common to both the cable head and the wireline tool. For example, the interface 202 shown in FIG. 3 may include an electrical connection that connects the cable head to an external power supply. For example, the electrical connection provided by the interface 202 may connect the control unit 406 to the wireline tool's power supply to power the motor. In other implementations, the cable head may include a battery to power the components of the cable head. In some implementations, the electrical connection may additionally connect the control unit 406 to a memory of the wireline tool.


In some implementations, the severed part of the wireline 300 is completely wrapped around the core 410 of the spool 400, as shown in FIG. 4C. As illustrated, the rotation of the core spool 400 may pull a severed end 304 of the wireline 300 through the guide 416 so that the wireline 300 is completely retracted into the cable head housing. In other cases, the severed end 304 of the wireline 300 may remain outside of the cable head housing. Once the severed wireline 300 has been retracted, the control unit 406 may instruct a wireless transmitter 408 to transmit data to an aboveground structure. In some implementations, the wireless transmitter 408 is configured to wirelessly transmit the location of the cable head within a wellbore in response to a signal from the control unit 406. For example, the wireless transmitter 408 may transmit data indicating the depth of the tool within the wellbore and length of the severed portion of the wireline 300.



FIG. 5 depicts an example method 500 of retrieving a lost wireline tool. Implementations of the method 500 can use the wireline tool and cable head depicted in FIG. 1A to 4C.


The method 500 includes connecting 502 a first wireline to an anchoring point of a wireline tool. In some cases, the anchoring point is provided in a cable head that connects to the wireline tool. In other cases, the wireline tool itself provides the anchoring point for the wireline. The method 500 also includes lowering 504, by the first wireline, the wireline tool into a wellbore. As shown above in reference to FIGS. 1A and 1B, a wireline truck may be used to lower the wireline tool into the wellbore. The method 500 also includes determining 506 that the first wireline has been severed. For example, the wireline tool or the cable head may use any of the previously described techniques to determine that the first wireline has been severed. For example, the determining that the first wireline has been severed can include detecting an interruption in an electrical connection to aboveground equipment through the first wireline. Determining that the first wireline has been severed can include detecting a downward acceleration of the wireline tool down the wellbore. Determining that the first wireline has been severed can also include a decrease in tension on the first wireline. In some implementations, determining that the first wireline has been severed can include a combination of two or more of the described techniques. The method 500 also includes wrapping 508 a portion of the severed first wireline around a spool of the wireline tool in response to determining that the first wireline has been severed. For example, wrapping a portion of the severed first wireline around a spool of the wireline tool can include rotating the spool using a motor. In some implementations, the spool is part of the cable head. In other cases, the spool is part of the wireline tool itself.


In some implementations, the method further includes transmitting a location of the wireline tool within the wellbore to an aboveground receiver.


In some implementations, the method 500 includes lowering 510, by a second wireline, a fishing tool into the wellbore; grasping 512 the wireline tool with the fishing tool; and raising 514, by the second wireline, the fishing tool and the wireline tool from the wellbore. Since the method 500 includes retracting a portion of the severed to first wireline by wrapping the severed first wireline around a spool of the wireline tool, the fishing tool is able to more easily engage the wireline tool for retrieval. Thus, the described implementations provide a simple and effective method for retrieving a lost wireline tool.


A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. For example, example operations, methods, or processes described herein may include more steps or fewer steps than those described. Further, the steps in such example operations, methods, or processes may be performed in different successions than that described or illustrated in the figures.


In some embodiments, the wellbore system may be deployed on a body of water rather than the terranean surface, as depicted in the figures. For instance, in some embodiments, the terranean surface may be an ocean, gulf, sea, or any other body of water under which hydrocarbon-bearing formations may be found. In short, reference to the terranean surface includes both land and water surfaces and contemplates forming and developing one or more wellbore systems from either or both locations.


Although the wellbore depicted in the figures extends in a vertical direction, in some embodiments, the wellbore may be offset from the vertical (for example, a slant wellbore). Even further, in some embodiments, the wellbore may be a stepped wellbore, such that a portion is drilled vertically downward and then curved to a substantially horizontal wellbore portion. Additional substantially vertical and horizontal wellbore portions may be added according to, for example, the type of terranean surface, the depth of one or more target subterranean formations, the depth of one or more productive subterranean formations, or other criteria.


Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A cable head for a wireline tool, the cable head comprising: a housing that comprises an outlet opening for a wireline and an interface configured to connect the housing to the wireline tool;a spool rotatably mounted in the housing;an anchoring point configured for mechanical attachment to an end of the wireline; anda drive configured to rotate the spool and thereby wrap a portion of the wireline around the spool to and retract the wireline into the housing.
  • 2. The cable head of claim 1, wherein the interface comprises a fastener for fastening the housing to the wireline tool.
  • 3. The cable head of claim 1, wherein the drive comprises: a motor configured to rotate the spool to wrap a portion of the wireline around the spool; anda control unit configured to control the motor.
  • 4. The cable head of claim 3, wherein the interface comprises an electrical connection configured to connect to an external power supply.
  • 5. The cable head of claim 3, further comprising a battery connected to the motor.
  • 6. The cable head of claim 3, further comprising a sensor configured to detect an electrical connection to above ground equipment through the wireline, wherein the control unit is configured to control the motor based on the detected electrical connection.
  • 7. The cable head of claim 3, further comprising an accelerometer configured to detect an acceleration of the cable head, wherein the control unit is configured to control the motor based on the detected acceleration.
  • 8. The cable head of claim 7, wherein the control unit is configured to determine the location of the cable head within a wellbore based on the detected acceleration.
  • 9. The cable head of claim 8, further comprising a wireless transmitter configured to wirelessly transmit the location of the cable head in response to a signal from the control unit.
  • 10. The cable head of claim 3, further comprising a tension sensor configured to detect the tension of the wireline, wherein the control unit is configured to control the motor based on the tension detected by the tension sensor.
  • 11. A wireline tool comprising: a housing that comprises an outlet opening for a wireline;one or more sensors arranged in the housing and configured to detect one or more physical properties of a wellbore;a spool rotatably mounted in the housing;an anchoring point inside the housing that is configured for mechanical attachment to an end of the wireline; anda drive configured to rotate the spool and thereby wrap a portion of the wireline around the spool to and retract the wireline into the housing.
  • 12. The wireline tool of claim 11, wherein the drive comprises: a motor configured to rotate the spool to wrap a portion of the wireline around the spool;a power supply connected to the motor and the one or more sensors arranged in the housing; anda control unit configured to control the motor.
  • 13. The wireline tool of claim 12, further comprising a sensor configured to detect an electrical connection to above ground equipment through the wireline, wherein the control unit is configured to control the motor based on the detected electrical connection.
  • 14. The wireline tool of claim 12, further comprising an accelerometer configured to detect an acceleration of the cable head, wherein the control unit is configured to control the motor based on the detected acceleration.
  • 15. The wireline tool of claim 14, wherein the control unit is configured to determine the location of the cable head within a wellbore based on the detected acceleration.
  • 16. The wireline tool of claim 15, further comprising a wireless transmitter configured to wirelessly transmit the location of the cable head in response to a signal from the control unit.
  • 17. The wireline tool of claim 12, further comprising a tension sensor configured to detect the tension of the wireline, wherein the control unit is configured to control the motor based on the tension detected by the tension sensor.
  • 18. A method of retrieving a lost wireline tool, the method comprising: connecting a first wireline to an anchoring point of a wireline tool;lowering, by the first wireline, the wireline tool into a wellbore;determining that the first wireline has been severed; andin response to determining that the first wireline has been severed, wrapping a portion of the severed first wireline around a spool of a cable head of the wireline tool.
  • 19. The method of claim 18, wherein wrapping a portion of the severed first wireline around a spool of the wireline tool comprises rotating the spool using a motor.
  • 20. The method of claim 18, wherein determining that the first wireline has been severed comprises detecting an interruption in an electrical connection to aboveground equipment through the first wireline.
  • 21. The method of claim 18, wherein determining that the first wireline has been severed comprises detecting a downward acceleration of the wireline tool down the wellbore.
  • 22. The method of claim 18, wherein determining that the first wireline has been severed comprises detecting a decrease in tension on the first wireline.
  • 23. The method of claim 18, further comprising transmitting a location of the wireline tool within the wellbore to an aboveground receiver.
  • 24. The method of claim 18, further comprising: lowering, by a second wireline, a fishing tool into the wellbore;grasping the wireline tool with the fishing tool; andraising, by the second wireline, the fishing tool and the wireline tool from the wellbore.
US Referenced Citations (370)
Number Name Date Kind
880404 Sanford Feb 1908 A
1033655 Baker Jul 1912 A
1258273 Titus et al. Mar 1918 A
1392650 Mcmillian Oct 1921 A
1491066 Patrick Apr 1924 A
1580352 Ercole Apr 1926 A
1591264 Baash Jul 1926 A
1621947 Moore Mar 1927 A
1638494 Lewis et al. Aug 1927 A
1789993 Switzer Jan 1931 A
1896236 Howard Feb 1933 A
1896482 Crowell Feb 1933 A
1897297 Brown Feb 1933 A
1949498 Frederick et al. Mar 1934 A
2047774 Greene Jul 1936 A
2121002 Baker Jun 1938 A
2121051 Ragan et al. Jun 1938 A
2187487 Burt Jan 1940 A
2189697 Baker Feb 1940 A
2222233 Mize Nov 1940 A
2286075 Evans Jun 1942 A
2304793 Bodine Dec 1942 A
2316402 Canon Apr 1943 A
2327092 Botkin Aug 1943 A
2377249 Lawrence May 1945 A
2411260 Glover et al. Nov 1946 A
2481637 Yancey Sep 1949 A
2546978 Collins et al. Apr 1951 A
2638988 Williams May 1953 A
2663370 Robert et al. Dec 1953 A
2672199 McKenna Mar 1954 A
2701019 Steed Feb 1955 A
2707998 Baker et al. May 1955 A
2708973 Twining May 1955 A
2728599 Moore Dec 1955 A
2734581 Bonner Feb 1956 A
2745693 Mcgill May 1956 A
2751010 Trahan Jun 1956 A
2762438 Naylor Sep 1956 A
2778428 Baker et al. Jan 1957 A
2806532 Baker et al. Sep 1957 A
2881838 Morse et al. Apr 1959 A
2887162 Le Bus et al. May 1959 A
2912053 Bruekelman Nov 1959 A
2912273 Chadderdon et al. Nov 1959 A
2915127 Abendroth Dec 1959 A
2935020 Howard et al. May 1960 A
2947362 Smith Aug 1960 A
2965175 Ransom Dec 1960 A
2965177 Le Bus et al. Dec 1960 A
2965183 Le Bus et al. Dec 1960 A
3005506 Le Bus et al. Oct 1961 A
3023810 Anderson Mar 1962 A
3116799 Lemons Jan 1964 A
3147536 Lamphere Sep 1964 A
3191677 Kinley Jun 1965 A
3225828 Wisenbaker et al. Dec 1965 A
3308886 Evans Mar 1967 A
3352593 Webb Nov 1967 A
3369603 Trantham Feb 1968 A
3376934 William Apr 1968 A
3380528 Durwood Apr 1968 A
3381748 Peters et al. May 1968 A
3382925 Jennings May 1968 A
3409084 Lawson, Jr. et al. Nov 1968 A
3437136 Young Apr 1969 A
3667721 Vujasinovic Jun 1972 A
3747674 Murray Jul 1973 A
3752230 Bernat et al. Aug 1973 A
3897038 Le Rouax Jul 1975 A
3915426 Le Rouax Oct 1975 A
4030354 Scott Jun 1977 A
4039798 Lyhall et al. Aug 1977 A
4042019 Henning Aug 1977 A
4059155 Greer Nov 1977 A
4099699 Allen Jul 1978 A
4190112 Davis Feb 1980 A
4227573 Pearce et al. Oct 1980 A
4254983 Harris Mar 1981 A
4276931 Murray Jul 1981 A
4285400 Mullins Aug 1981 A
4289200 Fisher Sep 1981 A
4296822 Ormsby Oct 1981 A
4349071 Fish Sep 1982 A
4391326 Greenlee Jul 1983 A
4407367 Kydd Oct 1983 A
4412130 Winters Oct 1983 A
4413642 Smith et al. Nov 1983 A
4422948 Corley et al. Dec 1983 A
4467996 Baugh Aug 1984 A
4478286 Fineberg Oct 1984 A
4515212 Krugh May 1985 A
4538684 Sheffield Sep 1985 A
4562888 Collet Jan 1986 A
4603578 Stolz Aug 1986 A
4611658 Salemi et al. Sep 1986 A
4616721 Furse Oct 1986 A
4696502 Desai Sep 1987 A
4791992 Greenlee et al. Dec 1988 A
4834184 Streich et al. May 1989 A
4836289 Young Jun 1989 A
4869321 Hamilton Sep 1989 A
4877085 Pullig, Jr. Oct 1989 A
4898240 Wittrisch Feb 1990 A
4898245 Braddick Feb 1990 A
4928762 Mamke May 1990 A
4953617 Ross et al. Sep 1990 A
4997225 Denis Mar 1991 A
5012863 Springer May 1991 A
5054833 Bishop et al. Oct 1991 A
5060737 Mohn Oct 1991 A
5117909 Wilton et al. Jun 1992 A
5129956 Christopher et al. Jul 1992 A
5176208 Lalande et al. Jan 1993 A
5178219 Streich et al. Jan 1993 A
5197547 Morgan Mar 1993 A
5203646 Landsberger et al. Apr 1993 A
5295541 Ng et al. Mar 1994 A
5330000 Givens et al. Jul 1994 A
5343946 Morrill Sep 1994 A
5348095 Worrall Sep 1994 A
5358048 Brooks Oct 1994 A
5392715 Pelrine Feb 1995 A
5456312 Lynde et al. Oct 1995 A
5507346 Gano et al. Apr 1996 A
5580114 Palmer Dec 1996 A
5584342 Swinford Dec 1996 A
5605366 Beeman Feb 1997 A
5639135 Beeman Jun 1997 A
5667015 Harestad et al. Sep 1997 A
5673754 Taylor Oct 1997 A
5678635 Dunlap et al. Oct 1997 A
5685982 Foster Nov 1997 A
5698814 Parsons Dec 1997 A
5775420 Mitchell et al. Jul 1998 A
5806596 Hardy et al. Sep 1998 A
5833001 Song et al. Nov 1998 A
5842518 Soybel et al. Dec 1998 A
5881816 Wright Mar 1999 A
5899796 Kamiyama et al. May 1999 A
5924489 Hatcher Jul 1999 A
5931443 Corte, Sr. Aug 1999 A
5944101 Hearn Aug 1999 A
6070665 Singleton et al. Jun 2000 A
6112809 Angle Sep 2000 A
6130615 Poteet Oct 2000 A
6138764 Scarsdale et al. Oct 2000 A
6155428 Bailey et al. Dec 2000 A
6247542 Kruspe et al. Jun 2001 B1
6276452 Davis et al. Aug 2001 B1
6371204 Singh et al. Apr 2002 B1
6378627 Tubel et al. Apr 2002 B1
6491108 Slup et al. Dec 2002 B1
6510947 Schulte et al. Jan 2003 B1
6595289 Tumlin et al. Jul 2003 B2
6637511 Linaker Oct 2003 B2
6679330 Compton et al. Jan 2004 B1
6688386 Comelssen Feb 2004 B2
6698712 Milberger et al. Mar 2004 B2
6729392 DeBerry et al. May 2004 B2
6768106 Gzara et al. Jul 2004 B2
6808023 Smith et al. Oct 2004 B2
6811032 Schulte et al. Nov 2004 B2
6854521 Echols et al. Feb 2005 B2
6880639 Rhodes et al. Apr 2005 B2
6899178 Tubel May 2005 B2
6913084 Boyd Jul 2005 B2
7049272 Sinclair et al. May 2006 B2
7051810 Halliburton May 2006 B2
7082994 Frost, Jr. et al. Aug 2006 B2
7090019 Barrow et al. Aug 2006 B2
7096950 Howlett et al. Aug 2006 B2
7117941 Gano Oct 2006 B1
7117956 Grattan et al. Oct 2006 B2
7128146 Baugh Oct 2006 B2
7150328 Marketz et al. Dec 2006 B2
7174764 Oosterling et al. Feb 2007 B2
7188674 McGavern, III et al. Mar 2007 B2
7188675 Reynolds Mar 2007 B2
7218235 Rainey May 2007 B1
7231975 Lavaure et al. Jun 2007 B2
7249633 Ravensbergen et al. Jul 2007 B2
7275591 Allen et al. Oct 2007 B2
7284611 Reddy et al. Oct 2007 B2
7303010 de Guzman et al. Dec 2007 B2
7363860 Wilson Apr 2008 B2
7383889 Ring Jun 2008 B2
7398832 Brisco Jul 2008 B2
7405182 Verrett Jul 2008 B2
7418860 Austerlitz et al. Sep 2008 B2
7424909 Roberts et al. Sep 2008 B2
7488705 Reddy et al. Feb 2009 B2
7497260 Telfer Mar 2009 B2
7533731 Corre May 2009 B2
7591305 Brookey et al. Sep 2009 B2
7600572 Slup et al. Oct 2009 B2
7617876 Patel et al. Nov 2009 B2
7621324 Atencio Nov 2009 B2
7712527 Roddy May 2010 B2
7735564 Guerrero Jun 2010 B2
7762323 Frazier Jul 2010 B2
7762330 Saylor, III et al. Jul 2010 B2
7802621 Richards et al. Sep 2010 B2
7878240 Garcia Feb 2011 B2
7934552 La Rovere May 2011 B2
7965175 Yamano Jun 2011 B2
8002049 Keese et al. Aug 2011 B2
8056621 Ring et al. Nov 2011 B2
8069916 Giroux et al. Dec 2011 B2
8157007 Nicolas Apr 2012 B2
8201693 Jan Jun 2012 B2
8210251 Lynde et al. Jul 2012 B2
8376051 McGrath et al. Feb 2013 B2
8424611 Smith et al. Apr 2013 B2
8453724 Zhou Jun 2013 B2
8496055 Mootoo et al. Jul 2013 B2
8579024 Mailand et al. Nov 2013 B2
8579037 Jacob Nov 2013 B2
8596463 Burkhard Dec 2013 B2
8662182 Redlinger et al. Mar 2014 B2
8726983 Khan May 2014 B2
8770276 Nish et al. Jul 2014 B1
8899338 Elsayed et al. Dec 2014 B2
8991489 Redlinger et al. Mar 2015 B2
9079222 Burnett et al. Jul 2015 B2
9109433 DiFoggio et al. Aug 2015 B2
9133671 Kellner Sep 2015 B2
9163469 Broussard et al. Oct 2015 B2
9181782 Berube et al. Nov 2015 B2
9212532 Leuchtenberg et al. Dec 2015 B2
9234394 Wheater et al. Jan 2016 B2
9353589 Hekelaar May 2016 B2
9359861 Burgos Jun 2016 B2
9410066 Ghassemzadeh Aug 2016 B2
9416617 Wiese et al. Aug 2016 B2
9441441 Hickie Sep 2016 B1
9441451 Jurgensmeier Sep 2016 B2
9528354 Loiseau et al. Dec 2016 B2
9551200 Read et al. Jan 2017 B2
9574417 Laird et al. Feb 2017 B2
9617829 Dale et al. Apr 2017 B2
9657213 Murphy et al. May 2017 B2
9903192 Entchev Feb 2018 B2
9976407 Ash et al. May 2018 B2
10087752 Bedonet Oct 2018 B2
10161194 Clemens et al. Dec 2018 B2
10198929 Snyder Feb 2019 B2
10266698 Cano et al. Apr 2019 B2
10280706 Sharp, III May 2019 B1
10301898 Orban May 2019 B2
10301989 Imada May 2019 B2
10544640 Hekelaar et al. Jan 2020 B2
10584546 Ford Mar 2020 B1
10626698 Al-Mousa et al. Apr 2020 B2
10787888 Andersen Sep 2020 B2
10837254 Al-Mousa et al. Nov 2020 B2
10975654 Neacsu et al. Apr 2021 B1
10982504 Al-Mousa et al. Apr 2021 B2
11187072 Downey Nov 2021 B2
20020053428 Maples May 2002 A1
20020060079 Metcalfe May 2002 A1
20020195252 Maguire Dec 2002 A1
20030047312 Bell Mar 2003 A1
20030098064 Kohli et al. May 2003 A1
20030132224 Spencer Jul 2003 A1
20030150608 Smith Aug 2003 A1
20030221840 Whitelaw Dec 2003 A1
20040040707 Dusterhoft et al. Mar 2004 A1
20040065446 Tran et al. Apr 2004 A1
20040074819 Burnett Apr 2004 A1
20040095248 Mandel May 2004 A1
20040168796 Baugh et al. Sep 2004 A1
20040216891 Maguire Nov 2004 A1
20050024231 Fincher et al. Feb 2005 A1
20050056427 Clemens et al. Mar 2005 A1
20050087585 Copperthite et al. Apr 2005 A1
20050167097 Sommers et al. Aug 2005 A1
20050263282 Jeffrey et al. Dec 2005 A1
20060082462 Crook Apr 2006 A1
20060105896 Smith et al. May 2006 A1
20060243453 McKee Nov 2006 A1
20070114039 Hobdy et al. May 2007 A1
20070137528 Le Roy-Ddelage et al. Jun 2007 A1
20070181304 Rankin et al. Aug 2007 A1
20070204999 Cowie et al. Sep 2007 A1
20070256867 DeGeare et al. Nov 2007 A1
20080007421 Liu et al. Jan 2008 A1
20080087439 Dallas Apr 2008 A1
20080236841 Howlett et al. Oct 2008 A1
20080251253 Lumbye Oct 2008 A1
20080314591 Hales et al. Dec 2008 A1
20090194290 Parks et al. Aug 2009 A1
20090250220 Stamoulis Oct 2009 A1
20090308656 Chitwood Dec 2009 A1
20100051265 Hurst Mar 2010 A1
20100193124 Nicolas Aug 2010 A1
20100258289 Lynde et al. Oct 2010 A1
20100263856 Lynde et al. Oct 2010 A1
20100270018 Howlett Oct 2010 A1
20110036570 La Rovere et al. Feb 2011 A1
20110056681 Khan Mar 2011 A1
20110067869 Bour et al. Mar 2011 A1
20110079401 Gambier Apr 2011 A1
20110168411 Braddick Jul 2011 A1
20110203794 Moffitt et al. Aug 2011 A1
20110259609 Hessels et al. Oct 2011 A1
20110273291 Adams Nov 2011 A1
20110278021 Travis et al. Nov 2011 A1
20120012335 White et al. Jan 2012 A1
20120067447 Ryan et al. Mar 2012 A1
20120085538 Guerrero Apr 2012 A1
20120118571 Zhou May 2012 A1
20120170406 DiFoggio et al. Jul 2012 A1
20120285684 Crow et al. Nov 2012 A1
20130062055 Tolman Mar 2013 A1
20130134704 Klimack May 2013 A1
20130213654 Dewey et al. Aug 2013 A1
20130240207 Frazier Sep 2013 A1
20130269097 Alammari Oct 2013 A1
20130296199 Ghassemzadeh Nov 2013 A1
20130299194 Bell Nov 2013 A1
20140138091 Fuhst May 2014 A1
20140158350 Castillo et al. Jun 2014 A1
20140231068 Isaksen Aug 2014 A1
20140251616 O'Rourke et al. Sep 2014 A1
20150013994 Bailey et al. Jan 2015 A1
20150096738 Atencio Apr 2015 A1
20150152704 Tunget Jun 2015 A1
20150275649 Orban Oct 2015 A1
20160076327 Glaser et al. Mar 2016 A1
20160084034 Roane et al. Mar 2016 A1
20160130914 Steele May 2016 A1
20160160106 Jamison et al. Jun 2016 A1
20160237810 Beaman et al. Aug 2016 A1
20160281458 Greenlee Sep 2016 A1
20160305215 Harris et al. Oct 2016 A1
20160340994 Ferguson et al. Nov 2016 A1
20170044864 Sabins et al. Feb 2017 A1
20170058628 Wijk et al. Mar 2017 A1
20170067313 Connell et al. Mar 2017 A1
20170089166 Sullivan Mar 2017 A1
20170159388 Volgmann Jun 2017 A1
20170204703 Mair Jul 2017 A1
20170350237 Giem Dec 2017 A1
20180010418 VanLue Jan 2018 A1
20180030809 Harestad et al. Feb 2018 A1
20180058167 Finol et al. Mar 2018 A1
20180187498 Soto et al. Jul 2018 A1
20180209565 Lingnau Jul 2018 A1
20180245427 Jimenez et al. Aug 2018 A1
20180252069 Abdollah et al. Sep 2018 A1
20190024473 Arefi Jan 2019 A1
20190049017 McAdam et al. Feb 2019 A1
20190087548 Bennett et al. Mar 2019 A1
20190186232 Ingram Jun 2019 A1
20190203551 Davis et al. Jul 2019 A1
20190284894 Schmidt et al. Sep 2019 A1
20190284898 Fagna et al. Sep 2019 A1
20190301258 Li Oct 2019 A1
20190316424 Robichaux et al. Oct 2019 A1
20190338615 Landry Nov 2019 A1
20200032604 Al-Ramadhan Jan 2020 A1
20200056446 Al-Mousa et al. Feb 2020 A1
20200240225 King et al. Jul 2020 A1
20210025259 Al-Mousa et al. Jan 2021 A1
20210054696 Golinowski et al. Feb 2021 A1
20210054706 Al-Mousa et al. Feb 2021 A1
20210054708 Al-Mousa et al. Feb 2021 A1
20210054710 Neacsu et al. Feb 2021 A1
20210054716 Al-Mousa et al. Feb 2021 A1
Foreign Referenced Citations (49)
Number Date Country
636642 May 1993 AU
2007249417 Nov 2007 AU
1329349 May 1994 CA
2441138 Mar 2004 CA
2762217 May 2015 CA
2802988 Oct 2015 CA
2879985 Apr 2016 CA
2734032 Jun 2016 CA
203292820 Nov 2013 CN
103785923 Jun 2016 CN
104712320 Dec 2016 CN
107060679 Aug 2017 CN
107191152 Sep 2017 CN
107227939 Oct 2017 CN
2545245 Apr 2017 DK
2236742 Aug 2017 DK
0792997 Jan 1999 EP
2119867 Nov 2009 EP
2964874 Jan 2016 EP
2545245 Apr 2017 EP
958734 May 1964 GB
2021178 Nov 1979 GB
2392183 Feb 2004 GB
2396634 Jun 2004 GB
2414586 Nov 2005 GB
2425138 Oct 2006 GB
2453279 Jan 2009 GB
2492663 Jan 2014 GB
333538 Jul 2013 NO
20170293 Aug 2018 NO
5503 Apr 1981 OA
WO 1989012728 Dec 1989 WO
WO 1996039570 Dec 1996 WO
WO 2002090711 Nov 2002 WO
WO 2004046497 Jun 2004 WO
WO 2010132807 Nov 2010 WO
WO 2012161854 Nov 2012 WO
WO 2012164023 Dec 2012 WO
WO 2013109248 Jul 2013 WO
WO 2015112022 Jul 2015 WO
WO 2016011085 Jan 2016 WO
WO 2016040310 Mar 2016 WO
WO 2016140807 Sep 2016 WO
WO 2017043977 Mar 2017 WO
WO 2018017104 Jan 2018 WO
WO 2018164680 Sep 2018 WO
WO 2019027830 Feb 2019 WO
WO 2019132877 Jul 2019 WO
WO 2019231679 Dec 2019 WO
Non-Patent Literature Citations (35)
Entry
Al-Ansari et al., “Thermal Activated Resin to Avoid Pressure Build-Up in Casing-Casing Annulus (CCA),” SA-175425-MS, Society of Petroleum Engineers (SPE), presented at the SPE Offshore Europe Conference and Exhibition, Sep. 8-11, 2015, 11 pages.
Al-Ibrahim et al., “Automated Cyclostratigraphic Analysis in Carbonate Mudrocks Using Borehole Images,” Article #41425, posted presented at the 2014 AAPG Annual Convention and Exhibition, Search and Discovery, Apr. 6-9, 2014, 4 pages.
Bautista et al., “Probability-based Dynamic TimeWarping for Gesture Recognition on RGB-D data,” WDIA 2012: Advances in Depth Image Analysis and Application, 126-135, International Workshop on Depth Image Analysis and Applications, 2012, 11 pages.
Boriah et al., “Similarity Measures for Categorical Data: A Comparative Evaluation,” presented at the SIAM International Conference on Data Mining, SDM 2008, Apr. 24-26, 2008, 12 pages.
Bruton et al., “Whipstock Options for Sidetracking,” Oilfield Review, Spring 2014, 26:1, 10 pages.
Edwards et al., “Assessing Uncertainty in Stratigraphic Correlation: A Stochastic Method Based on Dynamic Time Warping,” RM13, Second EAGE Integrated Reservoir Modelling Conference, Nov. 16-19, 2014, 2 pages.
Edwards, “Construction de modéles stratigraphiques ápartir de données éparses,” Stratigraphic, Universitéde Lorraine, 2017, 133 pages, English abstract.
Fischer, “The Lofer Cyclothems of the Alpine Triassic,” published in Merriam, Symposium on Cyclic Sedimentation: Kansas Geological Survey (KGS), Bulletin, 1964, 169: 107-149, 50 pages.
Forum Energy Technologies “Drill Pipe Float Valves,” 2019, Catalog, 6 pages.
Hernandez-Vela et al., “Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for human Gesture Recognition in RGB-D,” Pattern Recognition Letters, 2014, 50: 112-121, 10 pages.
Herrera and Bann, “Guided seismic-to-well tying based on dynamic time warping,” SEG Las Vegas 2012 Annual Meeting, Nov. 2012, 6 pages.
Hydril “Checkguard” Kelly guard Drill Stem Valves, Catalog DSV 2003, Brochure, 9 pages.
Keogh and Ratanamahatana, “Exact indexing of dynamic time warping,” Knowledge and Information Systems, Springer-Verlag London Ltd., 2004, 29 pages.
Lallier et al., “3D Stochastic Stratigraphic Well Correlation of Carbonate Ramp Systems,” IPTC 14046, International Petroleum Technology Conference (IPTC), presented at the International Petroleum Technology Conference, Dec. 7-9, 2009, 5 pages.
Lallier et al., “Management of ambiguities in magneto stratigraphic correlation,” Earth and Planetary Science Letters, 2013, 371-372: 26-36, 11 pages.
Lallier et al., “Uncertainty assessment in the stratigraphic well correlation of a carbonate ramp: Method and application of the Beausset Basin, SE France,” C. R. Geoscience, 2016, 348: 499-509, 11 pages.
Lineman et al., “Well to Well Log Correlation Using Knowledge-Based Systems and Dynamic Depth Warping,” SPWLA Twenty-Eighth Annual Logging Symposium, Jun. 29-Jul. 2, 1987, 25 pages.
Nakanishi and Nakagawa, “Speaker-Independent Word Recognition by Less Cost and Stochastic Dynamic Time Warping Method,” ISCA Archive, European Conference on Speech Technology, Sep. 1987, 4 pages.
Packardusa.com [online], “Drop-in Check Valves,” Packard International, available on or before Jul. 6, 2007, via Internet Archive: Wayback Machine URL <http://web.archive.org/web/20070706210423/http://packardusa.com/productsandservices5.asp>, retreived on May 11, 2021, URL <www.packardusa.com/productsandservices5.asp>, 2 pages.
Pels et al., “Automated biostratigraphic correlation of palynological records on the basis of shapes of pollen curves and evaluation of next-best solutions,” Paleogeography, Paleoclimatology, Paleoecology, 1996, 124: 17-37, 21 pages.
Pollack et al., “Automatic Well Log Correlation,” AAPG Annual Convention and Exhibition, Apr. 3, 2017, 1 page, Abstract Only.
Rudman and Lankston, “Stratigraphic Correlation of Well Logs by Computer Techniques,” The American Association of Petroleum Geologists, Mar. 1973, 53:3 (557-588), 12 pages.
Sakoe and Chiba, “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-26:!, Feb. 1978, 7 pages.
Salvador and Chan, “FastDTW: Toward Accurate Dynamic Time Warping in Linear Time and Space,” presented at the KDD Workshop on Mining Temporal and Sequential Data, Intelligent Data Analysis, Jan. 2004, 11:5 (70-80), 11 pages.
Sayhi, “peakdet: Peak detection using MATLAB,” Jul. 2012, 4 pages.
Scribd.com [online], “Milling Practices and Procedures,” retrieved from URL <https://www.scribd.com/document/358420338/Milling-Rev-2-Secured>, 80 pages.
Silva and Koegh, “Prefix and Suffix Invariant Dynamic Time Warping,” IEEE Computer Society, presented at the IEEE 16th International Conference on Data Mining, 2016, 6 pages.
Smith and Waterman, “New Stratigraphic Correlation Techniques,” Journal of Geology, 1980, 88: 451-457, 8 pages.
Startzman and Kuo, “A Rule-Based System for Well Log Correlation,” SPE Formative Evaluation, Society of Petroleum Engineers (SPE), Sep. 1987, 9 pages.
TAM International Inflatable and Swellable Packers, “TAM Scab Liner brochure,” Tam International, available on or before Nov. 15, 2016, 4 pages.
Tomasi et al., “Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data,” Journal of Chemometrics, 2004, 18: 231-241, 11 pages.
Uchida et al., “Non-Markovian Dynamic Time Warping,” presented at the 21st International Conference on Pattern Recognition (ICPR), Nov. 11-15, 2012, 4 pages.
Waterman and Raymond, “The Match Game: New Stratigraphic Correlation Algorithms,” Mathematical Geology, 1987, 19:2, 19 pages.
Weatherford, “Micro-Seal Isolation System-Bow (MSIS-B),” Weatherford Swellable Well Construction Products, Brochure, 2009-2011, 2 pages.
Zoraster et al., “Curve Alignment for Well-to-Well Log Correlation,” SPE 90471, Society of Petroleum Engineers (SPE), presented at the SPE Annual Technical Conference and Exhibition, Sep. 26-29, 2004, 6 pages.