This disclosure relates to terminals for wired communications networks. This disclosure more particularly relates to communications network terminals with the facility to dispense communications cables.
Telecommunications networks generally include several components that enable the sophisticated transmission and distribution of communications signals between locations connected to a particular network. The structural components of a wireline communications network include, among other things, terminals at various locations in the network, communications cables, and connectivity components that operatively join the various cables together.
As a basic example, a communications network may include a central office building operated by a communications service provider, as well as several customer premises. One or more communications cables (or possibly an interconnected network of several cables) connect each of the customer premises to the central office building. In the case of a single customer premise, a communications cable from the central office is connected to a terminal located at the customer premise. The terminal provides a housing or enclosure in which the communications cable is connected to a variety of electrical and/or optical transmission components, such as signal conditioners, filters, amplifiers, splitters, and/or other components. Additional communications cables coupled to the same components can then carry the communications signals to various locations within the customer premises. Accordingly, one or more cable connecting assemblies may be used to operatively couple communications cables from the central office with one or more cables and/or components within the terminal.
The physical distances between network components within a particular premise are variable and specific to the premise. The cables used to couple network components are therefore required to be routed through varying distances. In some installations, a communication cable is routed between two components of a network, cut to the desired length, and then connectors are added to the cut ends so that they can couple to the network components. If the communication cable is an optical fiber cable, adding connectors to a cable, or connectorizing, is often a time-consuming task that requires a highly skilled technician. For this reason, some cables are provided from the manufacturer with connectors already present, or with the ends pre-cut and configured to easily accept connectors. Such factory-terminated cables come in set lengths from the manufacturer. In some installations, a factory-terminated cable can be chosen that is at least long enough to couple the subject components. If factory-terminated cables are used, there is typically an amount of excess cable length that must be managed. Many network components include enclosures with the facility to store excess cable slack so that factory-terminated cables can be used.
During cable dispensing, also referred to herein as payout, cable is pulled from a spool and routed through a desired pathway. As those skilled in the art will appreciate, a cable can be pulled or pushed through a route, using, for example, mandrel pulling or air blowing. For the purposes of this application, the process of moving a cable through a route to a destination will be referred to as “pulling” because the cable is pulled with respect to a cable dispensing mechanism during payout. Generally removing cable from the cable dispensing mechanism is referred to as “dispensing.”
In order to facilitate the routing of cables from one network component to the next, some network components have been created that incorporate a cable dispensing mechanism. On some such components, a communication cable can be unwound from a spool as its end is brought to a destination component. After the desired length has been unwound from the spool, the slack can either remain on the spool or be removed and disposed on a cable slack storage device of the component.
The teachings herein are directed to, among other things, communications network components including, but not limited to, terminals, enclosures, housings, termination systems, telecommunications cable dispensing systems, and methods related to dispensing communications cables.
According to one aspect, a method of dispensing optical fiber from an enclosure is provided. The method includes removably mounting an axle to a mounting surface of an enclosure. The method further includes disposing a spool on the axle. A fiber optic cable is coiled around a drum portion of the spool. The fiber optic cable is retained on the drum portion of the spool by a first flange that is proximal to the mounting surface, and a removable second flange that is distal to the mounting surface. The method includes removably securing the spool on the axle. The method further includes dispensing a desired length of the fiber optic cable from the spool. A slack coil, which includes a length of fiber optic cable remaining on the spool, is left on the spool. The method also includes removing the second flange from the spool. The method further includes removing the slack coil from the spool without unwrapping the slack coil and storing the slack coil within a first interior region of the enclosure. The method also includes removing the spool from the axle and removing the axle from the mounting surface of the interior region of the enclosure.
In one implementation, the mounting surface of the enclosure is a second interior region of the enclosure. In some cases, removably mounting the axle includes rotating the axle relative to an axle-coupling structure to engage a locking structure, and in other cases it includes engaging threads on the axle with threads on an axle-coupling structure. In some implementations, removably securing the spool on the axle includes removably mounting a retention device to an end of the axle distal to the mounting surface. In some implementations, removing the slack coil from the spool includes radially inwardly collapsing the drum portion of the spool. In some implementations, removing the slack coil from the spool includes translating the slack coil outwardly from the mounting surface. In some implementations, storing the slack coil within the interior region of the enclosure comprises holding the slack coil with radially symmetrically arranged storage clips. In some cases of such implementations, the storage clips form a radius that is not less than one tenth and not more than ten times the radius of the drum portion of the spool.
According to another aspect, an optical fiber termination system is provided. The system includes a housing defining an interior region. The housing includes a cable storage portion and a mounting surface defining a receptacle. The system also includes an axle configured to removably attach to the receptacle. A spool is configured to be disposed on the axle. The spool has a first flange proximal to the mounting surface when the spool is disposed on the axle. The spool also has a removable second flange distal to the mounting surface when the spool is disposed on the axle. The spool has a drum portion coupled between the first flange and the second flange. The drum portion is configured to support a coiled fiber optic cable and dispense the fiber optic cable as the spool rotates on the axle. The second flange is removable from the drum portion. Undispensed cable can be removed from the spool with the second flange removed. The cable storage portion of the housing is configured to receive the undispensed coil.
In some implementations, the cable storage portion includes clips arranged in radial symmetry. In some implementations, the axle is configured to removably attach to the receptacle without the use of a tool. In some implementations, the system includes a retention device configured to removably retain the spool on the axle. In some systems including a retention device, the retention device is configured to adjustably apply drag to the spool. In some systems including a retention device, the retention device is configured to removably attach to the axle without the use of a tool. In some cases, the axle is configured to couple to the receptacle by engaging a locking structure, and in other cases the axle is configured to couple to the axle-coupling structure by engaging threads.
In some implementations, removing the undispensed coil of the fiber optic cable from the spool is performed without unwrapping the coil from the drum portion of the spool. In some implementations, the drum portion of the spool includes a hub and an outer cable-mounting surface. The hub includes an inner axle-mounting portion that provides a bearing surface for the axle. In some implementations, the cable storage portion of the housing is in the interior region of the housing. In some implementations, the mounting surface of the housing is in the interior region of the housing.
According to yet another aspect, a telecommunications cable dispensing system is provided. The system includes an axle configured to be removably mounted to a mounting surface of a terminal. The axle has a proximal end configured for receipt by the mounting surface. The axle also has a distal end distal from the mounting surface in a mounted configuration. The system includes a cable spool configured to be removably disposed on the axle in the mounted configuration. The cable spool has a first flange proximal to the mounting surface in the mounted configuration. The spool also has a drum portion coupled to the first flange. The spool also has a second flange removably coupled to the drum portion opposite the first flange. A provided retention device is configured to removably retain the cable spool on the axle. The cable spool is configured to dispense a fiber optic cable as the spool rotates on the axle. An undispensed coil of the fiber optic cable can be removed from the spool in the removably mounted configuration without unwrapping the coil.
These and various other features and advantages will be apparent from a reading of the following detailed description.
The following drawings illustrate some particular embodiments of the present invention and therefore do not limit the scope of the invention. The drawings are not to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. Some embodiments will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.
The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides some practical illustrations for implementing some embodiments of the present invention. Examples of constructions, materials, dimensions, and manufacturing processes are provided for selected elements, and all other elements employ that which is known to those of ordinary skill in the field of the invention. Those skilled in the art will recognize that many of the noted examples have a variety of suitable alternatives.
Communications network components, systems, and methods are described herein that can be used to, among other things, terminate one or more communications cables, transition between communications cables, serve as network distribution points, and dispense communications cables. Among several possibilities, examples of network terminals, communications cable dispensers, and methods of dispensing communications cables are described. Those skilled in the art will appreciate from this disclosure that the examples described herein are just some of the possible ways to implement the present invention and that other implementations can also be practiced based on the teachings herein.
In one example, a terminal enclosure is provided a cable dispensing mechanism. The terminal enclosure can be pre-configured during manufacture to include one or more communications components such as, e.g., hardware components, which may be suited for different types of network signal conductors, such as copper wire(s) and optical fibers, carried within communications cables. One example of a potential network hardware component for a copper cable is a signal filter. One example of a potential network hardware component for an optical fiber is a slack storage compartment. Of course many other types of network components, both active and passive, are known in the art and could be located within a sealed terminal enclosure or other enclosure according to the teachings herein. Implementation of a sealed terminal can involve a terminal with at least one port on each side of the terminal. A cable adapter can be mounted to each port in order to terminate a circuit, optical device, or other network component located within the terminal. The ports can be configured for single or multi-fiber connections. The terminal can optionally have integrated internal and/or external cable management. In some cases a terminal can be installed in one or more locations, including, for example, on a wall, on a pole, in a pedestal or below grade.
As used herein, “housing” and “enclosure” are used interchangeably to refer to a housing for network components. A “terminal” is used to refer to a network hardware component that receives one or more communications cables. A terminal may include a housing or enclosure, or may be an exposed rack or panel. The term “terminal enclosure” is used herein to generally refer to an enclosure that houses a terminal, with or without the terminal itself. It will be appreciated by those skilled in the art that references to communications cables are generic references to all kinds of elongated, continuous signal transmission media, including, for example, optical fibers and metal wires, that are configured to carry signals conveying information, including communications information and other data, in analog or digital formats. Communication cables with optical fibers may have one or more fibers, while communication cables with metal wires may be formed from copper and/or have a single wire, twisted pair, coaxial, or other configuration. In addition, the term “communications cable connecting assembly” is used herein to refer to the usual coupling mechanism for a communications cable that includes at least one element affixed to the end of a cable and a second element either affixed to the end of another cable or mounted to a wall of an enclosure.
In one example, a communications cable termination system is provided. The system can be used to terminate optical fiber cables, copper wire cables, and other communications cables. The system includes a housing which may be a communications cable terminal network component as described herein. The housing includes a cable storage portion, also called a slack storage or slack management system, and a mounting surface. The mounting surface defines a receptacle that is configured to receive an axle in a removably attachable manner. The termination system includes a spool that is disposed on the axle. The spool includes two flanges, at least one of which is removable. A drum portion of the spool carries a communications cable. The system is configured dispense a desired length of the communications cable from the spool and leave an amount of undispensed slack cable on the spool. The system is configured to allow the slack cable to be removed from the spool and disposed on the cable storage portion of the system. One of the spool flanges can be removed and the spool drum can be collapsed to facilitate slack removal.
In another example, a telecommunications cable dispensing system is provided. The dispensing system includes an axle, a spool, and a retention device. The axle is configured to attach to a portion of a network hardware component. The network hardware component may be a terminal or enclosure that is designed to accept the axle, or it may be a component that is preexisting and the dispensing system is retrofitted thereto. The spool, which carries communications cable, is configured to be mounted on the axle. The spool can be retained on the axle by using a retaining device to hold it thereon. An amount of communications cable can be paid out from the spool, thereby leaving an undispensed amount of cable slack on the spool. The undispensed slack can be removed from the spool by removing a removable flange from the spool, collapsing a drum portion of the spool, and sliding the slack off of the spool. The cable dispensing system can then be removed from the network hardware component.
Also disclosed is an example method of dispensing optical fiber from a network hardware component. In this example, an axle is removably mounted to a portion of an enclosure. A spool is provided with an amount of communications cable coiled around a drum portion of the spool. Two flanges prevent the cable from sliding off of the drum. The spool is then disposed on in a manner that allows it to rotate about the axle. An amount of cable is dispensed from the spool by pulling on a first end of the cable, thereby rotating the spool and unwrapping cable therefrom. After a desired amount of cable has been dispensed from the spool, one of the spool flanges is removed. This allows an undispensed and unwrapped amount of cable that remains on the drum of the spool to be removed as a slack coil. To facilitate slack removal, the drum portion of the spool may be collapsed to reduce tension on the coil. After the slack is removed, the spool and axle are removed from the enclosure.
Turning now to the drawings,
A terminal such as the terminal 100 typically has an input and an output. The enclosure of a terminal 100 contains the facility to manipulate the input in a manner to provide the output. In some examples, the enclosure may contain splicing hardware that splices a wired input signal carrier into multiple output signal carriers. In other examples, the enclosure may contain signal processing or filtering hardware that affects the signals carried by the input and output hardware. The input and output may be communication cables, such as optical fiber cables and copper cables, or other telecommunication signal transmitting hardware. In some examples, the function of the box may be to simply couple two or more cables, and the input and output are substantially the same. Many wired network components are known in the art that could be embodied by terminal 100.
In the example illustrated by
Referring now to
In this example, the door portion 204 is not able to shut when the dispensing assembly 208 is attached to the interior of enclosure 200. In such examples, cable dispensing is performed with the enclosure 200 in an open configuration. Removing the dispensing assembly 208 from the enclosure 200 allows the door portion 204 to be closed. The use of a removable dispensing assembly allows an enclosure to remain compact without sacrificing cable dispensing functionality. For example, in some cases the removable nature of the cable dispensing assembly 208 allows for a large spool, with e.g., a larger cable capacity, to be used without requiring that the entire enclosure be sized to house the spool. Therefore some implementations may facilitate dispensing a greater amount of cable than would be possible with a spool sized to stay within a small, compact enclosure.
The spool 210 contains undispensed communication cable. Typically, a spool such as 210 will be brought to the location of the enclosure installation with a full length of cable. In some examples, the spool is provided from a cable manufacturer with a known length of cable disposed thereon. In other examples, the installer coils a cable on the spool before bringing it to the location of the enclosure. The spool 210 may contain one or more discrete cable lengths and may also contain different varieties of cable. The cable can be an optical fiber cable, metal wire cable, or any other type of wired communications cable.
The spool is attached to the enclosure 200 by disposing it on the axle 212, as illustrated by
As a cable is pulled from the spool 210, the tension on the cable must be sufficient to overcome static friction acting on the spool 210. Once the static friction is overcome, the spool 210 rotates about the axle 212, which is fixed to the enclosure 200 in this example.
As the spool 210 rotates about the axle 212, dynamic friction between the spool 210 and both the retainer 220 and the mounting surface 214 applies a drag to the spool 210. In some examples, a flanged axle is used, so that friction is applied to the spool 210 by the axle 212 and the retainer 220. In some cases such drag can reduce or prevent freewheeling of the spool 210 if cable pulling ceases rapidly. Allowing the spool 210 to undergo substantial inertial freewheeling can in some cases cause cable to be rapidly unwound from the spool 210 without a proper place to be routed. This kind of rapid, uncontrolled unwinding of cable can in some cases damage metal wiring or brittle optical fibers inside the cable.
The mounting surface need not be such a large, planar surface as depicted by the mounting surface 214 of
Turning to
Returning to
The axle 512 is characterized by exterior threads 516 configured to engage with a correspondingly threaded retainer 520. In this example, the retainer 520 is an annular shaft collar with a threaded central hole 522. The hole 522 has the same thread pattern as the exterior axle threads 516. The retainer 520 is received by the axle 512 by rotating it to engage the threads on a distal end of the axle 512. The distal end 532 is the end of the axle 512 that is distal from the mating surfaces 528. In an assembled state, the distal end 532 is distal from a mounting surface on an enclosure to which the axle is attached. The axle 512 is depicted without a spool so that the threads 516 can be seen more clearly, but in many examples a spool, such as spool 700, is disposed on the axle 512 before the retainer 520 is attached. The retainer 520 can be moved axially toward and away from the distal end 532 by rotating it with respect to the axle 512. The retainer 520 follows the threads up or down. This adjustability enables the axle-retainer pair to accommodate spools of differing widths. It also enables a user to adjust the amount of resistance a spool has to rotation. A bearing surface of the retainer 526 is configured to interface with the hub of a spool and apply compression when the retainer 520 is at an axial position on the axle 512 that causes the bearing surface 526 to contact the spool hub. This resistance can be adjusted by moving the retainer toward or away from a spool to increase or decrease a clamping force on the spool hub exerted by the bearing surface of the retainer 526 and a second bearing surface, such as an enclosure mounting surface.
In some cases, axle-retainer pairs using a threaded interface include a thread locking mechanism to prevent unintentional rotation of the retainer. If the retainer is tightened against a spool to cause drag, the spool will apply torque to the retainer during spool rotation. This torque will act in a direction to either loosen or tighten the retainer, depending on the direction of spool rotation. An adequate thread locking mechanism can prevent the retainer from rotating as a result of torque applied by the spool, thereby maintaining a constant amount of drag. Other mechanisms for preventing the rotation of the retainer with respect to the axle can also be used. Examples include, but are not limited to, deformable annuli such as can be found on locknuts, jam nuts, thread locking fluid, pins, keys, and the like. In many examples, the thread locking mechanism is selectively engageable by a user so as to allow desired rotation and prevent undesired rotation.
The axle 612 is characterized by exterior racks of teeth 616. The teeth 616 are configured to engage with the retainer 620. Specifically, the retainer 620 is disposed on the axle 612 by inserting the axle 612 through a central hole of the retainer 620, and resilient fingers 624 interfere with the teeth. Each resilient finger 624 corresponds with a rack of teeth 616 on the axle 612. In this particular example, the axle 612 has two racks of teeth 616 and the retainer 620 has two resilient fingers 624. In other examples, the number of racks of teeth and corresponding resilient fingers may be more or less than two. The resilient fingers 624 are radially inwardly oriented and protrude from the inner hole 622 to the extent that they engage the recessed racks of teeth 616 on the axle 612. The teeth 616 of the axle 612 and fingers 624 of the retainer 620 act as a ratchet mechanism that allows the retainer 620 to move in a single axial direction away from a distal end of the axle 612 and toward a mounting surface. The distal end 632 is the end of the axle 612 that is distal from the mating surface 628 and the threads of stud 630. An operator can dispose the retainer 620 on the distal end on the axle 612 and move the retainer 620 toward a hub of a spool. A bearing surface of the retainer 626 is configured to interface with the hub of a spool and apply compression when the retainer 620 is at an axial position on the axle 612 that causes the bearing surface 626 to contact the spool hub. Compression applied to the spool hub by the retainer 620 effectively clamps the spool between the bearing surface 626 and a mounting surface of an enclosure, thereby causing resistance to rotation, or drag. A user can apply a desired drag to the spool by positioning the retainer 620 at a desired axial position. The axle teeth 616 can be numerous enough such that there is minimal ratchet backlash, thereby providing adequate resolution in selecting an amount of drag to apply.
Retainer removal can be effected by manually deflecting the fingers 624 to the extent that they do not interfere with the axle teeth 616 to disengage the ratchet mechanism. The retainer can then be freely axially translated toward the distal end of the axle 612 and fully removed. In some examples, a user can remove a retainer simply by pulling it off from an axle with enough force to overpower the ratchet mechanism. In other examples, the ratchet mechanism is not able to be disabled or overcome, and retainer removal can only be effected by first removing the axle from its mounting receptacle and translating the retainer off of the axle in the direction allowed by the ratchet. In some examples, such as the example illustrated by
Various structures may be used to attach an axle to an enclosure or other network component. By way of example, bayonet connectors, snap fits, press fits, and the like can be used. The portion of an axle-coupling receptacle that is configured to provide a secure attaching structure can be referred to generally as a locking structure. By way of example, a locking structure may include bayonet slots, locking pins, barbs, resilient fingers, and the like. Attaching structures that require the use of tools may be used in some examples. The attaching structure must secure the axle to a corresponding network component with sufficient integrity to allow a spool to be mounted and manipulated thereon. In some examples, a spool axle is permanently attached to a network component. The axle may be an integral feature molded to a part. Alternatively, a permanent axle may be adhered or welded to a part of a network component.
The interface between an axle and a retainer can be any that enables the retainer to removably attach to the axle and be axially adjusted. Examples other than the threaded and ratchet interfaces illustrated by
The axles used are generally polymeric, but other materials such as metals and woods can be used. The material of an axle should be selected that interfaces well with the material of a spool. Axles are generally reusable and should be made of a durable and wear-resistant material. As an example, if a cardboard spool is used, an axle may be a molded plastic part that receives minimal wear when interfaced with the relatively soft cardboard. In many examples, the material of the axle will be dissimilar from the material of a spool so that friction, wear, and noise are minimized. In many examples, the axle is composed of plastic. A retainer may comprise a polymeric, metallic, wooden, or other material. In many examples, the retainer is composed of plastic.
The spool of
The spool 700 is configured to carry an amount of communication cable (not shown in
The spool 700 includes flanges that retain the cable on the drum 716. A proximal flange 704 is the flange of the spool that is positioned proximal to a mounting surface when installed on an enclosure or other network component. A distal flange 708 is the flange of the spool that is positioned distal from said mounting surface. The flanges 704 and 708 can be made of a polymeric material, a wooden material, a wood-fiber material, a metal, and the like. In some examples, the flanges are made of a corrugated plastic material. In other examples, the flanges are made of a corrugated fiber or cardboard material. The flanges of a spool are rigid enough to retain a cable on a spool or spool drum. The distal flange 708 is removable from the rest of the spool 700. The distal flange 708 is removed so that an unused portion of cable, or slack, can be removed from the drum 716 without unwinding it. A weakened interface 712 facilitates the removal of the distal flange 708. The weakened interface 712 may include a plurality of perforations that allow the distal flange 708 to be torn away from the hub 720. In other examples, the weakened interface 712 may be characterized as having a thinner wall than the rest of the flange 708. Any means of providing a weakened interface that enables the distal flange 708 to be removed from the hub can be used. The weakened interface 712 has the integrity to retain the cable on the spool 700 during payout, but is weak enough that the distal flange 708 can be removed without damaging other parts of the spool 700.
An enclosure coupled to a spool consistent with the examples described herein is illustrated in
In this example, the slack storage portion 230 includes radius-limiting clips 832. The radius-limiting clips 832 allow the slack 800 to be stored in a coiled configuration as it was on the spool drum. The clips 832 prevent the coiled slack 800 from having a radius that is smaller than the minimum bend radius of the coil. In this example, the cable storage clips 832 are radially symmetrically arranged. The cable storage portion 230 is in an interior region of the enclosure so that the slack cable is protected from the ambient.
In some examples, a spool is provided with a drum having a diameter similar to the effective diameter of a cable slack storage structure. Such like diameters enable a slack coil to be disposed on a storage structure without requiring significant manipulation of the coil, such as to substantially adjust its diameter. As just one example, one compatible spool and storage combination may include a spool having a hub diameter of about 5.5 inches (e.g., between 5 and 6 inches, between 4 and 7 inches, etc.) and a slack storage portion with radius limiting clips. The radius limiting clips in this example have an inside diameter of about 5 inches, and an outside diameter of about 8 inches. Of course other dimensions are possible depending on the desired configuration for storing cable on the spool and/or in the storage clips In some cases the inner diameter of the storage clips approximately matches the diameter of the spool hub. In some cases this inner diameter matching can be helpful in transferring the slack coil, while the outer diameter of the storage clips may be more variable.
Referring now to
In one method of dispensing cable, a mounted enclosure 200 is opened by a user so that a mounting surface can be accessed.
With the axle 212 securely mounted to the enclosure 200, the spool 210 can be disposed thereon. The spool 210 includes an undispensed amount of cable (not shown).
A desired amount of cable is then dispensed from the spool 210. A first end 802 of the cable may be pulled from the spool 210 and routed to a desired location on a premise. As the first end is pulled, the spool 210 rotates with respect to the enclosure 200, axle 212, and retainer 220. Once the desired amount of cable has been paid out, an unused slack 800 remains on the spool. The slack 800 must be removed so that the cable dispensing assembly 208 can be removed from the enclosure 200, and the enclosure can subsequently be closed. To facilitate slack removal, a removable flange is removed from the spool 210. In some examples, the removable flange is removed by tearing it away along a perforated, weakened seam.
The enclosure 200 with the attached cable dispensing assembly 208 is shown in
The used, now empty spool 210 is then removed from the enclosure 200. The retainer 220 is removed from the axle in a manner consistent with the examples presented in the descriptions of
After a desired number of cables have been dispensed, the axle 212 can be removed from the receptacle 216 of enclosure 200 in a manner consistent with the description of
In addition to the examples illustrated by and described with reference to
Axles with threaded studs, such as those discussed with reference to
Another example of an alternative mounting location of an axle to a network component is shown in
Many possible mounting configurations exist between network components and cable-dispensing hardware. A network component can be purposely designed to attach to components of a cable-dispensing assembly, or components of a cable-dispensing assembly can be purposely designed to be retrofitted onto existing network components.
Thus, embodiments of the invention are disclosed. Although the present invention has been described in considerable detail with reference to certain disclosed embodiments, the disclosed embodiments are presented for purposes of illustration and not limitation and other embodiments of the invention are possible. One skilled in the art will appreciate that various changes, adaptations, and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
This application is being filed as a PCT International Patent application on Feb. 8, 2017, in the name of Communications Systems, Inc., a U.S. national corporation, applicant for the designation of all countries and Nicholas B. Larsson, a U.S. citizen; and George I Wakileh, a U.S. citizen, inventors for the designation of all countries, and claims priority to U.S. provisional patent application No. 62/294,716, filed Feb. 12, 2016, the content of which is incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/016985 | 2/8/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/139359 | 8/17/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5212761 | Petrunia | May 1993 | A |
5323479 | Allen | Jun 1994 | A |
6363200 | Thompson et al. | Mar 2002 | B1 |
6456773 | Keys | Sep 2002 | B1 |
6483033 | Simoes | Nov 2002 | B1 |
7083051 | Smith | Aug 2006 | B2 |
7715679 | Kowalczyk et al. | May 2010 | B2 |
7748660 | Hendrickson | Jul 2010 | B2 |
7756379 | Kowalczyk et al. | Jul 2010 | B2 |
7869682 | Kowalczyk et al. | Jan 2011 | B2 |
7894701 | Kowalczyk et al. | Feb 2011 | B2 |
8121456 | Gniadek et al. | Feb 2012 | B2 |
8131126 | Kowalczyk et al. | Mar 2012 | B2 |
8135256 | Solheid et al. | Mar 2012 | B2 |
8189984 | Kowalczyk et al. | May 2012 | B2 |
8248419 | Iwamoto | Aug 2012 | B2 |
8254740 | Smith et al. | Aug 2012 | B2 |
8265447 | Loeffelholz et al. | Sep 2012 | B2 |
8374475 | Griffioen et al. | Feb 2013 | B2 |
8380035 | Kowalczyk et al. | Feb 2013 | B2 |
8428419 | Leblanc et al. | Apr 2013 | B2 |
8774588 | Kowalczyk et al. | Jul 2014 | B2 |
8798429 | Kowalczyk et al. | Aug 2014 | B2 |
8805152 | Smith et al. | Aug 2014 | B2 |
8903215 | Mathew et al. | Dec 2014 | B2 |
9036974 | Leblanc et al. | May 2015 | B2 |
9042701 | Dagley et al. | May 2015 | B2 |
9057860 | Kowalczyk et al. | Jun 2015 | B2 |
9063316 | Loeffelholz et al. | Jun 2015 | B2 |
9097870 | Torman et al. | Aug 2015 | B2 |
9188760 | Kowalczyk et al. | Nov 2015 | B2 |
9261663 | Loeffelholz et al. | Feb 2016 | B2 |
9329352 | de los Santos Campos | May 2016 | B2 |
20060210230 | Kline et al. | Sep 2006 | A1 |
20080315030 | Hendrickson et al. | Dec 2008 | A1 |
20100054680 | Lochkovic et al. | Mar 2010 | A1 |
20100074587 | Loeffelholz et al. | Mar 2010 | A1 |
20110091180 | Kowalczyk et al. | Apr 2011 | A1 |
20110164854 | Desard et al. | Jul 2011 | A1 |
20110293234 | Srutkowski | Dec 2011 | A1 |
20120025005 | Smith | Feb 2012 | A1 |
20120328257 | Kowalczyk et al. | Dec 2012 | A1 |
20130044991 | Kowalczyk et al. | Feb 2013 | A1 |
20130094828 | Loeffelholz et al. | Apr 2013 | A1 |
20130195417 | Torman et al. | Aug 2013 | A1 |
20130209049 | Kowalczyk et al. | Aug 2013 | A1 |
20140010513 | Kowalczyk et al. | Jan 2014 | A1 |
20140105558 | Kowalczyk et al. | Apr 2014 | A1 |
20140161411 | Slater et al. | Jun 2014 | A1 |
20140376871 | Kowalczyk et al. | Dec 2014 | A1 |
20150177442 | Lin et al. | Jun 2015 | A1 |
20150177472 | Kowalczyk et al. | Jun 2015 | A1 |
20150177473 | Smith et al. | Jun 2015 | A1 |
20150309276 | Collart et al. | Oct 2015 | A1 |
20150355428 | Leeman et al. | Dec 2015 | A1 |
20160061354 | Abby | Mar 2016 | A1 |
20170123175 | Van Baelen | May 2017 | A1 |
Number | Date | Country |
---|---|---|
2811596 | Dec 2014 | EP |
06183649 | Jul 1994 | JP |
2014072368 | May 2014 | WO |
2014186433 | Nov 2014 | WO |
2017139395 | Aug 2017 | WO |
Entry |
---|
“FutureLink Fiber Terminals & Enclosures—UCS Series,” Indoor/Outdoor Solutions for MDU/SFU Deployments, Suttle Solutions Product Specification Sheet 2014 (3 pages). |
“FutureLink Stackable Fiber Interface Terminal System,” Suttle Solutions Product Specification Sheet 2015 (4 pages). |
“International Preliminary Report on Patentability,” for PCT Application No. PCT/US2017/016985 dated Aug. 23, 2018 (8 pages). |
“International Search Report and Written Opinion,” for PCT Application No. PCT/US2017/016985 dated Apr. 14, 2017 (13 pages). |
“OmniReach FTTX Solutions,” MDU Rapid Fiber System Tyco Electronics Product Specification Sheet 2011 (8 pages). |
Number | Date | Country | |
---|---|---|---|
20190033547 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62294716 | Feb 2016 | US |