Reference is made, and priority is hereby claimed to co-pending U.S. patent application Ser. No. 17/836,226, filed Jun. 9, 2022, entitled BRAIDED MULTI-AXIAL SLEEVE SYSTEM USED AS A STRUCTURAL REINFORCEMENT FOR CONCRETE COLUMNS AND METHOD FOR CONSTRUCTING CONCRETE COLUMNS, U.S. patent application Ser. No. 16/996,905, filed Aug. 19, 2020, entitled MULTI-AXIALLY BRAIDED REINFORCEMENT SLEEVE FOR CONCRETE COLUMNS AND METHOD FOR CONSTRUCTING CONCRETE COLUMNS, now U.S. Pat. No. 11,408,176, issued Aug. 9, 2022, and U.S. Provisional Patent Application No. 62/888,854, filed Aug. 19, 2019, entitled MULTI-AXIALLY BRAIDED REINFORCEMENT SLEEVE FOR CONCRETE COLUMNS AND METHOD FOR CONSTRUCTING CONCRETE COLUMNS, all of which are incorporated herein by reference.
The invention relates to materials, components, and construction techniques for forming structural elements for building structures, such as buildings, bridges, parking garages and towers, using concrete aggregate.
All structures—from huts to skyscrapers and bridges—utilize structural elements to hold them up and keep them from collapsing. Two key structural elements are beams and columns, and each plays an essential role in creating a load path to safely transfer the weight and forces acting on a structure to the foundation and into the ground.
Beams are horizontal structural elements that withstand vertical loads, shear forces, and bending moments. Beams transfer loads imposed along their horizontal length to endpoints, such as columns, walls, and foundations
Columns are vertical support structures that hold up beams, roofs, and other parts of a building. Generally, a column is a strong, typically cylindrical structure that can, for example, extend from floor to ceiling inside a structure, or outside, from the ground up to the first, second or subsequent floors. Each column is designed with the compressive strength to hold the weight of what is above it, which can be very substantial. To construct vertical support structures, conventional construction techniques utilize concrete aggregate in combination with reinforcement materials such as rebar.
Concrete aggregate is commonly used in the construction industry. Concrete aggregate includes cement in various combinations with water, sand, gravel, and other materials that help add to its strength in the particular conditions in which the concrete will be employed. For ease of reference, the term “concrete” as used herein includes any of these combinations of cement and other materials that form a concrete aggregate.
Concrete has many advantages, including great compressive strength, good longevity with little maintenance, and it is relatively impervious to weather. However, there are some disadvantages to using concrete to construct columns. One disadvantage is concrete's low tensile strength. For example, if a column were to be made solely of concrete, it would crack and break relatively easily when subjected to tensile axial forces. To compensate for the low tensile strength, an internal structure is commonly utilized. For example, an internal structure may include one or more rebar rods situated vertically inside the column to improve the concrete column's tensile strength.
Under normal stress loads and environmental conditions, rebar rods as internal structures function well with concrete and provide good support for concrete columns. However, under the extreme conditions of fire, corrosion, or earthquakes, the steel reinforcement bars destroy the very members they were designed to save. For example, corroding steel reinforcement alone costs every country 3 to 4% of its GDP in maintenance, repair, or replacement. Likewise, when steel reinforcement is directly exposed to fire, the rebar will rapidly rise in temperature and cause the loss of the concrete cover due to spalling, which will significantly reduce the load-carrying capacity of the concrete member. When concrete columns are laterally loaded, as in an earthquake, the vertical rebar is placed in the precarious position of alternating between being placed under compression, then under tension, and then back again. When under tension, the vertical rebar elongates axially, breaking its bond with the concrete and allowing the concrete to crack. As the column bends back on the return swing, the rebar is now under compression, with all of the column's gravitational load placed on it. The vertical rebar now expands, cracking the concrete even more, spalling the concrete cover, eventually buckling, and forcefully ejecting the concrete core from its reinforcement cage, causing the column to fail, which in turn can bring down an entire building, or at least a portion of it.
Another disadvantage of rebar-reinforced concrete structural elements is their construction cost, which can be substantial. To construct a concrete column or beam, workers first install the rebar cage into a suitable foundation, then build formwork around the rebar cage that defines the column or beam, and then build a frame that holds the column or beam in place. Then the concrete is poured, and after it dries, the frame and formwork are removed and eventually discarded at the end of the project. Although sometimes formwork can be reused during the scope of a project, the ability to reuse it is limited. For example, if the formwork is unique, it can't be reused and will be discarded. Still another disadvantage is that rebar is heavy and can be expensive to transport, especially for pre-formed structures.
The conventional multi-step construction technique described above using rebar, formwork, and frames, adds significant labor and material costs to the total construction cost of a building. Unfortunately, it also creates several additional construction and practical problems such as concrete honeycombing in the formwork; cold joints; bug holes; cracking concrete during form removal; over-vibration which can cause formwork blowout; formwork failures; improper construction due to workers' lack of attention to formwork details; possible removal of formwork too early; the extensive time needed to plan for formwork, stripping time requirements and storage requirements; determining the capacity of equipment available to handle form sections and materials; determining the capacity of mixing and placing equipment; determining suitability for reuse of forms as affected by stripping time; considering the relative merits of job-built, shop-built and ready-made forms; and weather-related problems (such as rain or snow) that can adversely affect the formwork.
It would be an advantage to provide an improved system and method for constructing concrete columns and beams that have a lower cost, and better resistance against extreme events such as corrosion, fire, and earthquake damage. It would also be an advantage if the construction of the columns and beams could be easier, quicker, and safer.
A structural assembly utilizing a reinforced concrete support element with a braided reinforcement sleeve and a cable reinforcement system is described for constructing structural support elements for buildings and other structures. The reinforced concrete structural element, termed herein a “BMASS support element” or “BMASS element”, and a method for constructing and utilizing concrete structural elements are described, which can provide a low-cost, simpler method to form strong concrete structural elements for buildings and other structures that is quicker and safer.
Various embodiments of a cable-supported structural assembly for constructing structures are disclosed herein. These embodiments utilize a reinforced concrete BMASS element that has an approximately cylindrical shape having a first end and a second end, including a substantially solid concrete core consisting essentially of concrete. An outer multi-axially braided reinforcement sleeve with a flexibly braided configuration is embedded in the concrete on the perimeter of the core. An inner reinforcement sleeve is embedded in the concrete situated concentrically within the outer reinforcement sleeve. Both the outer and inner reinforcement sleeves provide reinforcement for the BMASS element.
In one embodiment, a cable tension system is connected between a first end and a second end of the BMASS element, including a cable having a first end connected proximate to the first end of the BMASS element, and a second end connected proximate to the second end of the BMASS element; and a brace connected to the BMASS element between the two ends. The brace is connected to the cable to transmit tension from the cable to the BMASS element.
Embodiments are disclosed in which the structural assembly is configured as a beam. Other embodiments are disclosed in which the structural assembly is configured as a column.
In a beam configuration, the tensioned cable provides an axial compressive force to the BMASS element, and can also be provide beam curvature to provide greater strength. A multi-cable embodiment is disclosed that includes a second cable, which provides additional strength and a greater ability to control curvature.
An embodiment is disclosed in which the brace includes an adjustable arm that can be used to lengthen or shorten the arm and thereby adjust the tension of the cable and force applied to the BMASS element. The length can be changed manually, or remotely. In an embodiment where the length is changed remotely, a length control unit may be provided, connected to the adjustable arm. When the support arm is lengthened, it creates compressive forces in the support arm, which translates the tension in the cable to the BMASS element. In other words, the compressive forces in the support arm can be adjusted to provide strength to the structural assembly, at appropriate positions on the BMASS element. Because the BMASS element has some flexibility, its configuration can be adjusted; for example, adjustments can be made to add or maintain curvature, or correct distortions in the BMASS element, and thereby provide greater support and reduce the chances of failure.
In a column configuration, the assembly arranges the BMASS element in a column (vertical) configuration. The column configuration includes a multi-cable tension system including at least three cables arranged axially in an approximately equal angle distribution around the BMASS element. A plurality of braces is connected to the BMASS element and transmit tension from the cable to the BMASS element. Advantageously, the cable tension of the three cables may be selected to provide an approximately straight BMASS element, which provides the best compressive strength. Embodiments are disclosed in which a plurality of braces affixed along the BMASS element and connected to the cables. Each brace includes a collar situated around the BMASS element, a plurality of support arms connected to the collar, and a plurality of cable pass-throughs.
For a more complete understanding of this invention, reference is now made to the following detailed description of the embodiments as illustrated in the accompanying drawing, wherein:
As used herein, the term “concrete”, or “concrete aggregate” includes cement in various combinations with water, sand, gravel, rocks, and other materials that help to add to its strength in the particular conditions in which the concrete will be employed. For ease of reference, the term “concrete” as used herein includes any of these combinations of cement and other materials.
For purposes herein, concrete can be defined as including a cement paste, a coarse aggregate, and other materials such as sand. The term “coarse aggregate” includes larger solids, like rock and gravel. The term “cement paste” includes water mixed with cement. When fresh, cement paste typically flows in a semi-liquid manner.
A concrete support structure including a multi-axially braided reinforcement sleeve is described for constructing support elements for buildings and other structures. The support elements are described in the context of columns, similar principles can be applied to create other support structures such as beams.
Multiple embodiments are described. In one embodiment a structurally reinforced concrete structural element for constructing buildings comprises a substantially solid concrete core consisting essentially of concrete with an outer multi-axially braided reinforcement sleeve embedded in the concrete on the perimeter of the core. This outer reinforcement sleeve has a flexible, multi-axially braided configuration and an inner reinforcement sleeve embedded in the concrete, situated concentrically within the outer reinforcement sleeve. Together, the outer and inner reinforcement sleeves provide flexible reinforcement for the concrete structural element. The outer reinforcement sleeve may have a biaxially or triaxially braided configuration in which a plurality of strands is oriented parallel and some being oblique with the central axis of the structural element. The inner reinforcement sleeve may include a plurality of strands that are oriented substantially lateral or transverse to the central axis. The outer and inner reinforcement sleeves have a weave that is substantially flexible and does not contain polymer resins that would otherwise interfere with sleeve flexibility. The plurality of strands in the outer and inner reinforcement sleeves may be substantially inelastic, and flexibility in the sleeves is provided by the weave of the strands in the sleeve. This concrete structural element is strong, reinforced with the inner and outer sleeves, and therefore the rebar that is normally used for axial support can be eliminated.
The multi-axially braided reinforcement sleeve can be manufactured inexpensively, and the disclosed construction method eliminates several steps from conventional construction methods, thus reducing the overall cost of constructing a concrete structural element. Advantageously, the rebar that normally is embedded axially in the structural element can be eliminated, along with the frame and formwork. Elimination of the rebar further reduces cost, and the multi-axially braided reinforcement sleeve provides tensile axial support to the structural element as well as stronger resistance to earthquake damage and further eliminates the possibility of rebar corrosion which would otherwise undermine the structural integrity of the structural element.
As an additional advantage, the multi-axially braided reinforcement sleeve is relatively lightweight (especially compared to rebar), easy to transport, and it can be reduced in size to facilitate transportation, in some embodiments, even collapsed and rolled on a reel. The size reduction allows the reinforcement sleeve to be transported without special requirements, thereby reducing cost.
Construction using the multi-axially braided reinforcement sleeve has several advantages. One advantage is the time and cost savings resulting from the elimination of formwork, installation, and removal. With no formwork, there is much less chance of damaging the concrete structural element or cracking the concrete, which could otherwise happen when the formwork is removed. Another advantage of eliminating the formwork is that there is no honeycombing in the concrete, which can be caused by air trapped between the formwork and the concrete, and no bug holes to repair.
Using a pre-manufactured multi-axially braided reinforcement sleeve eliminates the construction problems related to unskilled labor such as improperly detailing the rebar cage, using insufficient ties, or failing to give appropriate attention to formwork.
Another advantage is improved safety. Because the multi-axially braided reinforcement sleeve is positioned before the concrete is poured, remains in place after the concrete is poured, and doesn't require formwork, the often-fatal accidents related to formwork failures that can (and have) happened can be prevented. For example, eliminating formwork prevents accidents that might otherwise happen if formwork is removed too early (before the concrete is adequately cured and not structurally sound). It would also prevent accidents that could otherwise happen when the formwork itself fails for reasons such as poor design, reusing formwork that has lost its integrity even if it passes visual inspection or just human error.
The multi-axially braided reinforcement sleeve can be made in many different configurations, which can be designed and/or selected to meet the requirements of a large variety of construction jobs. To choose the appropriate configuration for a particular construction job, one consideration is the tensile strength of the sleeve. Generally, a sleeve is selected to have a weave pattern and be made of a material that can at least hold the hydrostatic pressure caused by the weight of the concrete poured into it. Thus, because the sleeve has already been designed to withstand the hydrostatic pressures of the liquid concrete, this eliminates blowouts and other problems that might be caused if old formwork were used, or if the formwork becomes over-vibrated which can cause separation of concrete mixtures, increased pressures, and subsequent blowouts in the formwork.
Construction using the reinforcement sleeve also eliminates the need to clean, inspect, transport, and store formwork, which would otherwise consume a tremendous amount of time and add costs during the construction project.
The reinforcement sleeve has a multi-axially braided configuration which provides a weaved pattern that defines a plurality of gaps. The weaved pattern and material allow cement paste to flow into and around the fibers of the sleeve, sufficiently that the sleeve becomes bonded to the concrete structural element while holding the coarse concrete aggregate inside the sleeve. Advantageously, the flow of cement paste (and maybe some sand or smaller particles) through the gaps expels unwanted air and fills the spaces within the sleeve, so that the sleeve can become almost uniformly filled with concrete. A more uniform fill provides a stronger structure, substantially free of air pockets that might otherwise undermine the structural element's strength.
The multi-axially weaved structure is particularly useful because it defines a type of selective locking mechanism. The weave is close (tight) enough that it contains the concrete within the sleeve. In some embodiments, some gaps can have a size to allow some of the sand and cement paste to flow through the gaps in the sleeve, and this flow-through material can then be spread around the exterior of the sleeve, and after drying, becomes the cover for the structural element itself. In other words, in some implementations, the gaps may be large enough to allow cement paste to flow through to the outside, which can then be smoothed to create a substantially smooth external surface that can provide a better appearance.
Another advantage is that rebar can be eliminated from the structural element in many embodiments. Not only does rebar add to cost, but it is believed that the properties of the rebar itself can contribute to the destruction of the structural element during extreme events such as fire, corrosion, or an earthquake. The elimination of rebar prevents these problems, and the multi-axially braided reinforcement sleeve allows the structural element to retain most of its strength during and after these extreme events.
Reference is first made to
The gaps 140 may or may not allow some cement paste to flow through to the outside while holding the concrete inside the sleeve. Advantageously, the flow of some cement paste (and maybe some sand or smaller particles) through the gaps expels unwanted air and fills the spaces within the sleeve, so that the sleeve column becomes approximately uniformly filled with concrete. A more uniform fill provides a stronger column structure substantially free of air pockets that might otherwise undermine the column's strength. The multi-axially weaved structure is particularly useful because it defines a type of selective locking mechanism.
In some embodiments, such as the embodiment illustrated in
The material used in the strands 108 can be any material such as metal, plastic, nylon, ceramics, basalt, aramid, carbon fiber, glass fiber, or any natural or synthetic material of suitable strength and durability that has the appropriate characteristics for the desired end application. Generally, the strands are relatively inelastic.
Although typically the materials and strand configurations will be consistent throughout the sleeve, in some embodiments some strands may comprise different materials and/or different configurations. For example, in the same sleeve, some strands may be nylon and others may be aramid, some strands may have a wire configuration and others may have a band configuration. The materials and configuration of the strands are chosen based on their properties to create the desired strength, flexibility, and weave pattern of the end product sleeve.
Many different types of strands can be used in the multi-axially braided reinforcement sleeve. Examples of these strands include the following:
Generally, the material and configuration of the strands are chosen to be relatively inelastic compared to the sleeve. For example, individual strands made of metal may not bend or stretch easily (i.e., they may be relatively inelastic). However, the overall braided sleeve will be substantially flexible due to its braided pattern, even if the individual strands are inelastic.
As shown in
The particular weave pattern depends upon several factors such as design requirements, the properties of the concrete mixture, and the outside temperature. Different types of concrete may require a different weave pattern, angle of weave, and type of reinforcement bands/ribbons. The type of concrete can change, and the compression stress of concrete can vary anywhere from less than 3,000 psi to over 10,000 psi, the water/cement ratio can vary depending on weather conditions, the size of the pour, and the type of cement that is used. All these factors can be considered when selecting the appropriate sleeve for a particular installation.
Fabricating the multi-axially braided reinforcement sleeve can be accomplished using any suitable method. Many braiding methods are known in the art, and the particular method chosen for forming the braided tubular structure will depend upon the requirements of any particular implementation. A few examples of methods and apparatus that can braid strands to create a tubular configuration are shown in US Patent Publication US20150299916, U.S. Pat. Nos. 7,311,031, 5,257,571, and 5,099,744.
As described above, the configuration of the strands 108, given the material, must be thick enough or of such density to substantially contain the concrete in the weaved pattern. The strands may be relatively inelastic for strength, and the braid pattern provides flexibility to the reinforcement sleeve.
In one embodiment, the braided sleeve has a biaxial weave pattern in which the first set of strands are wrapped around the central axis in a first rotation, and the second set of strands are wrapped around the central axis in a second, opposite rotation. In other embodiments, the braided sleeve may have a triaxial weave pattern, or a combination of an inner sleeve (comprised of a biaxial weave nearly lateral to the length of the column) and an outer sleeve (comprised of a triaxial weave pattern along the length of the column) working together, or other suitable weave patterns.
Many different materials and configurations can be implemented. Typically, the braided structure will be formed with a uniform braid pattern throughout its length. Still, many variations are possible with a uniform braid pattern, for example, the weaved pattern could include a finer mesh that would hold in place a stronger but looser weave of a different material. For example, the weaved pattern could include a finer nylon mesh that holds heavier aramid belts that are weaved into sleeves.
In some embodiments, it may be useful to vary the braid pattern in certain areas, so that the braid is nonuniform along its length. For example, one embodiment may create additional strength in certain portions of the sleeve by a tighter weave, or in other embodiments, more flexibility in the braid can be provided by using a looser weave.
Note that the flexibility of the reinforcement sleeve would be adversely affected by the use of resins/polymers on the sleeve as the resins would harden and impair flexibility. The use of resins/polymers on the sleeve should be avoided because of their low melting point, toxin fumes when burnt, and incompatibility with concrete.
To recap the conventional construction method discussed above in the prior art section, in conventional concrete column methods, workers first install vertically-extending rebar rods into a suitable foundation, then build formwork around the rebar to define the column, and then build a frame that holds it all in place. Then the concrete is poured in, and after it dries, the frame and formwork are removed. This conventional multi-step construction technique has several disadvantages, such as adding significant labor and material costs to the total construction cost of a building, creating safety issues, and lengthening the construction time. Furthermore, in extreme events such as a fire, corrosion, or an earthquake, the columns may fail, and the rebar itself contributes to the failure of the column.
The method described herein simplifies construction by eliminating conventional formwork and replacing it with a pre-manufactured multi-axially braided sleeve. The ceiling holds the sleeve in place on its upper end, and the floor provides a foundation at the lower end. Conventional axial rebar and ties are optional and may be eliminated; for some uses, rebar may be eliminated entirely. For other uses, if extra strength is required, some amount of rebar may be desirable and placed within the multi-axially braided sleeve.
One way to install a column is to pour the columns remotely (as modules) and then move the poured columns to the installation location. Such pre-casted forms could also be pultruded through dies and cut to length. Pultrusion is a continuous process for manufacture with an approximate constant cross-section by pulling the material, as opposed to extrusion which pushes the material.
Another way is to attach the respective ends of the reinforcement sleeve 100 to the upper surface 510 and lower surface 520 using any suitable attachment method, such as tying the reinforcement sleeve 100 into the existing rebar found in the floor and ceiling concrete slabs.
In some embodiments, the joint at the end of the column may be a straight cylinder (see.
If joint support tying into the existing rebar in the floor and ceiling concrete slabs is not used, the concrete columns could be poured at another location, transported, lifted into place, and attached with grouted dowels.
In the embodiment of
In some methods, a pipe such as a PVC pipe (not shown) can be inserted into the central opening 104. The outer diameter of the PVC pipe fits within the central opening 104 and preferably is adjacent to the inner diameter of the installed reinforcement sleeve 100. Thus, the PVC pipe or a tremie would be nested inside the reinforcement sleeve 100, and the cylindrical structure of the PVC pipe holds the reinforcement sleeve in place while the concrete is being poured and then is removed.
In the embodiment of
In the embodiment where the PVC pipe is utilized to maintain the columnar structure while the concrete is being poured, the PVC pipe within the opening is first filled with concrete. Then, the PVC pipe is removed, more concrete is added to fill the space vacated by the PVC pipe, and to fill the opening, and the concrete is allowed to flow to the reinforcement sleeve.
In other embodiments, as shown in
As shown in
Implementations are described herein that utilize the BMASS support element as a column, such as the column 1000 or column 1100, or as a beam such as will be described in more detail, e.g., with reference to
The inner reinforcement sleeve 1400 may be manufactured in a tubular configuration as shown in
In the
As shown in
As an alternative construction technique, rather than forming the concrete BMASS support element in place, the BMASS support element could be formed elsewhere and then transported to the installation. For example, the BMASS support element could be formed on the job site or in a nearby location, and then lifted into position to be installed. The BMASS support elements could be pultruded through dies while using a concrete pump to force the concrete into the core of the sleeves. Once cured, the BMASS element can be cut to length. Pultrusion is a continuous process for manufacture with an approximate constant cross-section by pulling the material, as opposed to extrusion which pushes the material.
In many embodiments, the step of installing rebar axially along the length of the BMASS support element may be eliminated entirely to save cost and also to prevent destruction during an earthquake. However, for some purposes, rebar may still be useful. For example, a length of rebar can be installed extending into either or both ends of the BMASS support element to prevent the ends of the BMASS support elements from sliding or provide additional structural support depending on the demands placed on the BMASS support element.
A number of different embodiments of the cable-supported structural assembly are described herein, using the flexible, reinforced concrete BMASS support element.
One or more braces 2030 are positioned between the cable 2020 and the BMASS element 2010 to hold the cable 2020, transfer force from the cable 2020 to the BMASS element 2010, and generally provide support for the beam assembly 2000. In this embodiment, three braces 2030 are provided, including a first brace 2030a, a second brace 2030b, and a third brace 2030c; in other embodiments, another number of braces 2030 may be provided.
The brace also includes the pass-through 2036 that has an opening 2037 through which the cable 2020 can pass. The cable 2020 is slidable within the pass-through openings 2037.
Installed, the BMASS element 2010 provides compressive strength, and the cable provides tensile strength to the BMASS beam assembly 2000. As will be described, the cable 2020 can be tensioned to provide curvature to the BMASS element 2010, which provides greater strength and resiliency to the BMASS beam assembly.
[Ray: needs review: Cable applies force to ends along vector that has axial and transverse components.]
Tensioning the cable 2020 creates force vectors at an angle from the end caps, which can be divided into axial and transverse vectors: particularly, from the first end cap 2410 a first force vector 2510 resolves into a first axial vector 2512 and a first transverse vector 2514, and from the second end cap 2420 a second force vector 2520 resolves into a second axial vector 2522 and a second transverse vector 2524.
It may be noted that the first and second axial vectors 2512, 2522 provide opposing forces, which advantageously places the BMASS element 2010 under compression. Furthermore, the first and second transverse vectors 2514, 2524 create downward forces, in a vertical direction respectively from each of the end cap 2041, 2042, which transfers gravitational forces to the ground.
Tensioning the cable 2020 also creates upward force vectors 2531, 2532, 2533 in each of the braces 2030, which are transmitted upward from the cable 2020 through each of the braces 2030, to the BMASS element 2010.
The net result of the tensioning forces in the cable, is that the axial vectors place the BMASS element under compression and prevents tensile forces from forming, cracking, and shearing the beam. Furthermore, the downward force of the transverse vectors at the BMASS element ends, combined with the upward force from the brace vectors in the middle of the BMASS element, create a curvature 2540, shown in dotted lines. By selecting the amount of tension applied to the cable, and positioning the braces along the BMASS element at determined locations, and selecting length of the brace arms 2034, and other design considerations, the amount of curvature can be controlled, and help to support the load.
Also, the cable 2020, via the braces 2030, applies sideways force to the BMASS element 2010. Advantageously, the flexible sleeves in the BMASS element (see
The BMASS beam assembly 2600 includes a cylindrical BMASS element 2610 that defines a first end 2611 and a second end 2612. A first end cap 2641 is situated on the first end 2611, and a second end cap 2642 is connected to two cables including a first cable 2621 and a second cable 2622. Particularly, each of the cables 2621, 2622 have a first end connected to the first end cap 2641, and a second end connected to the second end cap 2642. The cables 2621, 2622 may be made of metal, fiber, or any suitable material, with a strength designed to meet load requirements. Stainless steel is one preferred material for the cable.
One or more triangular braces 2630 are positioned between the cables 2621, 2622 and the BMASS element 2610 to hold the cable 2621, 2622, transfer force from the cables to the BMASS element 2610, and generally provide support for the beam assembly 2600. In this embodiment, three triangular braces 2630 are provided, including a first brace 2630a, a second brace 2630b, and a third brace 2630c; in other embodiments, a different number of braces 2630 may be provided.
The collar 2632 defines an interior cylindrical opening 2639 having a size that fits around the cylindrical outer surface of the BMASS element 2610. The collar 2632 may be a single unit as shown, or it may be in a clamp form that fits around BMASS element 2610, and then may be affixed with bolts or any suitable connection, such as shown in
The pass-throughs 2635, 2637 each have an opening 2639 through which the first and second cables 2621, 2622 can pass respectively. The cables 2621, 2622 are slidable within the pass-through the openings 2639.
One or more column braces 2930 are positioned between the first and second end collars 2941, 2942.
The column braces 2930 are situated on the BMASS element 2910 to hold the cables, transfer force from the cables 2921, 2922, 2923 to the BMASS element 2910, and generally provide support for the column assembly 2900. In this embodiment, two braces 2930 are provided, in other embodiments, a different number of braces 2930 may be utilized.
Each brace 2930 also includes a plurality of support arms 2934 extending outwardly in a spoke-like configuration from the collar 2932. The support arms 2934 may be adjustable in length, including an adjustment unit 2950 connected between a lower arm 2952 and an upper arm 2954, such as described further herein. At the distal end of each support arm 2934, a cable pass-through 2936 is provided. The pass-throughs 2936 each have an opening 2938 through which the cables can pass, respectively. The cables 2921, 2922, 2923 are slidable within the openings 2939 in the pass-throughs 2936.
In
The BMASS beam assembly 3200 includes a cylindrical BMASS element 3210 that defines a first end 3211 and a second end 3212. First and second end caps 3241, 3242 are situated respectively on the first and second ends 3211, 3212. The cable 3220 is connected to the first end cap 3241 and the second end cap 3242 by any suitable means. The cable 3220 may be made of metal, fiber, or any suitable material, with a strength designed to meet load requirements. Stainless steel is one preferred material for the cable.
One or more braces 3230 are positioned between the cable 3220 and the BMASS element 3210 to hold the cable 3220, transfer force from the cable 3220 to the BMASS element 3210, and generally provide support for the beam assembly 3200. In this embodiment, three braces 3230 are provided, in other embodiments, another number of braces 3230 may be provided. Each of the braces 3230 includes a collar 3232, an adjustable support arm 3234, and a cable pass-through 3236.
The adjustable support arms 3234 may include a turnbuckle 3250.
Although typically a turnbuckle is used to create tension, in this embodiment it is utilized to create compressive forces in the support arm 3234, which translates the tension in the cable 3220 to the BMASS element 3210 via the rigid first and second arms 3252, 3254. In other words, the compressive forces in the support arm 3234 can be selected to provide strength to the structural assembly 3200 in appropriate positions on the BMASS element 3210, and make adjustments to the configuration of the BMASS element 3210, which has some flexibility. For example, adjustments can be made to add or maintain curvature, or correct distortions.
The BMASS beam assembly 3300 includes a collar that defines an interior cylindrical opening 3233 having a size that fits around the cylindrical outer surface of the BMASS element 3310 that defines a first end 3311 and a second end 3312. First and second end caps 3341, 3342 are situated respectively on the first and second ends 3311, 3312. The cable 3330 is connected to the first end cap 3341 and the second end cap 3342 by any suitable means. The cable 3330 may be made of metal, fiber, or any suitable material, with a strength designed to meet load requirements. Stainless steel is one preferred material for the cable.
One or more braces 3330 are positioned between the cable 3320 and the BMASS element 3310 to hold the cable 3320, transfer force from the cable 3320 to the BMASS element 3310, and generally provide support for the beam assembly 3300. In this embodiment, three braces 3330 are provided, in other embodiments, another number of braces 3330 may be provided. Each of the braces 3330 includes a collar 3332, an adjustable support arm 3334, and a cable pass-through 3336.
In embodiments that operate remotely, to control the length, the length-adjuster 3350 is connected to a Length Control Unit 3360, by any suitable connection 3362, such as a wired connection (including antennas and transmitters, or a wireless connection and associated circuitry. The Length Control Unit 3360 includes suitable circuitry to perform its functions, including controlling the length of the support arm 3320 responsive to an appropriate input.
In the adjustable arm embodiment of
In the adjustable arm embodiment of
Many different embodiments of the BMASS beam assembly and the BMASS column assembly can be created using the principles disclosed herein. For example, BMASS beam assemblies and BMASS column assemblies can be connected at their ends using conventional techniques (such as clamps) for joining columns and beams, to create many different structures.
Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open-ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as meaning “including, without limitation” or the like; the term “example” is used to provide examples of instances of the item in a discussion, not an exhaustive or limiting list thereof; the terms “a” or “an” should be read as meaning “at least one,” “one or more” or the like; and adjectives such as “conventional,” “traditional,” “normal,” “standard,” “known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that may be available or known now or at any time in the future. Likewise, where this document refers to technologies that would be apparent or known to one of ordinary skill in the art, such technologies encompass those apparent or known to the skilled artisan now or at any time in the future.
A group of items linked with the conjunction “and” should not be read as requiring that each and every one of those items be present in the grouping, but rather should be read as “and/or” unless expressly stated otherwise. Similarly, a group of items linked with the conjunction “or” should not be read as requiring mutual exclusivity among that group, but rather should also be read as “and/or” unless expressly stated otherwise. Furthermore, although items, elements, or components of the disclosed method and apparatus may be described or claimed in the singular, the plural is contemplated to be within the scope thereof unless limitation to the singular is explicitly stated.
The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent. The use of the term “module” does not imply that the components or functionality described or claimed as part of the module are all configured in a common package. Indeed, any or all of the various components of a module, whether control logic or other components, can be combined in a single package or separately maintained and can further be distributed in multiple groupings or packages or across multiple locations.
Additionally, the various embodiments set forth herein are described with the aid of block diagrams, flow charts, and other illustrations. As will become apparent to one of ordinary skill in the art after reading this document, the illustrated embodiments and their various alternatives can be implemented without confinement to the illustrated examples. For example, block diagrams and their accompanying description should not be construed as mandating a particular architecture or configuration.
Some or all aspects of the invention, for example aspects of the algorithmic characteristics of the invention, may be implemented in hardware or software, or a combination of both (e.g., programmable logic arrays). Unless otherwise specified, the algorithms included as part of the invention are not inherently related to any particular computer or other apparatus. In particular, various general purpose computing machines may be used with programs written in accordance with the teachings herein, or it may be more convenient to use a special purpose computer or special-purpose hardware (such as integrated circuits) to perform particular functions. Thus, embodiments of the invention may be implemented in one or more computer programs (i.e., a set of instructions or codes) executing on one or more programmed or programmable computer systems (which may be of various architectures, such as distributed, client/server, or grid) each comprising at least one processor, at least one data storage system (which may include volatile and non-volatile memory and/or storage elements), at least one input device or port, and at least one output device or port. Program instructions or code may be applied to input data to perform the functions described in this disclosure and generate output information. The output information may be applied to one or more output devices in known fashion.
Each such computer program may be implemented in any desired computer language (including machine, assembly, or high-level procedural, logical, or object-oriented programming languages) to communicate with a computer system, and may be implemented in a distributed manner in which different parts of the computation specified by the software are performed by different computers or processors. In any case, the computer language may be a compiled or interpreted language. Computer programs implementing some or all of the invention may form one or more modules of a larger program or system of programs. Some or all of the elements of the computer program can be implemented as data structures stored in a computer readable medium or other organized data conforming to a data model stored in a data repository.
Each such computer program may be stored on or downloaded to (for example, by being encoded in a propagated signal and delivered over a communication medium such as a network) a tangible, non-transitory storage media or device (e.g., solid state memory media or devices, or magnetic or optical media) for a period of time (e.g., the time between refresh periods of a dynamic memory device, such as a dynamic RAM, or semi-permanently or permanently), the storage media or device being readable by a general or special purpose programmable computer or processor for configuring and operating the computer or processor when the storage media or device is read by the computer or processor to perform the procedures described above. The inventive system may also be considered to be implemented as a non-transitory computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer or processor to operate in a specific or predefined manner to perform the functions described in this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
2358758 | Eames | Sep 1944 | A |
4694622 | Richard | Sep 1987 | A |
5218810 | Isley, Jr. | Jun 1993 | A |
5299445 | Yee | Apr 1994 | A |
5599599 | Mirmiran | Feb 1997 | A |
5671572 | Siller-Franco | Sep 1997 | A |
5671573 | Tadros | Sep 1997 | A |
6189286 | Seible | Feb 2001 | B1 |
6295782 | Fyfe | Oct 2001 | B1 |
20050229532 | Teng | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
2429927 | Nov 2004 | CA |
691608 | Aug 2001 | CH |
102877465 | Jan 2013 | CN |
105672574 | Jun 2016 | CN |
106677345 | May 2017 | CN |
2985748 | Jul 2013 | FR |
100819169 | Apr 2008 | KR |
20150066995 | Jun 2015 | KR |
WO-9738183 | Oct 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20230075456 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
62888854 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17836226 | Jun 2022 | US |
Child | 17943067 | US | |
Parent | 16996905 | Aug 2020 | US |
Child | 17836226 | US |