Cable stand-off

Information

  • Patent Grant
  • 8651146
  • Patent Number
    8,651,146
  • Date Filed
    Monday, September 29, 2008
    15 years ago
  • Date Issued
    Tuesday, February 18, 2014
    10 years ago
Abstract
The different embodiments of the cable stand-off serve as a thermally inslutative protector. In one embodiment, the cable stand-off includes an elongated member defining a lumen therethrough, and a plurality of fins extending from an outer surface of the elongated member, wherein the plurality of fins includes sets of fins, each set of fins being spaced a longitudinal distance from one another and being positioned around a circumference of the elongated member. Another embodiment of the cable stand-off comprises an elongated member having a helical shape and surrounding at least a portion of a length of at least one energy transmission conduit. In yet another embodiment, a cable stand-off comprises an elongated surrounding at least a portion of a length of an energy transmission conduit, wherein the elongated member is made of a non-flammable, low particulate, flexible fiber material.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to a device and method for separating and cooling energy transmission conduits from other objects. More particularly, the present disclosure relates to cable stand-offs configured to isolate energy transmission conduits of electrosurgical systems.


2. Background of Related Art


Electrosurgical systems are well known in the art. Some electrosurgical systems employ radiofrequency and microwave energy to produce a number of therapeutic effects in and/or on tissue at a target surgical site during any number of non-specific surgical procedures. Many electrosurgical systems transmit microwave energy as well as other kinds of energy through conduits including wires, cables, tubing or other energy transmission devices. Generally, the energy transmitted through the conduits of these electrosurgical systems produces unwanted heat build-up in such conduits. To address this heat build-up and other related issues, many insulators, stand-offs and the like have been devised.


For instance, one electrical insulator, used in conjunction with energy transmitting conduits, includes a laminated tube. The laminated tube serves as a support for a cover made of elastomeric material. The cover is comprised of a plurality of annular fins. Further, the laminated tube has circular and helical groves.


A second type of electrical insulator comprises a body including holes for receiving heater wires, and a plurality of radially projecting points or ribs extruding therefrom. The points or ribs are dimensioned so that the outside of the body of the electrical insulator may be disposed into a cathode sleeve and will be centered in said sleeve.


SUMMARY

The present disclosure relates to a cable stand-off. An embodiment of the cable stand-off includes an elongated member defining a lumen therethrough and a plurality of fins extending from an outer surface of the elongated member. The elongated member is configured to receive at least one energy transmission conduit therein and is made of a thermally insulative material. The plurality of fins are arranged in sets of fins longitudinally spaced apart from one another. Each set of fins is disposed around an outer periphery of the elongated member. In one embodiment, the elongated member extends along a portion of a length of the conduit. In one particular embodiment, the elongated member extends along an entire length of the conduit. The cable stand-off may additionally include a plurality of elongated members supported on the conduit. These elongated members are longitudinally spaced apart from one another. In yet another embodiment, each fin extends radially away from a respective elongated member. At least one of the fins has a rectangular cross-section or any other suitable shape.


In another embodiment of the present disclosure, the cable stand-off includes an elongated member. At least a portion of the elongate member has a helical shape. The elongated member surrounds at least a portion of a length of at least one energy transmission conduit. In this embedment, the elongated member is formed of thermally insulative material. In one embodiment, the elongated member extends at least a portion of a length of the conduit. An embodiment of the presently disclosed cable stand-off has an elongated member extending along substantially an entire length of the conduit. In another embodiment, the elongated member includes helical segments jointed to one another by bridges. These helical segements may be longitudinally spaced apart from one another. In an embodiment, at least one of the bridges extends longitudinally between adjacent helical segements.


The present disclosure also describes another embodiment of the cable stand-off. This embodiment includes an elongated member surrounding at least a portion of a length of an energy transmission conduit. The elongated member is made of a non-flammable, low particulate, flexible fiber material. This material exhibits low thermal conductivity. In one embodiment, the elongated member extends along at least a portion of a length of the conduit. In another embodiment, the elongated member extends along an entire length of the conduit. The elongated member may include a woven or mesh sleeve. The low thermal conductivity material may include synthetic or natural fiber. In addition, the low thermal conductivity material may include fiberglass or polymer-based fiber. The material with low thermal conductivity may have an a bi-directional or unidirectional arrangement





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are disclosed herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a cable stand-off according to an embodiment of the present disclosure;



FIG. 2 is a side elevational view of the cable stand-off of FIG. 1;



FIG. 3 is an elevational end view of the cable stand-off of FIGS. 1 and 2;



FIG. 4 is a perspective view of cable stand-off according to another embodiment of the present disclosure;



FIG. 5 is a side elevational view of the cable stand-off of FIG. 4;



FIG. 6 is a perspective view of a cable stand-off according to yet another embodiment of the present disclosure;



FIG. 7 is a side elevational view of the cable stand-off of FIG. 6;



FIG. 8 is a transverse cross-sectional view of the cable stand-off of FIGS. 6 and 7, as taken through 8-8 of FIG. 7;



FIG. 9 is a perspective view of the cable stand-off according to a further embodiment of the present disclosure;



FIG. 10 is a side elevational view of the cable stand-off of FIG. 9;



FIG. 11 is a perspective view of a cable stand-off according to another embodiment of the present disclosure;



FIG. 12 is a side elevational view of the cable stand-off of FIG. 11;



FIG. 13 is a transverse cross-sectional view of the cable stand-off of FIGS. 11 and 12, as taken through 13-13 of FIG. 12;



FIG. 14 is a perspective view of a cable stand-off according to yet another embodiment of the present disclosure;



FIG. 15 is a side elevational view of the cable stand-off of FIG. 14.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Embodiments of the presently disclosed cable stand-off are now described in detail or corresponding elements in each of the several views. Terms such as “above”, “below”, “forward”, “rearward”, etc. refer to the orientation of the figures or the direction of components and are simply used for convenience of description.


During invasive treatment of diseased areas of tissue in a patient, the insertion and placement of an electrosurgical energy delivery apparatus, such as an RF or a microwave ablation device, relative to the diseased area of tissue is important for successful treatment. Generally, electrosurgical energy delivery apparatuses employ energy to produce a plurality of therapeutic effects in tissue at a target surgical site during any number of non-specific surgical procedures. Such apparatuses usually include conduits in the form of a cable, wire, tubing or other elongated member suitable for transmitting energy. The energy transmitted through the conduit generally heats the conduit and may result in heat transfer to the adjacent environment, structure, and individuals. The devices hereinbelow described allow for cooling, separation and/or isolation of the heated conduits from users and patients.


A cable stand-off in accordance with an embodiment of the present disclosure is generally referred to in FIGS. 1-5 as reference numeral 100. Referring initially to FIGS. 1-3, cable stand-off 100 includes an elongated member 102 having a plurality of raised profile 104 extending therefrom. Elongated member 102 defines a lumen 108 therethrough and a longitudinal axis “X”. Additionally, elongated member 102 of cable stand-off 100 may be made of any suitable material, such as one exhibiting low thermal conductivity. Lumen 108 of member 102 is configured for receiving at least one conduit, in the form of a cable, a wire or a tubing “C”. Conduit “C” transmits energy from an energy generator “G” to a probe “P”. Energy generator “G,” which may be any suitable generator operable to supply any suitable form of energy, supplies energy to probe “P”. In turn, probe “P” emits, emanates, or radiates such energy at a specific surgical site.


As seen in FIGS. 1-3, each raised profile 104 may be in the form a fin 110. Fins 110 may be extruded from an outer surface of elongated member 102 and/or affixed (e.g., welded) to the outer surface of elongated member 102, using any suitable technique. In one embodiment, each fin 110 extends in a substantially radial direction away from elongated member 102; however, fins 110 may extend outwardly from elongated member 102 in any suitable direction. Each fin 110 may have a substantially rectangular transverse cross-section profile or a cuboid shape, albeit one skilled in the art will recognize that fin 110 may have any suitable shape of transverse cross-sectional profile. Fins 110 may be positioned around the circumference of elongated member 102 in a manner that will enhance cooling or heat transfer to/away from conduit “C”.


As depicted in FIGS. 1-3, cable stand-off 100 may have sets 112 of fins 110 located at different locations along a length of elongated member 102. Each set 112 of fins includes a plurality of fins 110 disposed around the outer circumference of elongated member 102. A person with ordinary skills in the art will understand that cable stand-off 100 may have any number of sets 112 of fins 110 disposed around the circumference of elongated member 102 or a continuous set of fins 110 extending along the entire length of cable stand-off 100.


In one embodiment, cable stand-off 100 may extend along substantially the entire length of conduit “C”. Alternatively, as seen in FIGS. 4 and 5, cable stand-off 100 may be comprised of several sections 100a, 100b, 100c, etc. partially covering a portion of the length of conduit “C”. The configuration of the latter embodiment allows heat to escape from the uncovered sections of cable 106.


In use, raised profile 104 of cable stand-off 100 increases the cooling area of cable stand-off 100, thereby increasing the convective cooling of conduit “C”. Additionally, raised profile 104 effectively separates conduit “C” from users and patients and from adjacent conduits and the like. Cable stand-off 100 may be configured to be used with microwave ablation devices, RF ablation devices, or in combination with any other medical device having conduits transmitting electrosurgical energy.


Turning now to FIGS. 6-8, an alternative embodiment of a cable stand-off is generally designated as 200. Cable stand-off 200 includes an elongated member 202 having a helical shape and is configured to separate conduit “C” from a user or a patient. In the illustrated embodiment, elongated member 202 has a circular transverse cross-sectional profile; however, elongated member 102 may have any suitable transverse cross-sectional profile.


Cable stand-off 200 may be formed of a suitable thermally insulative material, such as for example cardboard or paper. Further, cable stand-off 200 may be configured for enhancing heat transfer along conduit “C” by facilitating convective cooling throughout the entire length of conduit “C”. In other embodiments, cable stand-off 200 is formed from an electrically and thermally insulative material.


Turning now to FIGS. 9 and 10, in an alternative embodiment, cable stand-off 200 comprises an elongated member 202 partially surrounding conduit “C”. In this embodiment, elongated member 202 includes a plurality of helical shaped segments 202a surrounding segments of conduit “C”. Each segment 202a of elongated member 202 is joined to an adjacent segment 202a by a bridge 204. Each bridge 204 extends longitudinally between adjacent helical segments 202a. This configuration allows conduit “C” to emit, emanate or radiate heat therefrom between segments 202a. In addition, airflow may convectively cool conduit “C” at locations between segments 202a.


In use, cable stand-off 200 isolates conduit “C”, thereby preventing contact between conduit “C” and a user or patient. Cable stand-off 200 may also serve as a cable management system separating conduit “C” from other cables, wires or tubes.


Turning now to FIGS. 11-13, an alternative embodiment of a cable stand-off is generally designated as 300. Cable stand-off 300 includes an elongated member 302 in the form of a woven or mesh sleeve. As seen in FIGS. 11-13, elongated member 302 extends along at least a substantial length of conduit “C”. Elongated member 302 may be formed of any suitable insulative natural or synthetic fiber, though one skilled in the art will recognize that any suitable insulative material may be utilized. In addition, elongated member 302 may be comprised of a suitable non-flammable, low particulate, and flexible fiber. It is contemplated that the fiber of elongated member 302 should exhibit low thermal conductivity. For example, elongated member 302 may be made of any suitable fiberglass or polymer-based fiber material. These materials may be bi-directional or uni-directional.


In use, elongated member 302 of cable stand-off 300 separates conduit “C” from users and patients, and from adjacent conduits and the like. In addition, airflow may circulate through the cross-sectional area of elongated member 302 and convectively cool conduit “C”. Users may stretch elongated member 302 and position it over structures contiguous to conduit “C”.


In an alternative embodiment, as seen in FIGS. 14 and 15, elongated member 302 of cable stand-off 300 is broken into segments 302a to only cover portions of conduit “C”. The segments of conduit “C”, between segments 302a of elongated body 302, are uncovered and, as such, the heat produced by energy transmission through conduit “C” of an electrosurgical system may escape through these uncovered segments of conduit “C”.


In use, cable stand-off 300 isolates and separates conduit “C” from users and patients, and from other conduits and the like. In this embodiment, airflow may also travel through the cross-sectional area of elongated member 302 and convectively cool conduit “C”.


The applications of the cable stand-offs and methods of using the stand-offs discussed above are not limited to electrosurgical systems used for microwave ablation, but may include any number of further electrosurgical applications. Modification of the above-described cable stand-offs and methods for using the same, and variations of aspects of the disclosure that are obvious to those of skill in the art are intended to be within the scope of the claims.

Claims
  • 1. A cable stand-off, comprising: an elongated member surrounding at least a portion of a length of at least one energy transmission conduit, at least a portion of the elongated member having a helical shape;wherein the elongated member is formed of thermally insulative material and includes helical segments of similar diameter longitudinally spaced apart from one another by longitudinally extending bridges, the bridges extending between adjacent helical segments along an outside surface of the at least one energy transmission conduit and at most only partially about the at least one energy transmission conduit.
  • 2. The cable stand-off according to claim 1, wherein the elongated member extends along at least a portion of a length of the conduit.
  • 3. The cable stand-off according to claim 1, wherein the elongated member extends along substantially an entire length of the conduit.
  • 4. A cable stand-off according to claim 1, wherein at least one bridge extends off axis relative to a longitudinal body axis of an adjacent helical section at a point of extension.
  • 5. A cable stand-off according to claim 1, wherein the bridges are configured and dimensioned to permit airflow to the at least one energy transmission conduit between the helical sections.
  • 6. A cable stand-off according to claim 1, wherein each bridge extends from an adjacent helical section in substantially perpendicular manner.
  • 7. A cable stand-off, comprising: an elongated member surrounding at least a portion of a length of at least one energy transmission conduit, at least a portion of the elongated member having a helical shape;wherein the elongated member is formed of thermally insulative material and includes helical segments of similar diameter longitudinally spaced apart from one another by longitudinally extending bridges, at least one bridge defining a longitudinal body axis which is substantially parallel to a longitudinal axis of the at least one energy transmission conduit, the longitudinal body axis being disposed at a distance from the longitudinal axis that is less than or equal to a distance from the longitudinal axis defined by a radius of at least one of the helical segments.
  • 8. A cable stand-off, comprising: an elongated member surrounding at least a portion of a length of at least one energy transmission conduit, at least a portion of the elongated member having a helical shape;wherein the elongated member is formed of thermally insulative material and includes helical segments of similar diameter longitudinally spaced apart from one another by longitudinally extending bridges, the bridges extending between adjacent helical segments in close proximity to the at least one energy transmission conduit and only partially surrounding the at least one energy transmission conduit.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority to, and the benefit of, U.S. Provisional Patent Application Ser. No. 60/975,891, filed on Sep. 28, 2007, the entire contents of which are hereby incorporated by reference.

US Referenced Citations (177)
Number Name Date Kind
732582 McKay Jun 1903 A
2915089 Horsting, Sr. Dec 1959 A
2959632 Peterson Nov 1960 A
3383875 Haas May 1968 A
3473575 Vogelsang et al. Oct 1969 A
3595982 Kafka Jul 1971 A
3619474 Beck Nov 1971 A
4121623 Rhone Oct 1978 A
4140130 Storm, III Feb 1979 A
4311154 Sterzer et al. Jan 1982 A
4409993 Furihata Oct 1983 A
4440154 Bellows Apr 1984 A
4534347 Taylor Aug 1985 A
4557272 Carr Dec 1985 A
4583869 Chive et al. Apr 1986 A
4612940 Kasevich et al. Sep 1986 A
4621642 Chen Nov 1986 A
4658836 Turner Apr 1987 A
4700716 Kasevich et al. Oct 1987 A
4776086 Kasevich et al. Oct 1988 A
4800899 Elliott Jan 1989 A
4823812 Eshel et al. Apr 1989 A
4841988 Fetter et al. Jun 1989 A
4945912 Langberg Aug 1990 A
5097845 Fetter et al. Mar 1992 A
5122137 Lennox Jun 1992 A
5190054 Fetter et al. Mar 1993 A
5221269 Miller et al. Jun 1993 A
5234004 Hascoet et al. Aug 1993 A
5246438 Langberg Sep 1993 A
5249585 Turner et al. Oct 1993 A
5275597 Higgins et al. Jan 1994 A
5281217 Edwards et al. Jan 1994 A
5301687 Wong et al. Apr 1994 A
5314466 Stern et al. May 1994 A
5342355 Long Aug 1994 A
5344441 Gronauer Sep 1994 A
5366490 Edwards et al. Nov 1994 A
5370644 Langberg Dec 1994 A
5383922 Zipes et al. Jan 1995 A
5405346 Gundy et al. Apr 1995 A
5413588 Rudie et al. May 1995 A
5458597 Edwards et al. Oct 1995 A
5464445 Rudie et al. Nov 1995 A
5480417 Hascoet et al. Jan 1996 A
5500012 Brucker et al. Mar 1996 A
5507743 Edwards et al. Apr 1996 A
5509929 Hascoet et al. Apr 1996 A
5520684 Imran May 1996 A
5536267 Edwards et al. Jul 1996 A
5545137 Rudie et al. Aug 1996 A
5556377 Rosen et al. Sep 1996 A
5599294 Edwards et al. Feb 1997 A
5599295 Rosen et al. Feb 1997 A
5628770 Thome et al. May 1997 A
5683382 Lenihan et al. Nov 1997 A
5720718 Rosen et al. Feb 1998 A
5741249 Moss et al. Apr 1998 A
5755754 Rudie et al. May 1998 A
5776176 Rudie Jul 1998 A
5800486 Thome et al. Sep 1998 A
5810803 Moss et al. Sep 1998 A
5810804 Gough et al. Sep 1998 A
5829519 Uthe Nov 1998 A
5843144 Rudie et al. Dec 1998 A
5871523 Fleischman et al. Feb 1999 A
5897554 Chia et al. Apr 1999 A
5902251 vanHooydonk May 1999 A
5904691 Barnett et al. May 1999 A
5904709 Arndt et al. May 1999 A
5916240 Rudie et al. Jun 1999 A
5931807 McClure et al. Aug 1999 A
5938692 Rudie Aug 1999 A
5951547 Gough et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5964755 Edwards Oct 1999 A
5974343 Brevard et al. Oct 1999 A
5980563 Tu et al. Nov 1999 A
5997532 McLaughlin et al. Dec 1999 A
6016811 Knopp et al. Jan 2000 A
6026331 Feldberg et al. Feb 2000 A
6032078 Rudie Feb 2000 A
6047216 Carl et al. Apr 2000 A
6056744 Edwards May 2000 A
6059780 Gough et al. May 2000 A
6063078 Wittkampf May 2000 A
6073051 Sharkey et al. Jun 2000 A
6080150 Gough Jun 2000 A
6097985 Kasevich et al. Aug 2000 A
6106518 Wittenberger et al. Aug 2000 A
6122551 Rudie et al. Sep 2000 A
6134476 Arndt et al. Oct 2000 A
6146379 Fleischman et al. Nov 2000 A
6176856 Jandak et al. Jan 2001 B1
6181970 Kasevich Jan 2001 B1
6186181 Schippl Feb 2001 B1
6217528 Koblish et al. Apr 2001 B1
6223086 Carl et al. Apr 2001 B1
6226553 Carl et al. May 2001 B1
6233490 Kasevich May 2001 B1
6235048 Dobak, III May 2001 B1
6245064 Lesh et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6277113 Berube Aug 2001 B1
6289249 Arndt et al. Sep 2001 B1
6290715 Sharkey et al. Sep 2001 B1
6306132 Moorman et al. Oct 2001 B1
6325796 Berube et al. Dec 2001 B1
6330479 Stauffer Dec 2001 B1
6346104 Daly et al. Feb 2002 B2
6347251 Deng Feb 2002 B1
6350262 Ashley Feb 2002 B1
6355033 Moorman et al. Mar 2002 B1
6383182 Berube et al. May 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6471696 Berube et al. Oct 2002 B1
6496737 Rudie et al. Dec 2002 B2
6496738 Carr Dec 2002 B2
6512956 Arndt et al. Jan 2003 B2
6514251 Ni et al. Feb 2003 B1
6530922 Cosman et al. Mar 2003 B2
6557589 Bozic et al. May 2003 B2
6564806 Fogarty et al. May 2003 B1
6569159 Edwards et al. May 2003 B1
6589234 Lalonde et al. Jul 2003 B2
6592579 Arndt et al. Jul 2003 B2
6663624 Edwards et al. Dec 2003 B2
6675050 Arndt et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6706040 Mahon et al. Mar 2004 B2
6722371 Fogarty et al. Apr 2004 B1
6752154 Fogarty et al. Jun 2004 B2
6752767 Turovskiy et al. Jun 2004 B2
6823218 Berube Nov 2004 B2
6852091 Edwards et al. Feb 2005 B2
6878147 Prakash et al. Apr 2005 B2
7077165 Takasaki et al. Jul 2006 B2
7128739 Prakash et al. Oct 2006 B2
7147632 Prakash et al. Dec 2006 B2
7555349 Wessman et al. Jun 2009 B2
20010001819 Lee et al. May 2001 A1
20010008966 Arndt et al. Jul 2001 A1
20010020178 Arndt et al. Sep 2001 A1
20010020180 Arndt et al. Sep 2001 A1
20010037812 Dobak, III et al. Nov 2001 A1
20020022832 Mikus et al. Feb 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020133148 Daniel et al. Sep 2002 A1
20020147444 Shah et al. Oct 2002 A1
20020198520 Coen et al. Dec 2002 A1
20030004506 Messing Jan 2003 A1
20030065317 Rudie et al. Apr 2003 A1
20030069578 Hall et al. Apr 2003 A1
20030078573 Truckai et al. Apr 2003 A1
20030088242 Prakash et al. May 2003 A1
20030109862 Prakash et al. Jun 2003 A1
20030195499 Prakash et al. Oct 2003 A1
20030233091 Whayne et al. Dec 2003 A1
20040078038 Desinger et al. Apr 2004 A1
20040167517 Desinger et al. Aug 2004 A1
20040168692 Fogarty et al. Sep 2004 A1
20040243200 Turner et al. Dec 2004 A1
20040267156 Turovskiy et al. Dec 2004 A1
20050015081 Turovskiy et al. Jan 2005 A1
20050065508 Johnson et al. Mar 2005 A1
20050085881 Prakash et al. Apr 2005 A1
20050107783 Tom et al. May 2005 A1
20050148836 Kleen et al. Jul 2005 A1
20050159741 Paul et al. Jul 2005 A1
20060196568 Leeser et al. Sep 2006 A1
20060259024 Turovskiy et al. Nov 2006 A1
20060264923 Prakash et al. Nov 2006 A1
20060282069 Prakash et al. Dec 2006 A1
20070079884 Tomerlin et al. Apr 2007 A1
20080275438 Gadsby et al. Nov 2008 A1
Foreign Referenced Citations (21)
Number Date Country
0 521 264 Jan 1993 EP
0 667 126 Aug 1995 EP
WO 9320767 Oct 1993 WO
WO 9320768 Oct 1993 WO
WO 9634571 Nov 1996 WO
WO 9748449 Dec 1997 WO
WO 9748450 Dec 1997 WO
WO 9748451 Dec 1997 WO
WO 9956642 Nov 1999 WO
WO 9956643 Nov 1999 WO
WO 9956812 Nov 1999 WO
WO 0049957 Aug 2000 WO
WO 0057811 Oct 2000 WO
WO 0160235 Aug 2001 WO
WO 02078777 Oct 2002 WO
WO 03034932 May 2003 WO
WO 03039385 May 2003 WO
WO 03047043 Jun 2003 WO
WO 03088806 Oct 2003 WO
WO 03088858 Oct 2003 WO
WO 2005011049 Feb 2005 WO
Non-Patent Literature Citations (4)
Entry
US 5,326,343, 07/1994, Rudie et al. (withdrawn)
I Chou, C.K., “Radiofrequency Hyperthermia in Cancer Therapy,” Biologic Effects of Nonionizing Electromagnetic Fields, Chapter 94, CRC Press, Inc., (1995), pp. 1424-1428.
Urologix, Inc./Medical Professionals: Targis3 Technology http://www.urologix.com/medical/technology.html, Apr. 27, 2001 (total p. 3).
International Search Report—EP 06 00 9435 dated Jul. 13, 2006.
Related Publications (1)
Number Date Country
20090084581 A1 Apr 2009 US
Provisional Applications (1)
Number Date Country
60975891 Sep 2007 US