The present disclosure generally relates to a cable-lock device that is selectively slidable along the length of a cable, such as for securing the ends of a shoelace or apparel drawstring.
Drawstrings, elastic bands, and laces (collectively “cables”) are commonly used in articles of apparel, articles of footwear, bags, and other such products to provide a measure of adjustability in the fit, length, or diameter of the product. For example, articles of footwear conventionally have laces that may adjust the size of an upper around the wearer's foot. A jacket may include a drawstring extending through the wrist cuff or in a lower seam around the wearer's waist. A bag may include a cable or drawstring extending through a hemmed end near the opening. Tensioning any of these cables relative to their adjoining article may then cause a drawing in of material which may dimensionally constrict the article.
Conventionally, knots or bows can be used to tie off the cable to prevent the adjoining article/material from relaxing to its untensioned state. Likewise, toggle-type momentary clamps or other temporary clamps have been developed to serve as a more readily adjustable affixing means than a knot. Such designs, however, often include multi-piece spring-loaded clamps that require a certain degree of dexterity and finger strength to open.
In general, the present disclosure relates to a cable lock that may be used to secure opposing ends of a cable. This cable lock may find particular utility with cables used in connection with articles of footwear or apparel. For example, this lock may be used to secure opposing end portions shoelaces, waistband drawstrings (e.g., for shorts), cuffs (e.g., with a jacket), travel bags, and the like. This design utilizes one or more compliant cable engaging members to engage with the cable. Due to the design, reversing the direction of travel of the cable relative to the lock requires the cable engaging member to toggle over-center, which requires a greater amount of force than would be required with continued translation in the original direction. To provide structure to the design, in many embodiments, the cable lock may include a more rigid housing that includes an aperture to receive the cable, and a comparatively more compliant insert that includes the cable engaging members.
In this manner, in one configuration, a cable lock adapted to temporarily maintain a static position along a cable strung through an article of footwear or apparel includes a housing and a compliant insert. The housing defines an aperture and is formed from a first material. The aperture extends through a thickness of the housing to provide access to the cable. The insert is provided at least partially within the aperture and defining an opening, the insert formed from a second material that is softer than the first material, the insert comprising a plurality of cable engaging features extending radially inward from a perimeter of the aperture, the plurality of cable engaging features being adapted to deflect away from a neutral, unstressed plane when a cable is drawn through the opening.
Likewise, in some embodiments, the housing may define both a first aperture and a second aperture, with each of the first and second apertures extending entirely through a thickness of the housing. A compliant insert may then be formed from a polymeric material that is comparatively softer than the housing and may extend across each of the first aperture and second aperture. The compliant insert defines a first opening extending through the insert that is aligned with the first aperture and further defines a second opening extending through the insert that is aligned with the second aperture. The first opening is adapted to receive the first end portion of the cable, and the second opening is adapted to receive the second end portion of the cable. The compliant insert forms a first plurality of cable engaging features extending radially inward from the first opening such that each cable engaging feature of the first plurality of cable engaging features is operative to contact and impress into the first end portion of the cable. Similarly, the compliant insert also forms a second plurality of cable engaging features extending radially inward into the second opening such that each cable engaging feature of the second plurality of cable engaging features is operative to contact and impress into the second end portion of the cable.
In some embodiments, the first material used to form the housing has a hardness of from about 40 D to about 80 D, measured on the Shore D hardness scale, while the second material used to form the insert has a hardness of from about 40 A to about 80 A, measured on the Shore A hardness scale.
Each of the plurality of cable engaging features may have a radius of curvature that is between about 25% and about 40% of a radius of curvature of the aperture or of a smallest possible circle drawn through a root of each of the plurality of cable engaging features. Further, each of the plurality of cable engaging features may extend from a smallest possible circle drawn through a root of each of the plurality of cable engaging features by a distance that is between about 25% and about 40% of the diameter of the circle.
A cable that may be used with the present lock may have an outer diameter that is greater than a diameter of a circle drawn through each of the plurality of cable engaging features. To provide strength, while still allowing the cable engaging member to impress into the material of the cable, the cable may comprise a core layer and an outer layer that surrounds the core layer, and wherein the core layer is less elastic than the outer layer.
Other features and advantages of the present cable lock system are described in the following disclosure, with reference to the provided figures.
The following discussion and accompanying figures disclose a cable lock 10 (also referred to herein as a “slider 10”) that incorporates a compliant, cable-engaging feature 12 to selectively restrict the lock 10 from translating along the cable 14. Because the present cable lock 10 is not simply a clamp on the cable 14, it enables greater design flexibility in controlling the static and dynamic (sliding) resistance in both the direction of prior travel and in reversing the direction of prior travel. In doing so, the present lock 10 may provide different amounts of resistance (coefficients of friction) for each of the dynamic sliding resistance, static resistance (i.e., from a standstill) in the direction of prior travel, and static resistance against the direction of prior travel. This level of control may prove beneficial, for example, in a child's shoe, where lower resistance may be desirable when tightening the laces (i.e., so the child can lace their own shoes), while a greater amount of resistance may be desirable to reverse the slider once the laces are fully cinched (i.e., to prevent the shoes from inadvertently becoming untied).
In addition to providing increased control over the function/operation of the lock, the present design also minimizes the total number of components within the lock 10 by utilizing compliant materials instead of spring-loaded clasps. This may ultimately provide a more cost-effective design by minimizing the required amount of assembly in creating the lock 10.
With reference to
In one embodiment, the cable-engaging features 12 may be formed from a different material than some or all of the surrounding housing 20. More specifically, the housing may be more rigid to promote easy grip and durability, while the cable engaging features 12 may be formed from a comparatively softer material that has more compliance to avoid damaging the cable 14.
As generally shown, in each design, the cable engaging features 12 may collectively be formed as a portion of an insert 30. In some embodiments, the insert 30 may have a hardness, measured on the Shore A hardness scale of between about 40 A and about 80 A, whereas the housing may have a hardness, measured on the Shore D hardness scale of between about 40 D and about 80 D. In some embodiments, the housing 20 may be even harder, such as being formed from a metal. If the housing 20 and insert 30 have drastically different hardnesses (e.g., Shore 40 A vs aluminum), an intermediate material having a hardness between that of the insert 30 and the housing 20 may be provided between the two components to act as a strain relief. In one particular configuration, this intermediate strain relief material may be provided only near the perimeter of the aperture 22 to discourage wear or tearing at the edge.
Referring to
In any of these three configurations, if multiple apertures 22 are included in the lock 10 (i.e., to receive multiple cables), it may be possible to use a single insert 30 that simply includes multiple openings 48, each corresponding to a different aperture 22.
As shown in
In general, the present lock may be designed to apply three different resistive forces depending on the use and state of the lock 10 and cable 14. A first resistance may be the dynamic resistance that is presented when the lock 10 is sliding in a constant direction along a cable 14. This resistance may be configured to be the lowest resistance that is experienced by the lock 10.
A second resistance, which may be greater than the first, is when the lock 10 begins to slide in the same direction on the cable 14 as the prior direction of travel. This “static” resistance may be a product of greater impingement of the cable engaging features 12 into the cable 14 initially, combined with the greater static resistance of the lock 10 on the cable 14. Finally, the greatest amount of resistance that the lock may produce involves reversing the direction of prior travel from a standstill. In doing so, not only does the static friction of the lock 10 on the cable 14 need to be overcome, but the compliant, cable engaging features 12 must be elastically compressed across the neutral plane to flip to the opposite side.
In one configuration, the one or more core layers 60 may comprise a single core around which the outer layers 62 are wrapped. The single core may be, for example, a solid extruded polymer or bundle of stranded polymeric cables. Conversely, the one or more outer layers 62 may include, for example, a layer of polymeric foam surrounding the core, or a layer of foam surrounded by a solid skin or braided fabric.
In general, the core layers 60 may provide the cable 14 with tensile properties that make it suitable for intended lacing or drawstring applications. For example, a shoelace is expected to have a certain amount of axial rigidity such that when it is drawn tight, it does not noticeably stretch and can maintain a suitable tension across the shoe. Conversely, in the present designs, the outer layers 62 of the cable 14 are designed to be more elastic such that they may radially compress in response to the force applied by the compliant cable engaging features 12, such as shown in
When viewed from a perspective normal to the first side 104, the second component (i.e., which forms the cable engaging lobes 28) may also extend beyond a portion of opposing side edges 108 of the first component 100. In this manner, the softer second component 102 may serve a secondary function of providing a more malleable grip for a user's fingers to engage with. To provide a more streamlined silhouette, the first component may include opposing concave recesses 110 that enable the second component to extend beyond without requiring it to positively protrude in a convex manner. In general, the first, frame component 100 may provide a degree of rigidity to the lock 10.
With reference to
While the figures predominantly show circular apertures, other geometries for the apertures/openings may also be used. For example, in one embodiment, the apertures 22 may have a square or rectangular shape, or even a triangular or hexatonal shape, with compliant cable engaging features extending radially inward from a perimeter and being dimensioned to contact and at least partially impinge into a cable 14 extending therethrough.
In still another embodiment, the housing 10 may be entirely made from a softer material without resorting to the use of secondary compliant cable engaging features 12. Such a material may have a hardness measured on the Shore A Hardness Scale of between about 40 A and about 80 A, or between about 60 A and about 80 A. In one particular embodiment, the material may be a thermoplastic polyurethane having a hardness measured on the Shore A Hardness Scale of about 75 A.
Similar to the embodiments described above, this softer housing 10 design may include one or more apertures 22 extending through the thickness of the housing 10. Each aperture 22 may have an outer diameter (when in a relaxed state) that is smaller than an outer diameter of the cable 14 when the cable is in a relaxed state. In this manner, when the cable 14 extends through the aperture 22, and absent any external forces, the housing 10 may elastically impinge into and radially deform a localized portion of the cable 14. This compressive force, together with any surface friction/material interaction may resist or discourage any relative movement of the housing 10 along the cable 14.
To release the clamping force and permit the housing 10 to slide along the cable 14, a user may pull/tension a strap extending through, for example, a slit 90 or hole in the housing 10 that is located apart from the apertures 22. In some embodiments, the material construction of the lock 10 may cause the one or more apertures 22 to elastically dilate and/or elongate when the housing 10 is tensioned, such as via a strap through the slit 90. When this happens, the compressive force applied by the housing 10 against the cable 14 may be reduced to a degree where the tension applied to the pull strap may also induce a relative motion of the housing 10 along the cable 14. Said another way, when the aperture 22 dilates, the amount of compressive locking force applied by the housing 10 against the cable 14 is reduced and relative motion of the housing 10 along the cable 14 is more easily achieved.
The above features and advantages, and other features and advantages, of the present teachings are readily apparent from the following detailed description of some of the best modes and other embodiments for carrying out the present teachings, as defined in the appended claims, when taken in connection with the accompanying drawings.
The present application claims the benefit of priority from U.S. Provisional Patent Application No. 63/017,412, filed Apr. 29, 2020, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4644610 | Fish | Feb 1987 | A |
6513210 | Gonzalez | Feb 2003 | B1 |
7549201 | Kraft | Jun 2009 | B2 |
10548372 | Chamberlain | Feb 2020 | B2 |
11000096 | Hamilton | May 2021 | B2 |
20050183245 | Whipple | Aug 2005 | A1 |
20090223085 | Wolfberg | Sep 2009 | A1 |
20100175732 | Ma | Jul 2010 | A1 |
20110132418 | Ma | Jun 2011 | A1 |
20150007423 | Yang | Jan 2015 | A1 |
20150173459 | Yang | Jun 2015 | A1 |
20160029745 | Atherinos | Feb 2016 | A1 |
20160286899 | Chamberlain | Oct 2016 | A1 |
20180062318 | Sze | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2905238 | Mar 2008 | FR |
Number | Date | Country | |
---|---|---|---|
20210337932 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
63017412 | Apr 2020 | US |