An optical fiber is a glass or plastic fiber designed to guide light down its length by total internal reflection. Although fibers can be made out of transparent plastic or glass, most often, fibers used in long-distance telecommunications applications are glass, due to a lower optical attenuation. Both multi-mode and single-mode fibers are used in communications, with multi-mode fiber used mostly for short distances and single-mode fiber used for longer distance links. Oftentimes, these fibers are used in communication which permits digital data transmission over longer distances and at higher data rates than electronic communication.
In communication service provider applications, optical fibers are bundled as cables. Because light propagates through the fiber with little attenuation compared to electrical cables, use of fiber optic cables is especially advantageous for long-distance communications. By using optical fiber cables, long distances can be spanned with few repeaters. Additionally, the per-channel light signals propagating in the fiber can be modulated at substantially higher rates than conventional coaxial cables.
Today, optical fibers are becoming more and more common as a medium for networking and telecommunications. For example, television and Internet service providers are using fiber optics to deliver their services to customers in homes, multi-residence buildings and office buildings. Unfortunately, many of these structures are older which makes installation sometimes cumbersome and costly as, many times, optical cables must be fed through a structure's existing plumbing, electrical and heating ducts.
The following presents a simplified summary of the innovation in order to provide a basic understanding of some aspects of the innovation. This summary is not an extensive overview of the innovation. It is not intended to identify key/critical elements of the innovation or to delineate the scope of the innovation. Its sole purpose is to present some concepts of the innovation in a simplified form as a prelude to the more detailed description that is presented later.
The innovation disclosed and claimed herein, in one aspect thereof, comprises systems and methods that enable a cable to be easily terminated at an elevated level. For example, the cable can be a strength member having a number of fiber optic storage loops disposed about its length. It will be understood that these loops can be strategically positioned upon a sidewall of a structure (e.g., multi-dwelling building) such that fiber optic service can be efficiently connected as desired.
In an aspect, the system includes a housing having a locking cavity where the cable can be terminated. The housing includes entry and exit apertures that permit a pulling device to pass through, e.g., mule tape from ground level. A locking mechanism can be positioned within the housing which engages a dead-end device connected to the cable thereby facilitating termination of the dead-end device at the elevated level.
Upon engagement, the dead-end device enables removal of the pulling device from ground level. For example, the pulling device can be a mule tape or rope. Engagement can be accomplished by way of a locking mechanism such as a free-floating locking pin. The pin can be constructed of galvanized or stainless steel.
In one aspect, the dead-end can be a helically wound wire device having at least two loops, wherein a pulling mechanism is attached to one of the loops and the other of the loops engages with the locking mechanism. The dual loops facilitate ease of removal of the pulling mechanism from ground level.
In other aspects, the dead-end device is a spring loop wedge cap that includes a plurality of wedge blocks that grip the cable and a spring loop that facilitates engagement with the locking mechanism. The spring loop can include a secondary loop configured for installation by and removal of the pulling mechanism. The spring loop can alternatively employ a crimp loop that is attached to the top of the spring loop and provides a secondary loop configured for installation by and removal of the pulling mechanism.
In still other aspects, the dead-end device can be a tapered wedge cap having a hooking mechanism that facilitates installation by and removal of the pulling mechanism. In this aspect, the locking mechanism can include a plurality of spring clips that compress upon insertion and lock once in position at termination.
To the accomplishment of the foregoing and related ends, certain illustrative aspects of the innovation are described herein in connection with the following description and the annexed drawings. These aspects are indicative, however, of but a few of the various ways in which the principles of the innovation can be employed and the subject innovation is intended to include all such aspects and their equivalents. Other advantages and novel features of the innovation will become apparent from the following detailed description of the innovation when considered in conjunction with the drawings.
The innovation is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the subject innovation. It may be evident, however, that the innovation can be practiced without these specific details.
The innovation provides systems and methods of lifting or otherwise hoisting fiber optic cabling to structures such as multi-unit dwelling and office buildings. As described above, today, fiber cabling is becoming more and more common for television and other communication and network service providers. While the examples described herein are directed specifically to fiber optic cabling, it is to be understood and appreciated that the features, functions and benefits of the innovation can be applied to most any type of cable, wire, lead, etc. without departing from the spirit and/or scope of the innovation.
Continuing with the discussion above, conventional installation of fiber optic cabling into existing structures most often required access to air ducts, furnace ducts, plumbing, etc. Unlike conventional approaches, the innovation described and claimed herein facilitates ease of entry into structures from the outside of the structure. More particularly, as shown in
Referring initially to the drawings,
As shown in the example of
In order to install cabling, an installer, such as a service provider, can connect a dead-end to one end of the mule tape or rope 104. As shown in
As described in greater detail infra, the dead-end 202 can be constructed or configured in such a manner so as to enable engagement into the hoist device 102 while enabling the mule tape or rope to be removed from ground level. It will be appreciated that the features, functions and benefits of this hoist device 102 system design can alleviate conventional complexities of installing cables along sidewalls of buildings and structures.
In an alternative example, an obstruction clamp can be attached to the tether 202 thereby prohibiting entry into the hoist device 102. In other words, an obstruction clamp can be attached to one end of the strength member or dead-end thus, upon contact with the aperture on the bottom of the hoist device 102, the obstruction clamp prohibits entry and subsequent locking of the tether 202 within the hoist device 102. It will be appreciated that this obstruction clamp can be used in a test or measurement phase thereby enabling a worker to efficiently and easily establish an optimum length of the strength member. Once a measurement is established, the obstruction clamp can be removed thereby permitting the tether 202 to enter the aperture of the hoist device 102 and subsequently lock into position. It is to be appreciated that the functionality of the obstruction clamp can be configured into the tether 202 in aspects.
In one embodiment, the obstruction clamp is formed with two legs that extend beyond the diameter of the bottom aperture of a hoist device 102. Accordingly, in operation, the legs contact the bottom face of the hoist device 102 prohibiting access. In one aspect, once an installer determines the measurements are correct, the tether can be lowered and the legs can be snipped or cut off to facilitate entry and subsequent locking into position. In other aspects, the legs can be configured to fold or break off when a predetermined amount of force is applied. For example, once a measurement is made, a greater amount of force can be applied to the mule tape causing the legs to break (or fold) from the obstruction clamp. While an obstruction clamp is described to have “legs,” it is to be understood that most any shape that obstructs entry can be employed without departing from the functionality described herein. Additionally, the obstruction clamp can be designed or manufactured of most any rigid material, including but not limited to, plastic (molded or otherwise manufactured), metal, or the like.
In operation and as shown in
In one aspect, at 404, two lengths of the mule tape can be dropped from the top of the structure to ground level. More particularly, mule tape or a rope can be installed through the device, the cover closed and the mule tape or rope can be dropped down the sidewall of the structure. At or above ground level, the mule tape or rope can be tied off, for example, ten or twelve feet from ground level.
At 406, a strength member can be prepared with fiber loops as described above. Later, when cabling is desired to be lifted up the sidewall, a craftsman can affix a tether or dead-end to the connection above ground level in order to hoist the cable up the side of the structure. In other words, at 408, a dead-end can be connected to the strength member and, at 410, the dead-end is attached to one end of the mule tape. The other end of the mule tape or rope can be pulled at 412 in order to lift the dead-end with cable affixed to a desired height.
One device used to connect the strength member to the mule tape is a helical wire dead-end device that wraps around the strength member (e.g., cable). As described above, the mule tape (or rope) can be attached to the dead-end device and used to elevate the strength member having fiber optic loops attached thereto. The helically wound device can be configured or oriented in such a manner that it is able to grasp the cable such that the craftsman can pull the mule tape or rope thereby lifting the cable to the knee wall location. Once the desired height is reached, at 414, the dead end device locks into the hoist apparatus. Finally, at 416, the mule tape or rope can be removed from ground level.
In accordance with the methodology of
Returning to act 412, in one aspect, a pin that performs as a rotating spring-like mechanism can float within the hoist apparatus. When the loop of the tether engages the pin, it locks into position within the hoist mechanism thereby retaining the strength member atop the structure. The dead-end can be orientated such that the mule tape or rope can be easily removed upon engagement and/or locking into the hoist device.
For example, a helical device can be conformed or configured with a double loop or conformed from a plastic or metal attachment to create an extra loop such that the mule tape or rope can be entered into one of the loops and the locking pin can engage the other. It will be understood that this arrangement can enable the tether or dead-end to remain locked into place while the rope is easily removed via the other loop, for example, from ground level.
In other aspects, a wedge-block-equipped device can be used as a dead-end to retain the strength member cable upon hoisting. This wedge-equipped device can be configured with an attachment means that enables the dead-end to latch to a locking means. Additionally, this attachment means can permit the mule tape or rope to be withdrawn from ground level. While specific dead-end examples of attaching the strength member for hoisting, it is to be understood and appreciated that alternatives (e.g., netting) exist that can be employed to facilitate effective attachment, locking and rope removal. These alternatives are to be included within the scope of this disclosure and claims appended hereto.
Turning now to
As shown, apparatus 102 is constructed of a housing 502 having a lid 504. In this example, the lid 504 employs a hinging means 506 that enables the lid 504 to hinge into an open position. When closed, the lid 504 can be equipped with a latching means 508 that retains the lid 504 in the closed position. The example latch 508 is a pressure-actuated latching means. Other latching means can be used in alternative designs. Similarly, the hinging means 506 is optional such that alternative embodiments can employ a snap-fit lid design (not shown). It is to be appreciated that these alternatives are but examples of numerous design options—all of which are to be included within the scope of this disclosure and claims appended hereto.
As will be described in greater detail below, the interior of the housing 502 includes a locking mechanism capable of capturing a tether or dead-end as previously described. An example locking mechanism as well as example dead-end designs will be described in greater detail upon a review of the figures that follow.
The dashed arrows indicate a direction of travel of the aforementioned mule tape in accordance with this aspect. In other words, the mule tape is threaded through the bottom surface of the housing 502. After passing through the locking mechanism chamber, the mule tape exits the housing 502 on the upper right area as shown. Upon exiting, the mule tape travels back into the direction to ground level. Thus, the mule tape can enter the housing 502 from ground level, pass through the locking chamber (not shown) and exit out the top side of the housing 502 back to ground level as indicated by the dashed arrow.
The housing 502 can also be equipped or configured with attachment means or mounting apertures 510. While two separate apertures 510 are shown, other aspects can employ more or fewer apertures to suitably mount the device 102. Although not shown, an alternative design can be employed along with a mounting bracket (not shown) (e.g., around a knee wall). These and other alternatives as will be appreciated by those skilled in the art are to be included herein.
It is to be understood that the housing 502 and lid 504 can be manufactured from most any suitably rigid material. In the illustrated example, it is contemplated that the housing 502 and lid 504 are molded from plastic; however, other materials such as metals, composites, fiberglass, etc. can be employed without departing from the spirit and scope of the innovation. The locking pin as will be described later is manufactured of metal in the example. Similar to the other components, it is to be understood that other suitably rigid materials (e.g., plastic) can be used to manufacture the locking pin without departing from this disclosure.
Referring now to
Upon transitioning the mule tape through the bottom of the apparatus 102, the dead-end (202 of
Essentially, the hoist apparatus 102 can be a mountable base structure with a spring-like clip or pin 802 that secures a dead-end or similar loop-like product (e.g., tether) that is hoisted up for termination. As shown, the bottom surface has a slot with a tapered opening that can guide the dead-end into place regardless of the initial orientation. As the dead-end travels through the slot, a spring action clip or pin 802 secures the dead-end into place. The spring-action clip 802 can be formed with one leg longer than the other. The longer leg is used to secure the dead-end into place and the shorter leg can be bent at an angle that will not permit the longer leg from rotating more than 90 degrees so as to ensure a positive engagement with the dead-end or tether.
Portion “B” resides within the pin cavity of the housing. In one specific example, the length of portion “B” can be ½ inch. The diameter “C” of the pin, in one aspect, can be ⅛ inch. Further, the arc “D” can be, in this aspect, 125 degrees. While specific dimensions of pin 802 are described, it is to be understood that these dimensions are provided to add perspective to the innovation and not intended to limit the scope of this innovation in any manner. While the locking pin is shown and described as a coiled stainless or galvanized steel pin, it is to be understood that other locking mechanisms and pins can be employed without departing from the features, functions and benefits of the innovation. For example, pins that can be cut (e.g., laser cut) from sheets of metal are to be included within the scope of this specification. These and other variations of locking pins or mechanisms are to be included within the scope of this disclosure and claims appended hereto.
It will be understood by those knowledgeable in the art that, a strength member or cable can be inserted within the helical wires as shown in
Referring first to
The wire loop 1402 or fiber hoist spring loop can be a standard wire loop with an additional smaller loop 1410 on the top and “nail heads or bent legs” 1412 at the ends. When the ends 1412 are squeezed together, they will spring back into a notch or groove 1414 in the cap 1406. The nail heads 1412 hold the wire loop 1402 from being pulled out of the cap 1406. As described with regard to the dead-end of
It will be understood that the extra loop 1410 can protect the mule tape from being pinched between the spring loop 1402 and the supporting pin (e.g., 802 of
The hooks 1704 are oriented in opposing directions to each other so that the rope or mule tape does not easily become removed or slip off. Once the wedge travels through the tapered hole of the mounting device (or hoist device), a spring-like feature can fully engage securing the wedge 1700 in place. In this example, the spring-like feature has tabs 1706 (e.g., four tabs) that have a spring action so that they can compress while travelling through the hole, but then spring back to their original state after clearing the hole. In result, the wedge is fully terminated at the desired location. It is contemplated that other retention and/or spring attachment means can be employed in other aspects. These alternatives are to be included within this disclosure and claims appended hereto.
What has been described above includes examples of the innovation. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the subject innovation, but one of ordinary skill in the art may recognize that many further combinations and permutations of the innovation are possible. Accordingly, the innovation is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.