Cable reel and reel carrying caddy

Information

  • Patent Grant
  • 9908737
  • Patent Number
    9,908,737
  • Date Filed
    Friday, October 5, 2012
    12 years ago
  • Date Issued
    Tuesday, March 6, 2018
    6 years ago
Abstract
A resilient cable caddy comprising a portable housing for storing reels of cable that has a lower base with a hinged top forming an enclosure for the reel. A reel of cable is rotatably mounted within the interior. A handle formed by abutting base and top portions enables carrying. Each reel comprises a spool with a central axle coupled at each end to spaced apart end caps, being retained by mounting rings. The spindles have bearing rings journalled to bearing races defined in the end caps. Both spindles comprise hubs disposed within case gudgeons. A two-piece spindle has a removable hub portion fitted to an internal socket. When reels are transported they may be stacked vertically atop one another with the one piece spindle engaging the empty and exposed spindle hub socket of an upper reel. Caddies may also be opened and stacked vertically for transportation.
Description
BACKGROUND OF THE INVENTION

I. Field of the Invention


The present invention relates generally to reels or spools containing wire or cable. More particularly, the present invention relates to cable reels and reel housings or carriers that facilitate the shipment, transportation, dispensing, and installation of elongated wires and cables, particularly coaxial cable. Known prior art related to the reel carrier component of the invention is classified in United States Patent Class 242, Subclasses 588, 588.1, 588.2 and 588.3 and in Class 206 Subclass 389.


II. Description of the Prior Art


Reels are well known in the art for storing and dispensing a wide variety of wires, cables and coaxial cables. Coaxial cable is widely used in the satellite and cable television business for distributing wide-band signals to television apparatus and related accessories. Various other cables, including multi-conductor cables and fiber-optic cables, are widely used for Internet-related applications, and digital data transmission and distribution in conjunction with diverse computer networks, including local-area and wide-area networked systems. Wired computer networks are the backbone of the Internet.


Reels for storing wires and cables typically include a hollow, tubular core extending between spaced apart ends or flanges. In general, wire wound around the core is held in place by the flanges. Reels containing flexible media that are intended for industrial transport and storage vary greatly in size. Reels have traditionally been fabricated out of wood or metallic materials, and have more recently been fabricated from paper and plastic.


In the prior art, it is known to house coils of cable in boxes, and to manually pull selected lengths of cable out of the box. Wires and cables are conventionally wound around reels or “spools” that may be packaged in various forms of containers. A wide variety of prior art configurations exist. Traditional packaging methods such as cardboard, wood or metal are inefficient and non-standardized, and are bulky and heavy due to the typical packaging materials required for transportation and use. Boxes of cable are heavy and difficult to move around. Boxed reels also require the additional steps of removing tape or straps sealing the box before the cable can be removed. These problems are amplified by the fact that modern, large scale construction projects require large lengths of numerous cables of different types, thicknesses and characteristics. In large complex jobs, numerous boxes of various cables quite often end up haphazardly placed around the work site in a disorganized manner. Empty reels and packaging typically cannot be reused and have to be disposed of as waste.


It is known in the art to rotatably support wire reels within a portable enclosure that functions as a housing and carrying case. Such rotating reel assemblies include a reel that is rotatably connected to a frame within a box or generally parallelepiped enclosure. The rotating reel assembly permits the user to simply pull out the cable. Some designs include an axle that penetrates the spool and is rotatably coupled between suitable end points in the supporting frame that enable rotation. However, these arrangements often do not feed as well when the cable is pulled at an angle and they require that the axle be detached from the frame and withdrawn from the reel to remove and replace an empty spool. Typically, ends of the supportive spool axle are fitted within inexpensive frame cradles that enable rotation and function as inexpensive bearings. Such designs make it easier to remove the spools but, over time, the reliability and durability of the support cradle are compromised.


For example, as cable is drawn from conventionally designed spools, the spool tends to wear out the support cradles or bearings due to the weight of the cable and the minimal surface area contact between the spool and bearings. This can cause the spool to wobble or bind restricting wire or cable from being unwound. As wire or cable is removed from the spool there may not be sufficient friction to allow the spool to stop spinning, resulting in the spool “freewheeling” allowing wire or cable to unwind faster than it can be conveniently pulled away by the technician. This can result in cable tangles or spool misalignment. The installing technician must then waste potentially valuable time untangling cables and adjusting the spool or reel.


In the prior art, U.S. Pat. No. 8,016,222 issued Sep. 13, 2011 discloses a wire or cable dispensing cart with several reels of cable in cartons. Cable is pulled through a slot in the carton's front panel. Preferably, left and right panels of the carton each have an arbor hole formed therein which receives an axial rod, the rod also extending through the reel and caddies. In one embodiment, cable may be pulled through one or more pass-through slots formed in the tops and bottoms of stacked containers, such that cable from multiple containers is drawn through one slot on the top of the stack.


U.S. Pat. No. 6,523,777 issued Feb. 25, 2003 shows a portable wire spool caddy that releasably holds a cylindrical spool while cable is unwound from the spool. An elongated frame includes first and second spaced apart ends, a plurality of parallel rods which each extend between and are connected to the first and second ends, and at least one movable rod which is generally parallel to the fixed rods which extends between the ends. The spool is retained between the movable rod and the fixed rods, and when the movable rod is in its second position the spool may be removed or inserted between the movable rod and the adjacent fixed rod.


U.S. Pat. No. 6,234,421 issued May 22, 2001 discloses a reel for supporting wound cables. The reel has a core, first and second flanges, and at least one locking ring. The core has first and second ends, an inner surface and an outer surface. The first flange, which attaches to the first end of the core, includes a first plurality of flexible fingers that extend axially inward the core adjacent to said inner surface proximate the first end. The second flange attaches to the second end of the core and includes a second plurality of flexible fingers that extend axially inwardly proximate the second end. The locking ring urges the first plurality of flexible fingers to the inner surface proximate the first end.


U.S. Pat. No. 5,775,621 issued Jul. 7, 1998 discloses a combination reel caddy and stand for cable spools of the type having a central drum and enlarged disk-like ends with central openings therein. The stand comprises a generally U-shaped handle portion having a curved end and elongated leg portions with the leg portions carrying stub spindle members adapted to be received in the spool disk. The spool can be rotated and lifted about the legs and then with the handle portion on the same surface as the ends of the stand legs the spool can be freely rotated for unwinding or winding cable therefrom.


Thus, a suitable reel caddy should be designed with considerations for transportation and storage of the reel caddy both with the reel loaded into the caddy and separately. The design should allow for minimal consumption of volume on pallets and in bulk shipping containers. Caddies and reels that can be efficiently stacked will reduce transportation and storage costs. A design that incorporates shipping into the reel and caddy can also reduce waste in unnecessary packing materials to stabilize and protect the reel and caddy in transit.


For instance if the reels have a shape and features that allow them to be stacked end-to-end vertically, and minimize wasted space when the stacks are combined on a pallet or in a shipping container, volume required for transportation and storage can be reduced. If the caddies can be stacked efficiently like the reels then a further reduction in transportation and storage costs results. An added benefit of a reel caddy designed and built in the manner is that shipping and storage damages is also minimized due to the stable configuration of the reel caddy during shipping.


In addition to the shape, if the reel caddy is designed and fabricated using durable, lightweight materials, more product can be transported more easily at lower cost, with less damage to the product. Cardboard boxes may be lightweight, but are not as durable as plastic and are susceptible to weather conditions. Wood or metal containers are strong and weather resistant but typically take up more space and weight more than plastic containers. Lightweight, durable plastic is an ideal material for a reel caddy for shipping, storage and day-to-day use.


A primary feature of a reel caddy is that it be perform the task of dispensing cable, wire or fiber at a work site and allow the installer or other user to perform their job efficiently and effectively. An installer typically carries all tools and cable in a vehicle. A reel caddy that can easily be stored and efficiently stacked in a vehicle is important. Installers may require multiple types of cable, wire or fiber, and may also carry multiple spare reels as well. So not only must the reel caddy itself be easily stored in a vehicle, the reels must also meet the same criteria.


Once an installer reaches a jobsite, all of the installer's tools and need to be moved to the location where work is being performed. The reel caddy must easily stack and remain stable on a dolly, handcart, or other carrying device two-wheel. Weight must also be minimized to help in transportation of the reel caddy. A reel caddy with matching interlocking tops and bottoms allows stacking of multiple caddies vertically in a stable column. A comfortable carrying handle is also a requirement to enable an installer to carry a reel caddy in each hand. Additional hand holds are desirable to allow the caddy to be lifted regardless of its orientation. Reels in cardboard boxes tend to tear and are harder to grip. The capability for the installer to easily open the caddy when needed, preferably with one hand, to install a reel or switch reels is desirable.


The reel caddy must provide a smooth flow of cable, wire or fiber from the caddy. The shape and position of the outlet is important in providing this feature. If the cable snags on the outlet, then the caddy or container could be dragged across the work site. The cable must feed freely regardless of the angle of pull from the mouth of the caddy. The reel caddy must also provide sufficient friction to stop the feed of cable from the caddy once the installer stops pulling. A reel that keeps spinning, or “freewheels,” in the caddy results in tangled cable that may require significant time to untangle so that the installer's work can continue. A reel caddy that includes a variable braking capability between the reel and bearing surfaces meets these criteria by providing greater braking friction when the reel is full, and reducing braking friction as the reel is emptied.


A reel caddy should also be stable and contain the reel in various positions, even upside down. A reel caddy that provides a secure latching mechanism and is designed to stabilize the reel and even feed cable or wire regardless of the orientation is desirable.


Installers may simultaneously install multiple types of cable and wire, pulling all cable and wire at the same time, so a reel caddy that can contain different types of cable and wire and can be stacked with interlocking feet on the bottom and indentions in the top makes this a simple task for the installer. To minimize reel replacement, a desirable reel caddy should be able to effectively contain as much cable as can be carried or transported around the work site easily, for instance one-thousand feet of RG-6 coaxial cable. It is important to be able to determine how much cable is left on a reel so that there is sufficient cable for a particular job, or so that an installer can insure that spare reels are available. A reel caddy that can be opened to allow full observation of the cable on the reel is essential. While visual inspection is important, electronic tools exist that can measure both the length and quality of cable on a reel. In order to use such an electronic tool, an installer must have access to both ends of the cable on the reel, making this access a critical feature of a reel caddy. Not to be overlooked is the ability to visually determine the type of cable on a reel. Even though the cable may be marked, access to the entire reel can usually make identification of the cable type easier than having to pull out sufficient cable to find the markings.


A work site is full of challenges for a reel caddy in that the caddy may be located on gravel, concrete, dirt or even in mud. The caddy may also be exposed to the elements such as rain, snow or direct sunlight and high heat or extreme cold. Undoubtedly a reel caddy on a work site will be banged, dropped, slid across the ground, and generally abused. It is critical for a suitable reel caddy to be durable enough to take the abuse, protect the cable, and continue to function effectively. The reel caddy must also protect the cable from the elements and maintain its integrity.


Features that help reduce the risk of theft are virtually non-existent in current cable deployment systems. An effective reel caddy should include features that help reduce theft but do not hinder use of the caddy. For example a reel including unique spindle keys that are matched between reel and caddy or unique to a particular user, reels with no through hole to prevent insertion of a common rod or pole as an axle, and color coded reels and caddies, are all desirable features.


An environmentally friendly reel caddy is desirable, ideally a solution that can satisfy multiple uses and can be reused, and that does not generate waste by requiring any significant packing materials for transportation or use. A suitable reel caddy should work with a wide variety of cable, wire and fiber types. The reel should have the capability to be respooled by the owner or by returning to the distributor. A reel caddy made of lightweight durable materials can reduce consumption of fuels in transportation. A reel caddy where the reel and caddy have been designed for efficient stacking to maximize stability, minimize damage, and minimize additional packaging material can reduce waste packaging material and reduce storage space requirements in transportation, storage, and on a work site.


SUMMARY OF THE INVENTION

A resilient plastic, two piece caddy comprising a portable housing for storing reels of cable or wire. A lower base forms an enclosure in which a reel can be rotatably mounted. A pivoted top hinged to the base can enclose the caddy. A handle enables the box-like enclosure to be conveniently carried.


Each reel comprises a spool of cable or wire. The spool has a central axle coupled at each end to spaced apart, flange-like end caps that restrain wound wire. The end caps have inner portions coupled to the axle, and outer, bearing races coaxial with the axle to which molded plastic spindles are coupled to enable rotation. Each spindle comprises a projecting bearing portion rotatably engaging the bearing race defined in each end cap, and an outwardly projecting hub adapted to be placed within suitable gudgeons internally defined within opposite caddy ends to rotatably mount the reel.


A preferably single-piece spindle is permanently mounted to and captivated by one reel end cap. An opposite, multi-piece spindle comprises a captivated bearing portion that is likewise engaged with a bearing race within the adjacent end cap, and a separate removable hub. The separate removable hub is axially coupled to a socket defined within its companion bearing structure. When reels are mounted in the caddy for use, the single-piece spindle hub and the removable spindle hub are axially aligned, and both seat within gudgeons in opposite caddy ends to establish reel rotation. The removable hub forms a security key that can be designed to fit only selected reels with matching sockets. Alternatively, the removable hub can be keyed to specific gudgeons.


The removable hub contributes a functional advantage to reel stacking or transportation. When bulk reels are shipped, or when two or more similar reels are transported about a work site, reels may be stacked vertically atop one another with the separate spindle hub removed. In this case, the opposite spindle hub will engage the now-exposed socket of an upper reel stacked upon it. The stacked and partially interlocking hubs promote stability during transportation.


Thus, a broad object of this invention is to provide an improved reel and carrying caddy for handling the reel for transporting and dispensing wires, coaxial cable, and the like.


Another object is to provide a caddy for efficiently and reliably carrying spools or reels of cable or wires.


A related object is to provide a carrying caddy that allows efficient and reliable replacement of depleted reels.


A basic object is to provide a cable dispensing caddy that eases the job of cable installers and promotes work site efficiency.


A related object is to provide a cable or wire dispenser that avoids cable entanglements while allowing smooth deployment of cable, wire, fiber and the like.


Another related object is to provide a caddy of the character described that enables an observer to quickly visually identify the amount of unused cable that remains on a reel.


Yet another object is to reduce shipping costs per standard measure by optimizing the caddy and reel designs for efficient stacking and placement on pallets and in containers.


A related object is to provide a cable spool design that enables reels to be quickly and stably stacked in vertical columns within pallets for efficient shipment.


Another related object is to make the transportation of cable spools easier and more convenient. It is a feature of our invention that reels can be vertically stacked in stable columns, with the spindle of a reel below engaging an exposed socket of an spindle above.


Yet another object of the present invention is to provide a rotating cable caddy of the character described that reliably journals the reel, while facilitating easy reel replacements thereby eliminating time consuming adjustments or the need for special tools.


It is also an object to provide security features to a cable caddy. It is a feature of our invention that specific reels can be provided with a matching spindle hub or “key” that must be inserted within that reel to fit within a matching caddy. Thus a specific brand and type of cable on an appropriate “approved” reel can be matched for use with a previously vended or provided caddy that is specific to a given manufacturer or cable supplier.


A related object is to provide a carrying case or caddy for rotationally mounting cable reels that can be efficiently shipped. It is a feature of our caddy that multiple units can be stacked together vertically in stable, columns where individual cadies are nested together.


Providing a “green” system is also a basic object. It is a feature of our arrangement that the caddies and reels are reusable and recyclable. Because of pallet optimization, less space is required for shipping. Finally, the designs described herein substantially obviate the need for cardboard or paper boxes or containers that form waste that must be disposed of using energy resources and landfill space.


These and other objects and advantages of the present invention, along with features of novelty appurtenant thereto, will appear or become apparent in the course of the following descriptive sections.





BRIEF DESCRIPTION OF THE DRAWINGS

In the following drawings, which form a part of the specification and which are to be construed in conjunction therewith, and in which like reference numerals have been employed throughout wherever possible to indicate like parts in the various views:



FIG. 1 is a frontal isometric view of an embodiment of our cable reel caddy, with the caddy closed;



FIG. 2 is a rear isometric view of the closed cable caddy;



FIG. 3 is a front elevational view of the closed caddy;



FIG. 4 is a rear elevational view of the closed caddy;



FIG. 5 is a top plan view of the closed caddy;



FIG. 6 is a bottom plan view of the closed caddy;



FIG. 7 is a left side elevational view of the closed caddy;



FIG. 8 is a right side elevational view of the closed caddy;



FIG. 9 is a frontal isometric view of a loaded and opened caddy;



FIG. 10 is a rear isometric view of the loaded and opened caddy;



FIG. 11 is a front plan view of the loaded and opened caddy;



FIG. 12 is a rear plan view of the loaded and opened caddy;



FIG. 13 is a top plan view of the loaded and opened caddy;



FIG. 14 is a right side elevational view of the loaded and opened caddy;



FIG. 15 is a left side elevational view of the loaded and opened caddy;



FIG. 16 is a right, frontal isometric view of a cable reel;



FIG. 17 is a left frontal isometric view of the cable reel;



FIG. 18 is an exploded isometric view of the cable reel;



FIG. 18A is an exploded isometric view of a caddy and reel assembly;



FIG. 19 is an enlarged plan view of a reel end cap;



FIG. 20 is an enlarged, exploded isometric view of a multi-part spindle;



FIG. 21 is an enlarged, isometric view of the inside hub socket associated with the multi-part spindle of FIG. 20;



FIG. 22 is an enlarged isometric view of a unitary spindle;



FIG. 23 is an enlarged isometric view of the spindle of FIG. 22, but showing the inside;



FIG. 24 is an isometric view showing a plurality of stacked reels on a pallet;



FIG. 25 is an isometric view showing a plurality of stacked and nested cases disposed on a pallet;



FIG. 26 is a frontal isometric view of an alternative embodiment of our cable reel caddy, with the caddy closed;





DETAILED DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Referring initially to FIGS. 1-12 of the appended drawings, a system for housing and carrying reels of coaxial cable or wire, and for dispensing cable or wire, has been generally designated by the reference numeral 40. The system 40 comprises a protective, portable caddy 50 for housing a reel 52 (FIGS. 9, 10) containing wound coaxial cable (or other filamentary wire or cable) that may be rotatably disposed. Ideally, the caddy 50 is disposed upon a suitable available supporting surface 54 proximate to a work site where various types and lengths of cable are to be installed. Bottom caddy feet 59 (FIGS. 3, 4) provide support and stability. The impact resistant, plastic caddy 50 comprises a lower base 56 that forms an enclosure in which reel 52 sits, and a cooperating top 58 that is pivotally coupled to base 56 with an elongated hinge 60 (FIG. 2). Base 56 and top 58 are both generally in the form of an open parallelepiped. When caddy 50 is closed, as in FIGS. 1-5, it may be conveniently transported by grasping a front handle 62 that is formed by abutting handle portions of the base 56 and top 58 when the caddy is closed, as explained in detail hereinafter. Each of top 58 and base 56 are preferably formed of impact resistant plastic and can be created in various combinations of colors to aid in identification of the caddy 50.


Base 56 forms a box-like enclosure comprising a front panel 70 and an integral rear panel 72 (FIG. 7) which are integral with right end panel 74 (FIG. 8) and left end panel 76 (FIG. 7). Front panel 70 has a plurality of spaced part, generally parabolic indentations 80 that reinforce the caddy 50 and add to aesthetic styling. Similar stylistic reinforcement indentations 82 (FIG. 4) are spaced apart on the rear caddy panel 72. At the top of the center indentation 80 on front panel 70 there is a spring-biased button 86 that releasably mates with a similarly contoured, complementary opening 88 formed in the interior of top 58 (FIG. 9, 10) to form a latch. Button 86 may be manually depressed to unengage the opening 88 and allow top 58 to rotate away from base 56 to open the caddy and expose the caddy interior. As seen in FIGS. 1, 2, and 13, top 58 has an upper, slotted front mouth 57 through which cable wound about the enclosed, interior reel 52 may be withdrawn. Mouth 57 is preferably bounded by a peripheral, generally rectangular lip 61 (FIG. 13) of generally cylindrical cross section that lessens friction or resistance as cable is withdrawn through the mouth 57. Other embodiments of mouth 57 have lip 61 covered by a smooth, low-friction grommet, or a plurality of rollers, or other mechanisms (not shown) to reduce friction on cable or wire being drawn from the caddy 50. Still other embodiments of mouth 57 have an alternative lip (not shown) that is curved slightly inwardly or outwardly to reduce friction on cable or wire being drawn from the caddy 50.


The base 56 also comprises an integral, stylized, frontal ledge 90 (FIGS. 1, 9) that reinforces the structure of the caddy to enable the base to retain its critical dimension and forms its upper periphery. The frontal ledge midportion 92 (FIGS. 9, 11) is offset from button 86 forming a lower half of the handle 62 (FIG. 1) extending integrally across the upper edges of the front panel 70. Ledge 90 comprises spaced apart, lateral triangular potions 93, 95 (FIG. 9) that nest within similarly styled recesses 99, 100 formed in the underside of top 58 (FIG. 9) when the caddy 50 is closed. The rear panel 72 hinge structure (FIG. 4) has a plurality of spaced apart pairs of upper hinge ferrules 102 integrally formed in rear peripheral ledge 104. Each pair of ferrules 102 on the base 56 is coupled to a barrel 106 from the top 58 disposed between it by a clevis pin 103 (FIG. 6). The ferrules 102 and barrels 106 are axially aligned, and form hinge 60 to allow the top 58 to pivot relative to the base 56.


Each integral end panel 74, 76 (FIGS. 7, 8, 14, 15) of the base 56 also includes an upper peripheral ledge that extends from the rear hinge 60 to the front shelf 90 previously described. For example, left end panel 76 (FIG. 15) has a curved ledge 108 with the higher midpoint 109 centered on panel 76 and disposed above an outwardly projecting bearing housing 111. The opposite, spaced apart right end panel 74 (FIGS. 8, 14) has a complementary curved ledge 114 with a higher midpoint 115 centered on panel 74 above an outwardly projecting bearing housing 116. Ledges 108 and 104 can be utilized as lifting handles when the caddy 50 is closed. The bearing housings 111, 116 define interior gudgeons 111A and 116A respectively that mate with the spindles projecting from the reel 52 (FIG. 13) to rotatably mount the reel 52 as explained hereinafter. The plastic spindles (FIGS. 21-23) discussed later comprise hub portions seated within the receptive inner gudgeons 111A and 116A (FIG. 13) defined by the bearing housings 111, 116 when the reel 52 is disposed within caddy 50.


The caddy top 58 sits atop the base 56 and is pivoted thereto with hinge 60 at the rear as discussed earlier. Top 58 has a front panel 122 (FIGS. 1, 12) with a recessed center portion 124 disposed between integral side portions 126, 127 (FIG. 1). A complementary front ledge 129 projects outwardly from panel portion 127 and a similar opposite ledge 132 projects from panel 122 (FIGS. 1, 3). Preferably there is a wire end catch 131 defined in ledge 129 (FIGS. 1, 5) to temporarily hold loose wire ends. Peripheral borders 140, 141 form the front of ledges 132, 129 and are joined by a handle portion 146 which is part of handle 62. Borders 140, 141 are complementary with and substantially cover the projecting ledge 90 on the base 56 discussed earlier.


End panels 160 (FIG. 7) or 161 (FIG. 1) of the top 58 have arcuate peripheries 164, 162 (i.e., FIGS. 10, 14-15), respectively that mate with and are complementary to base side ledges 108 (FIG. 15) and 114 (FIG. 14) discussed above when the caddy 50 is closed. Importantly, the upper surface 166 (FIGS. 1, 2) of the top 58 has a plurality of generally cubicle indentations 169 disposed generally at the corners of the rectangular surface 166. Indentations 169 are aligned with the feet 59 (FIG. 4) in the base 56. Thus when caddies are vertically stacked atop one another, when for example two or more caddies are transported at the work site on a conventional hand truck or dolly, the feet 59 from an upper caddy can register with the indentations 169 in a lower unit to stabilize the vertical stack. Beneath the upper surface 166 of the top, at the underside 170 (FIG. 13) the indentations have projecting nubs 169B. When empty caddies are stacked in the open position for shipping, as discussed later, the indentations 169 (FIG. 2) in one caddy can register with the projecting indentations 169B (FIG. 13) in a lower stacked caddy for stability.


Referring now to FIGS. 16-18, wire or coaxial cable 180 is wound about and stored upon reels 52. Referring to FIG. 18, the reel 52 preferably comprises a spool 182 of cable 180 that is coaxially mounted by a central axle 184 when reels are mounted within a caddy 50. Opposite ends 187, 189 of axle 184 are coupled to similar, spaced apart end caps 190, 192 (i.e., FIGS. 18, 19). These flange-like end caps 190, 192 restrain wire, cable or other filamentary material wound about the spool 182 and enable rotation. The inner centers of each end cap include circular coupling rings 194 that mate with ends 187, 189 of axle 184 in assembly. The axle ends include projecting notches 199 that register with locks 198 in coupling rings 194. On their opposite outer ends, the coupling rings 194 have generally circular, recessed bearing races 200 (FIG. 18) to which spindles 202 or 204 may be fitted. A wire end slot 331 is shown in FIG. 16 and provides access to the starting end of the cable 180 on spool 182.


There are two spindles employed in a preferred embodiment, a unitary, single piece spindle 202, and a multi-piece spindle 204. Each preferably molded plastic spindle includes a bearing portion, and a hub. The spindle bearing portions are fitted to the end cap races 200 to journal the reel 52 for rotation. Spindle hub structures are supported within complementary gudgeons 116A or 111A (FIG. 13) respectively to support the associated reels 52 within the case and enable rotation. The inner axle 184 and end caps 190, 192 thus rotate relative to the spindle hubs to enable reel rotation.


Referring to FIG. 19, a preferred embodiment of end cap 190 or 192 is detailed. Spindle 204 is seen mated within the coaxially centered race 200 of the end cap discussed above. Preferably each end cap is polygonal so that the reel is stable when placed on a substantially flat surface and will not roll away. In a preferred embodiment the end caps are either hexagonal or octagonal. Each of the outer facets 210 of the end cap are integral with curved and radially spaced apart spokes 212 that project from the inner hub of the end cap 190. Periodic radially spaced apart voids 213 lighten the end caps. The orientation of of spokes 212 and voids 213 add to the durability of the end cap 190 or 192 by allowing it to more flex on impact and thereby resist permanently deforming or breaking


Referring mainly now to FIGS. 20 and 21, the preferably two-piece spindle 204 comprises a bearing portion 205 comprising a circular, peripheral bearing ring 206. Bearing ring 206 is segmented, comprising curved, peripheral portions 208, 209 that are separated by relief slots 211 to enable resilient bending. Ring 206 engages and yieldably frictionally fits into end cap race 200 (FIG. 19) forming the bearing connection, allowing the end cap and reel to rotate relative to the hub. In an embodiment of the invention, the width of bearing ring 206 in contact with end cap race 200 is preferably between one-half and one inches. The width of the bearing ring 206 is important in providing variable braking as cable is removed, for durability and to sufficiently support the weight of a full reel 52. Ring 206 is integral with a projecting cap portion 219 (FIG. 20) that interiorly defines a recessed socket 217 (FIG. 21) at its opposite end. A separate, removable key 218 (FIGS. 18, 18A, 20) is removably fitted to spindle bearing portion 205 (FIG. 20), being received within socket 217 (FIG. 21).


Key 218 (FIG. 20) comprises a pair of adjoining, preferably similarly shaped portions 221 and 223. The key's hub 221 is designed to seat within a gudgeon 111A in assembly when a reel is placed within the caddy. The neighboring plug 223 (FIG. 20) is adapted to fit within socket 217 provided by the spindle bearing portion 205 (FIGS. 20, 21). With a reel disposed within the caddy, the projecting key 218 now coupled to socket 217 by plug 223 projects its hub 221 towards bearing gudgeon 111A (FIG. 13). Alternatively, when reels are shipped from the factory, or when reels are moved or stored about a work site, the key 218 can be removed from spindle 204, exposing hub socket 217 (FIG. 21) that can now receive the hub 239 (FIGS. 18, 22) from a unitary spindle 202 projecting upwardly from another reel below it, as when multiple reels are vertically stacked. When reels are to be mounted in the caddy for use, the removable key 218 is reconnected to spindle 204 and seats within a gudgeon to establish reel rotation.


The “security key” 218 can be adapted to allow only specific reels to fit within a caddy. In other words, the configuration of the plug 223 (FIGS. 18, 20) can be matched to specific, complementary sockets 217 (FIG. 21), so that specific reels cannot be rotatably disposed within a caddy unless the user has a properly configured key 218 (i.e., the proper “key”) to fit within the given socket 217. Alternatively, the design of the receptive case gudgeons 111A or 116A can be custom configured so that a given caddy will receive and mount only a specific reel with specifically configured keys 218, associated with spindled 204, or hubs 239 (FIG. 22) associated with spindle 202. As a result, specific reel designs can be custom defined for specific customers or specific jobs using specific caddies, enabling rapid identification, reducing mistakes, and reducing the likelihood of theft.


In FIGS. 22 and 23 the permanently attached, unitary spindle 202 is detailed. An integral, outer, peripheral bearing ring 226 is also segmented, comprising separated curved portions 228, 229 for example, that are separated by relief slots 231 to enable resiliency. The width of bearing ring 226 is preferably the same as the width of bearing ring 206. Preferably there are four radially spaced apart, barbed tabs 233 comprised of outwardly facing barbs 236 that engage with a inner lip of of the race 200 (FIG. 18) and snap into place. Barbs 236 axially lock the spindle 202 within the race 200 for rotation of the spindle. Thus bearing ring 226 journals the spindle for rotation. The resilient plastic construction enables yieldable frictional fitting of the spindle 202 to the end cap (FIG. 18) where it is permanently seated. Ring 226 borders a frontal, recessed interior 237. Recess 237 forms the underside of an integral projecting hub 239 (FIG. 22) at an opposite end that is normally seated within a caddy inner gudgeon 111A or 116A (FIG. 13) to enable reel rotation. The removable key 218 (FIG. 18) that is associated with spindle 204 may have its hub portion 221 geometrically configured similarly to hub portion 239 on spindle 202; however, both hub portions 221 and 239 have the same function, and both are seated within caddy inner gudgeons 111A and 116A. Alternatively, when reels are shipped or moved, hub portion 239 of a spindle 202 can engage another spool above it, nesting within an exposed socket 217 (FIGS. 18, 21) in another spindle 204 whose key 218 (FIG. 21) has been removed. Normally, hub portion 239 will seat within a gudgeon 116A (FIG. 13) when a reel is disposed within a caddy, and the spool can thus rotate relative to the hub and its receptive gudgeon.



FIG. 24 illustrates how a plurality of separate reels 300 may be conveniently stacked in a pallet. Here the reels 300 are arranged in multiple, spaced-apart vertical stacks forming columns upon floor 303 of the pallet 304. For most of the reels, their upwardly projecting, permanent spindles 202 mate with upper reels. Specifically, the hubs 239 of spindles 202 fit within an exposed socket 217 (FIG. 21) that are unblocked and exposed by removal of the security key 218 of spindle 204 (FIG. 18) discussed earlier. However, the uppermost reels 321 (FIG. 24) have their spindles 202 seated within suitable spaced apart orifices defined in the roof 328 of pallet 304. FIG. 24 also illustrates how stability of the stacks is increased and volume required is decreased by the polygonal shape of reel endcaps 190 (FIG. 19) and 192 (FIG. 18A). The flat edge of the polygonal endcaps 190, 192 abut with a greater contact area than a circular shaped endcap.



FIG. 25 illustrates how empty caddies 50 can be stacked for shipment. The caddies are opened as illustrated and stacked such that the lower base 56 of an upper unit is nested within the lower base of a lower unit. Similarly the top 58 of one unit, inverted by folding, is nested within the top of a similarly folded lower caddy. This minimizes shipping volume.



FIG. 26 shows an alternative embodiment of a portable caddy 350. Caddy 350 has an alternative top 358 and is otherwise similar to caddy 50 shown in FIG. 1. The caddy top 358 has a front panel 322 with a mouth 357. Mouth 357 is approximately centered on front panel 322 and extends preferably eighty percent of the width of front panel 322 and preferably fifty percent of the height of front panel 322. Other embodiments of mouth 357 may be larger or smaller.


From the foregoing, it will be seen that this invention is one well adapted to obtain all the ends and objects herein set forth, together with other advantages which are inherent to the structure.


It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations.


As many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. A caddy system for enclosing, transporting and dispensing cable, the caddy system comprising: a rectangular base and a top in an articulated clamshell arrangement;the base adapted to be disposed upon a supporting surface, the base comprising integral front and rear panels, a pair of integral, spaced apart end panels, and an interior defined between said front and rear and end panels;the top coupled to said base for enclosing said interior;a gudgeon defined in each of said end panels; and,a reel adapted to be rotatably disposed within said base, the reel comprising an axle upon which said cable is wound wherein an axle length accommodates plural side-by-side cable windings and a pair of spaced apart end caps;a pair of irrotatable spindles including a first spindle with an integral bearing ring portion, projecting hub, and barbed tabs for engaging a reel inner lip and a second multipiece spindle including a bearing portion and a key hub and key plug removably inserted therein of the bearing portion of the second multipiece spindle; and,each end cap having a central coupling ring therethrough including a coupling ring extension projecting toward the axle for mating with the axle and a race to one side of the extension for providing a bearing wherein the bearing portion of the second multipiece spindle comprises a socket; and the key hub for removably mating with the gudgeon and the key plug for removably mating with the socket.
  • 2. The caddy system as defined in claim 1 wherein the axle extends coaxially through said cable between said end caps.
  • 3. The caddy system as defined in claim 1 wherein axle ends include projecting notches that register with locks defined in said coupling rings.
  • 4. The caddy system as defined in claim 1 wherein the key hub of the second multipiece spindle is configured to fit only within a specially configured one of the caddy gudgeons.
  • 5. The system as defined in claim 1 wherein a button in said base mates with a similarly contoured, complementary opening formed in said top to form a latch to close said caddy system.
  • 6. The system as defined in claim 1 wherein said top comprises a cable dispensing mouth.
  • 7. A reel for transporting and dispensing cable, the reel adapted to be rotatably disposed within a container comprising an interior and a pair of spaced apart gudgeons, said reel comprising: an axle upon which a spool of cable is wound wherein an axle lengthaccommodate plural side-by-side cable windings;within the container, a pair of spaced apart end caps coupled to said spool of cable;the axle extending coaxially through said spool of cable between said end caps;a pair of irrotatable spindles including a first spindle with an integral bearing ring portion, projecting hub, and barbed tabs for engaging a reel inner lip and a second multipiece spindle including a bearing portion and a key hub and key plug removably inserted therein of the bearing portion of the second multipiece spindle ; and,each end cap having a central coupling ring therethrough including a coupling ring extension projecting toward the axle for mating with the axle and a race to one side of the extension for providing a bearing wherein the bearing portion of the second multipiece spindle comprises a socket; and the key hub for removably mating with the gudgeon and the key plug for removably mating with the socket.
  • 8. The reel as defined in claim 7 wherein axle ends include projecting notches that register with locks defined in said coupling rings.
  • 9. The reel as defined in claim 8 wherein, when said reel is removed from said container, and said key hub of the second multipiece spindle is removed and the socket is exposed, the reel may be axially vertically stacked with other adjacent reels with a projecting hub from one of the adjacent reels engaging the exposed socket of the bearing portion of the multipiece spindle.
  • 10. The reel as defined in claim 8 wherein said key hub of the second multipiece spindle is configured to fit only within a specially configured hub socket.
  • 11. The reel as defined in claim 8 wherein said key hub of the second multipiece spindle is configured to fit only within a specially configured one of the gudgeons.
  • 12. A package for containing cable, the package comprising: a carrying caddy comprising a rectangular base adapted to be disposed upon a supporting surface, the base comprising integral front and rear panels, a pair of integral, spaced apart end panels, an interior defined between said front and rear and end panels, a top hinged to said base for enclosing said interior, and a gudgeon defined in each of said base end panels;a reel adapted to be rotatably disposed within said base, the reel comprising an axle upon which said cable is wound and within the caddy a pair of spaced apart end caps coupled to said axle;a pair of irrotatable spindle including a first spindle with an integral bearing ring portion, projecting hub, and barbed tabs for engaging a reel inner lip and a second multipiece spindle including a bearing portion and a key hub and key plug removably inserted therein of the bearing portion of the second multipiece spindle: and,each end cap having a central coupling ring therethrough including a coupling ring extension projecting toward the axle for mating with the axle and a race to one side of the extension for providing a bearing wherein the bearing portion of the second multipiece spindle comprises a socket; and the key hub for removably mating with the gudgeon and the key plug for removably mating with the socket.
  • 13. The package as defined in claim 12 wherein each end cap comprises: the coupling rings for irrotatably mating with axle ends; and one of the races engaged by the bearing ring portion of the first spindle or bearing portion of the second multipiece spindle.
  • 14. The package as defined in claim 13 wherein said axle ends include projecting notches that register with locks defined in said coupling rings.
  • 15. The package as defined in claim 14 wherein, when said reel is removed from said caddy, and said key hub of the second multipiece spindle is removed and the socket is exposed, the reel may be axially vertically stacked with other adjacent reels with the projecting hub of the first spindle engaging an exposed socket of one of the adjacent reels whose key hub has been withdrawn.
  • 16. The package as defined in claim 14 wherein said key hub of the second multipiece spindle is configured to fit only within a specially configured one of the caddy gudgeons.
  • 17. The package as defined in claim 14 wherein said key hub of the second multipiece spindle is configured to fit only within a specially configured hub socket.
  • 18. A caddy system for enclosing, transporting and dispensing cable, the caddy system comprising: a case and a removable reel installed therein, the reel including opposed first and second end caps spaced apart by a central axle;the first and second endcaps having respective first and second central coupling rings that fixedly engage the axle;a first spindle irrotatably supported by a first case gudgeon includes a bearing mated with the first coupling ring;a second spindle includes a second bearing forming a socket that is removably mated with a user separable key; and,the key of the second spindle irrotatably supported by a second case gudgeon and the second bearing mated with the second coupling ring;wherein the axle rotates about the spindle bearings when cable is pulled from the caddy and the spindles are removed from the gudgeons when the reel is lifted away from the case.
  • 19. The caddy system of claim 18 wherein a bearing to coupling ring interengagement has a length of one-half inch or more for supporting the weight of cable loaded on the reel.
  • 20. The caddy system of claim 18 including an end cap slot providing access to a starting end of the cable.
  • 21. The caddy system of claim 18 wherein the case is in the form of a centrally divided rectangular box having a hinge along a first edge of the central division, a lower box half with opposed sides that are upwardly curved, and a handle formed along a second edge of the central division when the box is closed and the handle forming opposing handle grips when the box is opened.
  • 22. The caddy system of claim 18 wherein the reel is designed for keyless stacking when a projecting hub of the first spindle of the reel interengages a socket of a spindle of another reel.
  • 23. The caddy system of claim 18 wherein the reel is designed to spool one-thousand feet of RG-6 coaxial cable.
  • 24. The caddy system of claim 18 wherein the end caps have multisided peripheries for protection against rolling when the reel is removed from the case.
CROSS REFERENCE TO RELATED APPLICATION

This utility patent application is based upon. and claims priority from, previously filed U.S. Provisional Patent application entitled “Cable Reel, Dispensing and Carrying Caddy For Reels, and Packaging Thereof,” Ser. No. 61/627,261, Filed Oct. 7, 2011, by inventors Robert J. Chastain, Denton McDonald, James S. Carter, David Allen Kelly, Chrispin A. Bowen, and Glen David Shaw.

US Referenced Citations (364)
Number Name Date Kind
922695 Haas May 1909 A
1311758 Cowan, Jr. Jul 1919 A
2280728 Streib Apr 1942 A
2310522 Gorbatenko Feb 1943 A
D148897 Ward Mar 1948 S
2757351 Klostermann Jul 1956 A
D181302 Logan Oct 1957 S
2858358 Hawke Oct 1958 A
3150769 Cohn Sep 1964 A
3184706 Atkins May 1965 A
3199061 Johnson Aug 1965 A
3292136 Somerset Dec 1966 A
3332052 Rusinyak Jul 1967 A
3373243 Janowiak Mar 1968 A
3375485 Donohue Mar 1968 A
3412847 Wise et al. Nov 1968 A
3446343 Van Rooij et al. May 1969 A
3448430 Kelly Jun 1969 A
3498647 Schroder Mar 1970 A
3512224 Newton May 1970 A
3522576 Cairns Aug 1970 A
3537065 Winston Oct 1970 A
3609637 Cole Sep 1971 A
3665371 Cripps May 1972 A
3668612 Nepovim Jun 1972 A
3671922 Zerlin Jun 1972 A
3671926 Nepovim Jun 1972 A
3677498 Johnson et al. Jul 1972 A
3678445 Brancaleone Jul 1972 A
3678446 Siebelist Jul 1972 A
3681739 Kornick Aug 1972 A
3686623 Nijman Aug 1972 A
3693784 Holmes Sep 1972 A
3696697 Hoffman Oct 1972 A
3698548 Stenzel et al. Oct 1972 A
3710005 French Jan 1973 A
3739076 Schwartz Jun 1973 A
3740453 Callaghan Jun 1973 A
3835442 Arnold Sep 1974 A
3835443 Arnold Sep 1974 A
3840193 Feichtinger et al. Oct 1974 A
3846738 Nepovim Nov 1974 A
3879102 Horak Apr 1975 A
3976352 Spinner Aug 1976 A
D241341 Oxley Sep 1976 S
3985418 Spinner Oct 1976 A
3986737 Krusche Oct 1976 A
4007886 Kaminstein Feb 1977 A
4010914 Kowalski Mar 1977 A
4106839 Cooper Aug 1978 A
4128293 Paoli Dec 1978 A
4280749 Hemmer Jul 1981 A
4329540 Howarth May 1982 A
4330166 Cooper May 1982 A
4423919 Hillis Jan 1984 A
4426127 Kubota Jan 1984 A
4440357 Vaughan Apr 1984 A
4444313 Tyson Apr 1984 A
4525000 Bachle Jun 1985 A
4531805 Werth Jul 1985 A
4541586 Crowe Sep 1985 A
4582198 Ditton Apr 1986 A
4583811 McMills Apr 1986 A
4593964 Forney, Jr. Jun 1986 A
4630806 Dan Dec 1986 A
4648684 Mattis Mar 1987 A
4684201 Hutter Aug 1987 A
4698028 Caro Oct 1987 A
4703988 Raux Nov 1987 A
4746305 Nomura May 1988 A
RE32787 Gallusser Nov 1988 E
4808128 Werth Feb 1989 A
4813716 Lalikos Mar 1989 A
4834675 Samchisen May 1989 A
4936788 Lin Jun 1990 A
4952174 Sucht Aug 1990 A
4956908 Morse et al. Sep 1990 A
D313222 Takizawa Dec 1990 S
4979911 Spencer Dec 1990 A
4990106 Szegda Feb 1991 A
5002503 Campbell Mar 1991 A
5011422 Yeh Apr 1991 A
5024606 Ming Jun 1991 A
5043696 Wang Aug 1991 A
5066248 Gaver, Jr. Nov 1991 A
5078623 Wang Jan 1992 A
5083943 Tarrant Jan 1992 A
5088936 Wang Feb 1992 A
5112250 Wang May 1992 A
5114091 Peterson et al. May 1992 A
D327872 McMills Jul 1992 S
D330329 Brightbill Oct 1992 S
5167525 Wang Dec 1992 A
5167536 Wang Dec 1992 A
5192226 Wang Mar 1993 A
5219299 Wang Jun 1993 A
5224662 Kaussen Jul 1993 A
5226838 Hsu Jul 1993 A
D339568 Salz Sep 1993 S
5248108 Zander Sep 1993 A
5251841 Takatori et al. Oct 1993 A
5261623 Dominesey Nov 1993 A
5270487 Sawamura Dec 1993 A
5321207 Huang Jun 1994 A
5340325 Pai Aug 1994 A
5342096 Bachle Aug 1994 A
5383798 Lin Jan 1995 A
5387116 Wang Feb 1995 A
5387127 Wang Feb 1995 A
5389012 Huang Feb 1995 A
5397252 Wang Mar 1995 A
5407144 Ryall Apr 1995 A
5413502 Wang May 1995 A
5430618 Huang Jul 1995 A
5438251 Chen Aug 1995 A
5470257 Szegda Nov 1995 A
5478258 Wang Dec 1995 A
5484082 Casper Jan 1996 A
5498175 Yeh Mar 1996 A
5522561 Koyamatsu Jun 1996 A
5599198 Wang Feb 1997 A
5600094 McCabe Feb 1997 A
5632651 Szegda May 1997 A
5831880 Houlihan May 1997 A
D381512 Green Jul 1997 S
5660354 Ripplinger Aug 1997 A
5667409 Wong Sep 1997 A
5669574 Calhoun Sep 1997 A
5683263 Hsu Nov 1997 A
5702261 Wang Dec 1997 A
5704479 Barnett et al. Jan 1998 A
5722856 Fuchs Mar 1998 A
5723818 Yeh Mar 1998 A
5725321 Brannan et al. Mar 1998 A
5730621 Wang Mar 1998 A
5769652 Wider Jun 1998 A
5803757 Wang Sep 1998 A
5820408 Wang Oct 1998 A
5863226 Lan Jan 1999 A
5879166 Wang Mar 1999 A
5924889 Wang Jul 1999 A
5934137 Tarpill Aug 1999 A
5951319 Lin Sep 1999 A
5957730 Wang Sep 1999 A
5967451 Radaios Oct 1999 A
5975949 Holliday Nov 1999 A
5975951 Burris Nov 1999 A
5980308 Hu Nov 1999 A
5988561 Mele Nov 1999 A
5997350 Burris Dec 1999 A
6024588 Hsu Feb 2000 A
6045087 Vislocky et al. Apr 2000 A
6065699 Sacconi May 2000 A
6065976 Wang May 2000 A
6095869 Wang Aug 2000 A
6113431 Wong Sep 2000 A
6139344 Wang Oct 2000 A
6145780 Fontana Nov 2000 A
6146197 Holliday Nov 2000 A
6153830 Montena Nov 2000 A
6159046 Wong Dec 2000 A
6164588 Jacobsen Dec 2000 A
D436076 Montena Jan 2001 S
6179656 Wong Jan 2001 B1
D437826 Montena Feb 2001 S
D440539 Montena Apr 2001 S
D440939 Montena Apr 2001 S
6234421 Cox et al. May 2001 B1
6234838 Wong May 2001 B1
6276623 Williams Aug 2001 B1
6276970 Wong Aug 2001 B1
6287148 Huang Sep 2001 B1
D448565 Sanderson Oct 2001 S
6332815 Bruce Dec 2001 B1
6341691 Voss Jan 2002 B1
6352215 Cash Mar 2002 B1
6375116 Askins Apr 2002 B1
6386912 Li May 2002 B1
6390840 Wang May 2002 B1
D458904 Montena Jun 2002 S
6402085 Smith Jun 2002 B1
6402155 Sakata Jun 2002 B2
6406330 Bruce Jun 2002 B2
D460739 Fox Jul 2002 S
D461166 Montena Aug 2002 S
D461167 Montena Aug 2002 S
D461778 Fox Aug 2002 S
D462058 Montena Aug 2002 S
D462060 Fox Aug 2002 S
6435447 Coats et al. Aug 2002 B1
D462327 Montena Sep 2002 S
6478599 Lee Nov 2002 B1
6478618 Wong Nov 2002 B2
6488317 Daoud Dec 2002 B1
6491163 Grcic Dec 2002 B1
D468696 Montena Jan 2003 S
6523777 Gaudio Feb 2003 B2
6530807 Rodrigues Mar 2003 B2
6558194 Montena May 2003 B2
D475975 Fox Jun 2003 S
D475976 Montena Jun 2003 S
D475977 Montena Jun 2003 S
6634906 Yeh Oct 2003 B1
6676443 Wang Jan 2004 B1
6716062 Palinkas Apr 2004 B1
6733336 Montena May 2004 B1
6767247 Rodrigues Jul 2004 B2
6767248 Hung Jul 2004 B1
6767249 Li Jul 2004 B1
6769926 Montena Aug 2004 B1
6776650 Cheng Aug 2004 B2
6776657 Hung Aug 2004 B1
6776665 Huang Aug 2004 B2
6780052 Montena Aug 2004 B2
6789653 Hsu Sep 2004 B1
6793526 Hsu Sep 2004 B1
6799995 Hsu Oct 2004 B2
6805584 Chen Oct 2004 B1
6817897 Chee Nov 2004 B2
6830479 Holliday Dec 2004 B2
6848939 Stirling Feb 2005 B2
6848940 Montena Feb 2005 B2
6860751 Huang Mar 2005 B1
D503685 Montena Apr 2005 S
D504113 Montena Apr 2005 S
D504114 Montena Apr 2005 S
D504202 Montena Apr 2005 S
6881075 Huang Apr 2005 B2
6884113 Montena Apr 2005 B1
D505391 Rodrigues May 2005 S
6887090 Lin May 2005 B2
D506446 Montena Jun 2005 S
6908337 Li Jun 2005 B1
6910919 Hung Jun 2005 B1
D507242 Montena Jul 2005 S
6923397 Inana et al. Aug 2005 B2
6929501 Huang Aug 2005 B2
6929507 Lin Aug 2005 B2
6935874 Fang Aug 2005 B1
6935878 Hsu Aug 2005 B2
6948969 Huang Sep 2005 B2
6948973 Hsu Sep 2005 B1
6951469 Lin Oct 2005 B1
6956464 Wang Oct 2005 B2
D511497 Murphy Nov 2005 S
D511498 Holliday Nov 2005 S
D512024 Murphy Nov 2005 S
D512689 Murphy Dec 2005 S
D513406 Rodrigues Jan 2006 S
D513736 Fox Jan 2006 S
D514071 Vahey Jan 2006 S
6991098 Silverbrook et al. Jan 2006 B2
D515037 Fox Feb 2006 S
6994588 Montena Feb 2006 B2
7001204 Lin Feb 2006 B1
7004765 Hsu Feb 2006 B2
7004777 Hsu Feb 2006 B2
7008263 Holland Mar 2006 B2
7018235 Burris Mar 2006 B1
D518772 Fox Apr 2006 S
D519076 Fox Apr 2006 S
D519451 Fox Apr 2006 S
D519452 Rodrigues Apr 2006 S
D519453 Rodrigues Apr 2006 S
D519463 Tamezane Apr 2006 S
7021965 Montena Apr 2006 B1
D521454 Murphy May 2006 S
D521930 Fox May 2006 S
7063551 Lin Jun 2006 B1
7114990 Bence Oct 2006 B2
7118416 Montena et al. Oct 2006 B2
7128603 Burris Oct 2006 B2
7147178 Kan Dec 2006 B2
D535259 Rodrigues Jan 2007 S
7182639 Burris Feb 2007 B2
7188416 Woehlke et al. Mar 2007 B1
7192308 Rodrigues Mar 2007 B2
7204452 Wilkinson et al. Apr 2007 B2
D543948 Montena Jun 2007 S
D544837 Disbennett Jun 2007 S
7241172 Rodrigues Jul 2007 B2
7252546 Holland Aug 2007 B1
7255598 Montena Aug 2007 B2
7288002 Rodrigues Oct 2007 B2
7303436 Rodrigues Dec 2007 B1
7354462 Holland Apr 2008 B2
7364462 Holland Apr 2008 B2
7371113 Burris May 2008 B2
7479035 Bence Jan 2009 B2
7500635 Cooper et al. Mar 2009 B2
7507117 Amidon Mar 2009 B2
7513795 Shaw Apr 2009 B1
7527219 Klick May 2009 B2
7533782 Parker et al. May 2009 B2
D601966 Shaw Oct 2009 S
D601967 Shaw Oct 2009 S
D607826 Shaw Jan 2010 S
D607827 Shaw Jan 2010 S
D607828 Shaw Jan 2010 S
D607829 Shaw Jan 2010 S
D607830 Shaw Jan 2010 S
D608294 Shaw Jan 2010 S
7753705 Montena Jul 2010 B2
7824216 Purdy Nov 2010 B2
7841896 Shaw Nov 2010 B2
7845976 Matthews Dec 2010 B2
7892005 Haube Feb 2011 B2
7892024 Chen Feb 2011 B1
7931509 Shaw Apr 2011 B2
7938357 Johanson et al. May 2011 B2
7955126 Bence Jun 2011 B2
D663698 Allwood Jul 2012 S
8286906 Ripplinger Oct 2012 B2
8366126 Galgano et al. Feb 2013 B2
8371519 McManus et al. Feb 2013 B2
8579224 Allwood Nov 2013 B2
8708144 Babcock et al. Apr 2014 B2
8820717 Shrader Sep 2014 B2
8955786 Motoji Feb 2015 B2
20010006202 Inana et al. Jul 2001 A1
20020125161 Cote Sep 2002 A1
20020146935 Wong Oct 2002 A1
20030092319 Hung May 2003 A1
20030194902 Huang Oct 2003 A1
20030234317 Burkitt Dec 2003 A1
20030236027 Wang Dec 2003 A1
20040053533 Huang Mar 2004 A1
20040067688 Cheng Apr 2004 A1
20040077215 Palinkas Apr 2004 A1
20040102095 Huang May 2004 A1
20040147164 Li Jul 2004 A1
20040171297 Hsu Sep 2004 A1
20040171315 Liao Sep 2004 A1
20040224556 Qin Nov 2004 A1
20050009379 Huang Jan 2005 A1
20050020121 Lin Jan 2005 A1
20050032410 Huang Feb 2005 A1
20050035240 Weck Feb 2005 A1
20050070145 Huang Mar 2005 A1
20050075012 Hsu Apr 2005 A1
20050153587 Hsu Jul 2005 A1
20050159030 Hsu Jul 2005 A1
20050186852 Hsu Aug 2005 A1
20050186853 Hsu Aug 2005 A1
20050202690 Lien Sep 2005 A1
20050202699 Hsu Sep 2005 A1
20050205713 Ripplinger Sep 2005 A1
20050233632 Hsu Oct 2005 A1
20050250357 Chen Nov 2005 A1
20050260894 Chen Nov 2005 A1
20060094300 Hsu May 2006 A1
20060110977 Matthews May 2006 A1
20060121753 Chiang Jun 2006 A1
20060121763 Chiang Jun 2006 A1
20060231672 Eastwood Oct 2006 A1
20060292926 Chee Dec 2006 A1
20090098770 Bence Apr 2009 A1
20100059619 Schillo Mar 2010 A1
20100078514 Thompson Apr 2010 A1
20110021072 Purdy Jan 2011 A1
20110240791 Lindley et al. Oct 2011 A1
20120091249 Crossett et al. Apr 2012 A1
20120168554 Blunt Jul 2012 A1
20120187232 Molen Jul 2012 A1
Foreign Referenced Citations (11)
Number Date Country
0542102 May 1993 EP
WO 09014697 Nov 1990 WO
WO 9305547 Mar 1993 WO
WO 9324973 Dec 1993 WO
WO 9620516 Jul 1996 WO
WO 9620518 Jul 1996 WO
WO 9722162 Jun 1997 WO
WO1999065117 Dec 1999 WO
WO1999065118 Dec 1999 WO
WO2003096484 Nov 2003 WO
WO2005083845 Sep 2005 WO
Related Publications (1)
Number Date Country
20130087652 A1 Apr 2013 US
Provisional Applications (1)
Number Date Country
61627261 Oct 2011 US