The present disclosure relates generally to cable node transition assemblies for connecting fiber optic cables to nodes in fiber optic networks.
Optical fiber is increasingly being used for a variety of applications, including broadband applications such as voice, video and data transmissions. Many fiber optic networks generally lead to an end user, commonly referred to as a subscriber. Fiber optic networks which provide such access are commonly referred to as FTTX “fiber to the X” networks, with X indicating a delivery point such as a premises (i.e. FTTP).
At certain locations in many fiber optic networks, a fiber optic cable will be required to enter a sealed unit, such as a junction or cable box, which in many cases is referred to as a node. Typically, the optical fibers extend into the sealed unit and will be individually terminated and/or connected as required per specific application.
However, in many cases, installation of the cable at a node, and the required connection to the sealed unit, is time-consuming and difficult. For example, known assemblies for connecting cables at such nodes are relatively large and only allow the cable to enter the node in a single direction, which is typically straight into the node. However, there may not be sufficient room available for a technician to install the cable in such manner. This can result in the technician potentially inadvertently damaging the cable during the installation process.
Accordingly, improved apparatus for installing cables at fiber optic network nodes are desired in the art. In particular, improved apparatus which allow for flexibility in the direction in which the cable is installed at the node would be advantageous.
Aspects and advantages of the cable node transition assemblies in accordance with the present disclosure will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the technology.
In accordance with one embodiment, a cable node transition assembly is provided. The cable node transition assembly includes an outer nut extending along a longitudinal axis between a first end and a second end, the outer nut including an outer thread at the second end. The cable node transition assembly further includes a flexible boot extending between a first end and a second end, the flexible boot extending into the outer nut at the first end of the outer nut such that the second end of the flexible boot is disposed within the outer nut. The flexible boot is connected to the outer nut. The flexible boot is movable between a first position and a second position and fixable in each of the first position and the second position. In the first position the first end of the flexible boot is coaxial with the second end of the flexible boot along the longitudinal axis. In the second position the first end of the flexible boot is non-coaxial with the second end of the flexible boot along the longitudinal axis.
In accordance with another embodiment, a cable node transition assembly is provided. The cable node transition assembly includes an outer nut extending along a longitudinal axis between a first end and a second end, the outer nut including an outer thread at the second end. The cable node transition assembly further includes a fiber optic cable, the fiber optic cable including a jacket and a plurality of optical fibers. A second end of the jacket terminates within the outer nut. The plurality of optical fibers extend through the outer nut. The cable node transition assembly further includes a cable positioning assembly connected to the outer nut and extending from the first end of the outer nut. A portion of the cable is disposed within the cable positioning assembly. The cable positioning assembly is operable to alternately fix the cable in a first position and a second position. In the first position the portion of the cable disposed within the cable positioning assembly extends along the longitudinal axis. In the second position the portion of the cable disposed within the cable positioning assembly extends away from the longitudinal axis.
These and other features, aspects and advantages of the present cable node transition assemblies will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the technology and, together with the description, serve to explain the principles of the technology.
A full and enabling disclosure of the present cable node transition assemblies, including the best mode of making and using the present systems and methods, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the present cable node transition assemblies, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation, rather than limitation of, the technology. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present technology without departing from the scope or spirit of the claimed technology. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present disclosure covers such modifications and variations as come within the scope of the appended claims and their equivalents.
The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention. As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
Referring now to
Cable node transition assembly 10 may include or be utilized with a fiber optic cable 100. Fiber optic cable 100 may include a jacket 102 and a plurality of optical fibers 104. Jacket 102 may surround and contain at least a portion of each of the plurality of optical fibers 104. Jacket 102 may, for example, extend between a first end (not shown) and a second end 103 which may, as discussed herein, terminate within the cable node transition assembly 10. Optical fibers 104 may protrude and extend from the jacket 102 at the second end 103. Cable 100 may additionally include strength members (such as aramid fibers, etc.) which may be at least partially surrounded by the jacket 102 and which may protrude and extend from the jacket 102 at the second end 103.
Cable node assembly 10 may include an outer nut 20. The outer nut 20 may connect to a node to, for example provide a sealed connection at the node. Outer nut 20 extends along a longitudinal axis 12 between a first end 22 and a second end 24. A passage 26 may be defined through the outer nut 20. Passage 26 may extend through the first end 22 and second end 24 and extend along the longitudinal axis 12.
Outer nut 20 may further include an outer thread 28, which may be provided on an exterior surface of the outer nut 20 at the second end 24. The outer thread 28 may engage an inner thread at the node to facilitate the node connection. In some embodiments, an outer diameter of the outer nut 20 at the thread 28 and second end 24 may be different from, such as less than, an outer diameter of the outer nut 20 at the first end 22. Alternatively, the outer diameters may be the same.
The cable 100 may extend into and through the outer nut 20. For example, the jacket 102 may extend into the outer nut 20, such as the passage 26 thereof, through the first end 22. The second end 103 of the jacket 102 may terminate within the outer nut 20, such as within the passage 26. Optical fibers 104 may extend into the outer nut 20, such as the passage 26 thereof, through the first end 22. Optical fibers 104 may further protrude and extend from the second end 103 within the outer nut 20, such as the passage 26 thereof, and may extend from the outer nut 20, such as the passage 26 thereof, through the second end 24. Outer nut 20 may be rotatable, such as about the longitudinal axis 12, relative to the cable 100.
Cable node assembly 10 may further include a cable positioning assembly 30. Cable positioning assembly 30 may be connected to the outer nut 20, and may be movable (such as rotatable about the longitudinal axis 12) relative to the outer nut 20. Outer nut 20 may thus be rotatable, such as about the longitudinal axis 12, relative to the cable positioning assembly 30. Cable positioning assembly 30 may extend from the first end 22 of the outer nut 20. A portion of the cable 100, such as a portion of the cable 100 extending from the first end 22, may be disposed within the cable positioning assembly 30. The portion of the cable 100 disposed within the cable positioning assembly 30 may include jacket 102 and optical fibers 104. The cable positioning assembly 30 may facilitate movement and positioning of the cable 100 in a variety of positions, such as at least in a first position and a second position as discussed herein. Accordingly, the cable positioning assembly 30 may be operable to alternately fix the cable 100 in various positions, such as a first position and a second position which is different from the first position.
Cable positioning assemblies 30 in first positions are illustrated in
In some embodiments, as illustrated in
In other embodiments, as illustrated in
In some embodiments, as illustrated in
A passage 46 may be defined through the flexible boot 40 and body 41 thereof. Passage 46 may extend through the first end 42 and second end 44. The portion of the cable 100 may extend through the flexible boot 40, such as through the passage 46 thereof. Cable 100 (such as jacket 102 and optical fibers 104) may extend from the first end 42. Optical fibers 104 may extend from the second end 44. In exemplary embodiments, jacket 102 may also extend from second end 44, such that the second end 103 is external to the boot 40 (while internal to the outer nut 20, such as in the passage 26 thereof).
In other embodiments, as illustrated in
Passage 46 may be defined through the flexible boot 40 and linkages 48. Passage 46 may extend through the first end 42 and second end 44. The portion of the cable 100 may extend through the flexible boot 40, such as through the passage 46 thereof. Cable 100 (such as jacket 102 and optical fibers 104) may extend from the first end 42. Optical fibers 104 may extend from the second end 44. In exemplary embodiments, jacket 102 may also extend from second end 44, such that the second end 103 is external to the boot 40 (while internal to the outer nut 20, such as in the passage 26 thereof).
Referring again to
In the first position, for example, the first end 42 of the flexible boot 40 may be coaxial with the second end 44 of the flexible boot 40 along the longitudinal axis 12. The flexible boot 40 may, for example, extend linearly between the first end 42 and second end 44. In the first position, the portion of the cable 100 disposed within the flexible boot 40 may thus extend along the longitudinal axis 12. In the second position, for example, the first end 42 of the flexible boot 40 may be non-coaxial with the second end 44 of the flexible boot 40 along the longitudinal axis 12. For example, the first end 42 in some embodiments may be perpendicular to the second end 44. The flexible boot 40 may, for example, extend curvilinearly between the first end 42 and second end 44. In the second position, the portion of the cable 100 disposed within the flexible boot 40 may thus extend away from the longitudinal axis 12. For example, the portion of the cable 100 may curve away from the longitudinal axis 12, such as in some embodiments to perpendicular with the longitudinal axis 12.
As discussed, the flexible boot 40 (and the associated portion of the cable 100) may be alternately fixed in the various positions, such as in the first position and the second position. In embodiments wherein linkages 48 are utilized. The linkages 48 may move to various positions and then be fixed in those positions relative to neighboring linkages, thus facilitating such fixation of the flexible boot 40 generally and cable 100 in the various positions. In embodiments wherein the flexible boot is a singular body 41, one or more stiffener wires 50 may be embedded in the body 41. The stiffener wires 50 may deform to the various positions, but may fix in such positions (e.g. be plastically deformable as opposed to the elastic deformability of the body 41) and may thus fix the body 41 and boot 40 generally in such positions.
In exemplary embodiments, two stiffener wires 50 may be embedded in the body 41. For example, body 41 may include opposing wings 51 in which the stiffener wires 50 are embedded. Cutouts 53 defined in the body 41 may, for example, be defined between the wings 51, such that movement (e.g. bending) of the boot 40 is encouraged in certain directions but not others.
In some embodiments, the stiffener wires 50 may have circular cross-sectional profiles. Alternatively, the cross-sectional profiles may be oval, rectangular, or have other suitable shapes.
In exemplary embodiments, the stiffener wires 50 may protrude from the flexible boot 40, such as from the body 41 thereof. For example, the stiffener wires 50 may protrude from the second end 44. Accordingly, ends of the stiffener wires 50 may be external to the body 41 but disposed internally in the outer nut 20, such as the passage 26 thereof.
As discussed, the cable positioning assembly 30, such as the plate 32 or flexible boot 40, may be connected to the outer nut 20. Further, the cable positioning assembly 30, such as the plate 32 or flexible boot 40, may be movable (such as rotatable about the longitudinal axis 12) relative to the outer nut 20. Various additional components of the cable node assembly 10 may facilitate such connection and movement.
For example, cable node assembly 10 may include a core 60 which is disposed within the outer nut 20, such as in the passage 26 thereof. Core 60 may extend between a first end 62 and a second end 64, and a passage 66 may be defined through the core 60, including through the first end 62 and second end 64. First end 62 may be disposed within the passage 26. Second end 64 may protrude from the second end 24 and thus be external to the outer nut 20. The core 60 may be rotatable about the longitudinal axis 12 relative to the outer nut 20, and the outer nut 20 in turn rotatable about the longitudinal axis 12 relative to the core 60.
Core 60 may be connected to the cable positioning assembly 30, such as the plate 32 or flexible boot 40, and may thus provide the connection to the outer nut 20 by being disposed within the outer nut 20. For example, in embodiments wherein the flexible boot 40 is utilized, tabs 58 of the boot 40 (which may be provided at the second end 44 thereof) may be inserted into slots 68 defined in the core 60 (such as at the first end 62 thereof) to connect the flexible boot 40 (e.g. at the second end 44 thereof) and core 60 (e.g. at the first end thereof) together.
As discussed, the second end 103 of the jacket 102 may terminate in the outer nut 20, and the optical fibers 104 may extend through the outer nut 20. Further, ends of stiffener wires 50 may be disposed in outer nut 20. In exemplary embodiments, the second end 103 of the jacket 102 may terminate in the core 60, such as the passage 66 thereof, and the optical fibers 104 may extend through the core 60, such as the passage 66 thereof. Further, in exemplary embodiments, the ends of the stiffener wires 50 may be disposed in the core 60, such as the passage 66 thereof.
In exemplary embodiments, a filler 69 may be provided in the core 60, such as in the passage 66 thereof. In exemplary embodiments, the filler 69 may be a potting material such as an epoxy. Filler 69 may surround and capture the second end 103, the portions of the optical fiber 104, the stiffener wires 50 ends, etc. disposed in the passage 66 and thus solidify the connections of the various components as discussed herein.
Cable node transition assembly 10 may further include an inner nut 70 disposed within the outer nut 20, such as in the passage 26 thereof. Inner nut 70 may engage with outer nut 20 to capture the core 60 and cable positioning assembly 30, such as the plate 32 or flexible boot 40, in the passage 26 and thus further connect the cable positioning assembly 30, such as the plate 32 or flexible boot 40, and the outer core 20. For example, outer nut 20 may further include an inner thread 29 at the first end 22 thereof, such as in the passage 26. Inner nut 70 may include an outer thread 72 engageable with the inner thread 29. Inner nut 70 may further surround the core 60, such as in some embodiments the slot 68 thereof, and may further surround the cable positioning assembly 30, such as the plate 32 or flexible boot 40, such as the second end 44 and in some embodiments tabs 58 thereof. Further, inner nut 70 may, for example, contact a shoulder 75 of the core 60. Accordingly, core 60 may be captured within outer nut 20 by inner nut 70, and cable positioning assembly 30 may additionally be so captured. In exemplary embodiments, core 60 and cable positioning assembly 30, such as the plate 32 or flexible boot 40, may be rotatable about the longitudinal axis 12 relative to the inner nut 70.
As discussed, optical fibers 104 may extend from the second end 24 of the outer nut 20. In some embodiments, a plurality of furcation tubes 110 may be provided. Each furcation tube 110 may surround one of the plurality of optical fibers 104 as the optical fiber 104 extends from the second end 24. The furcation tubes 110 may extend into the outer nut 20, such as the passage 26 thereof, through the second end 24, and may thus extend from the second end 24 as shown. Furcation tubes 110 may thus protect the optical fibers 104 which are exiting the outer nut 20 and assembly 10 generally.
In some embodiments, a transition tube 80 may extend from the second end 24 of the outer nut 20. Transition tube 80 may, for example, be connected to and surround the second end 64 of the core 60. Transition tube 80 may surround the optical fibers 104 and furcation tubes 110 which extend from the second end 24 of the outer nut 20, thus providing a transition and added protection to the optical fibers 104 which are exiting the outer nut 20 and assembly 10 generally.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5329603 | Watanabe | Jul 1994 | A |
5347603 | Belenkiy | Sep 1994 | A |
5390272 | Repta | Feb 1995 | A |
5425120 | Peterson et al. | Jun 1995 | A |
6134370 | Childers et al. | Oct 2000 | A |
6429373 | Scrimpshire et al. | Aug 2002 | B1 |
6565262 | Childers et al. | May 2003 | B2 |
6601997 | Ngo | Aug 2003 | B2 |
6629783 | Ngo | Oct 2003 | B2 |
6672774 | Theuerkorn et al. | Jan 2004 | B2 |
6754430 | Kuehne | Jun 2004 | B1 |
6817780 | Ngo | Nov 2004 | B2 |
6959139 | Erwin et al. | Oct 2005 | B2 |
7001061 | Cox et al. | Feb 2006 | B2 |
7146090 | Vo et al. | Dec 2006 | B2 |
7407331 | Momotsu et al. | Aug 2008 | B2 |
7677812 | Castagna et al. | Mar 2010 | B2 |
7682088 | Nielson et al. | Mar 2010 | B2 |
7695197 | Gurreri | Apr 2010 | B2 |
7758257 | Anderson et al. | Jul 2010 | B2 |
8170391 | Beck | May 2012 | B2 |
8672705 | Schneider | Mar 2014 | B2 |
8702323 | Nhep | Apr 2014 | B2 |
8734175 | Ayers | May 2014 | B2 |
8873926 | Beamon et al. | Oct 2014 | B2 |
8876407 | Grinderslev | Nov 2014 | B2 |
9016954 | Lin | Apr 2015 | B2 |
9103995 | Park et al. | Aug 2015 | B2 |
9110250 | Lin | Aug 2015 | B2 |
9213145 | Droesbeke et al. | Dec 2015 | B2 |
9235010 | Islam | Jan 2016 | B2 |
9270048 | Harwath et al. | Feb 2016 | B2 |
9389370 | Pratt et al. | Jul 2016 | B2 |
9419375 | Dieduksman et al. | Aug 2016 | B2 |
9429732 | Ahmed et al. | Aug 2016 | B2 |
9448366 | Lichoulas et al. | Sep 2016 | B2 |
9551842 | Theuerkorn | Jan 2017 | B2 |
9720198 | Kuffel et al. | Aug 2017 | B2 |
9810856 | Graham et al. | Nov 2017 | B2 |
9857540 | Ahrned et al. | Jan 2018 | B2 |
9989711 | Ott et al. | Jun 2018 | B2 |
10261268 | Theuerkorn | Apr 2019 | B2 |
10401578 | Coenegracht | Sep 2019 | B2 |
10539745 | Kamada et al. | Jan 2020 | B2 |
20030039453 | Holmquist | Feb 2003 | A1 |
20040121646 | Imartino et al. | Jun 2004 | A1 |
20050281510 | Vo | Dec 2005 | A1 |
20150153516 | Lin | Jun 2015 | A1 |
20150346435 | Kato | Dec 2015 | A1 |
20190285808 | Lee et al. | Sep 2019 | A1 |
20190293892 | Wentworth et al. | Sep 2019 | A1 |
20190310430 | Nguyen et al. | Oct 2019 | A1 |
20190339475 | Takano et al. | Nov 2019 | A1 |
20190341729 | Gniadek | Nov 2019 | A1 |
20190369336 | Van Baelen et al. | Dec 2019 | A1 |
20200064558 | Crawford | Feb 2020 | A1 |
20200064561 | Alrutz | Feb 2020 | A1 |
20200073059 | Takeuchi et al. | Mar 2020 | A1 |
20200096709 | Rosson | Mar 2020 | A1 |
20200103598 | Davidson et al. | Apr 2020 | A1 |
20200110228 | Wong et al. | Apr 2020 | A1 |
20200116937 | Nhep et al. | Apr 2020 | A1 |
20200124801 | Chabot et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
101248382 | Nov 2010 | CN |
102057308 | Jan 2013 | CN |
203813392 | Sep 2014 | CN |
203838368 | Sep 2014 | CN |
203981923 | Dec 2014 | CN |
204116648 | Jan 2015 | CN |
204116649 | Jan 2015 | CN |
204575900 | Aug 2015 | CN |
204694901 | Oct 2015 | CN |
103703397 | Feb 2016 | CN |
105322347 | Feb 2016 | CN |
104698547 | Apr 2016 | CN |
102195195 | Aug 2016 | CN |
205826910 | Dec 2016 | CN |
105190387 | Jan 2017 | CN |
104508930 | May 2017 | CN |
206649198 | Nov 2017 | CN |
207039156 | Feb 2018 | CN |
107861205 | Mar 2018 | CN |
107884878 | Apr 2018 | CN |
207650446 | Jul 2018 | CN |
207650448 | Jul 2018 | CN |
207718019 | Aug 2018 | CN |
207799180 | Aug 2018 | CN |
105762564 | Jan 2019 | CN |
109167191 | Jan 2019 | CN |
107884879 | May 2019 | CN |
110007405 | Jul 2019 | CN |
209055696 | Jul 2019 | CN |
209119784 | Jul 2019 | CN |
209132482 | Jul 2019 | CN |
209150423 | Jul 2019 | CN |
106687839 | Aug 2019 | CN |
110174727 | Aug 2019 | CN |
207650447 | Aug 2019 | CN |
110445085 | Nov 2019 | CN |
209674046 | Nov 2019 | CN |
209730781 | Dec 2019 | CN |
210038243 | Feb 2020 | CN |
210224915 | Mar 2020 | CN |
10135971 | Apr 2003 | DE |
20201210018 | May 2012 | DE |
1884812 | Feb 2008 | EP |
3172603 | May 2017 | EP |
3488278 | May 2019 | EP |
53025244 | Sep 1987 | JP |
2009282177 | Dec 2009 | JP |
2016184009 | Oct 2016 | JP |
1020150080667 | Jul 2015 | KR |
101762403 | Jul 2017 | KR |
102085172 | Mar 2020 | KR |
1037547 | Mar 2015 | NL |
M493066 | Jan 2015 | TW |
2019178936 | Sep 2019 | WO |
2019195652 | Oct 2019 | WO |
2019239567 | Dec 2019 | WO |
2020046711 | Mar 2020 | WO |
2020048464 | Mar 2020 | WO |