Cable railings are a used on interior and exterior walkways and staircases to create barriers. Many cable railings use metal cable strung under tension between and/or through posts to create such a barrier. Cable railings may be used with metal, wood, and other posts.
Cable railings use a variety of methods to install and tension the cable between terminal posts and through intermediate posts.
The present disclosure relates to methods, systems, and devices for producing and installing cable rail systems which utilize internal tensioning systems. In some embodiments, a cable rail system comprises a cable tensioning device. Within this cable tensioning device an off-center set screw positioned in a cable tensioning body applies tension to a cable using a sleeve crimped to one end of the cable and an offset lobe positioned between the set screw and the crimped sleeve to tension and secure a cable between two terminal posts. In some embodiments, the cable tensioning body is located on terminal ends of each cable and placed within terminal posts of the railing. In some embodiments, a cable rail is routed between two terminal posts and through holes drilled through one or more intermediate posts, which hold do not tension the cable rail. In some embodiments, caps with a substantially similar external profile to the cable tensioning body are used to cover the holes drilled through intermediate posts through which the cable rail is routed.
According to another aspect of the present disclosure, a method for installing a cable rail system is provided that comprises drilling a guide hole into a terminal post, using a tensioning body bit to drive a tensioning body into the guide hole in the terminal post, placing a lobe on a cable, crimping a sleeve to an end of the cable rail, inserting the cable into the tensioning body, and using a set screw to apply force to the lobe and tension to the cable rail.
Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrative embodiment exemplifying the best mode of carrying out the disclosure as presently perceived.
The aforementioned aspects and many of the intended features of this disclosure will grow to be appreciated at a greater level once references to the following accompanying illustrations are expounded upon.
For the purposes of promoting an understanding of the principals of the disclosure, reference will now be made to the embodiments illustrated in the drawings, which are described below. Unless otherwise indicated, the components shown in the drawing are proportional to each other. The embodiments disclosed below are not intended to be exhaustive or limit the disclosure to the precise form disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art may utilize their teachings. It will be understood that no limitation of the scope of the disclosure is thereby intended. The disclosure includes any alterations and further modifications in the illustrative devices and described methods and further applications of the principles of the disclosure which would normally occur to one skilled in the art to which the disclosure relates.
Referring to
As shown in
As shown in
As shown in
The installation of cables 30 is described herein. The specific order of installation does not need to follow the order described herein. To install cables 30 in posts 18, 20, 22, and 24, cables 30 are cut to a length about the distance between the end posts through which cables 30 will extend plus the width of a post. For example, cables 30 of first cable set 34 are cut to the angled distance between posts 18, 20 plus the width of one of posts 18, 20 and cables 30 for second cable set 36 are cut to the distance between post 20 and post 24 plus the width of one of posts 20, 24. Next, holes 68 are drilled into posts 18, 20, and 24 to receive cable tensioners 32 holes 70 are drilled into post 22 for only cable 30. Holes 68 are about the diameter of the unthreaded portion of partially threaded cylinder 46 of tensioner bodies 38 and preferably only extend partially through the respective end posts. Holes 70 are slightly larger than the diameter of cable 30 and extend all the way through the respective posts.
After holes 68 are drilled, tensioner bodies 38 are driven into respective holes 68 with a tensioner body bit 72 shown in
When a cable 30 is installed at an angle other than 90 degrees from a post, it is preferable that tensioning portion 54 of bore 48 be positioned is a location providing the most access to tensioning portion 54 to facilitate the insertion and driving of set screw 44 into tensioning portion 54. For example, in
Before or after holes 68, 70 are drilled and tensioner bodies 38 installed into posts 18, 20, 22, 24, a lobe 42 is positioned over the ends of cables 30 and slid partially down cables 30. Next, a sleeve 40 is positioned over the ends of cables 30 and crimped to firmly secure sleeves 40 to the respective ends of cables 30, which blocks lobes 42 from being removed from cables 30. Before or after lobes 42 and sleeves 40 are positioned on cables 30, cables 30 are extended through any intermediate posts.
To tension cables 30, sleeve 40 and cable portion 60 of lobe 42 are positioned in cable portion 50 of bore 48 of tensioner body 38. Extension 64 is positioned in tensioning portion 54 of bore 48. Next, set screw 44 is driven into tensioning portion 54 of bore 48 with an Allen wrench or similar bit, which pushes lobe 42, sleeve 40, and cable 30 further into tensioner body 38 and applies tension to cable 30. This step is repeated at the opposite end of cable 30 to apply additional tension to cable 30. The tensioning of each end of cable 30 may also occur simultaneously so that neither end of cable 30 is completed tensioned before the other end. According to one method, cable tensioners 32 are only provided on one end of cables 30 and the opposite end is secured without a cable tensioners 32.
As the result of the tensioning of cables 30, the external threads of tensioner bodies 38, press against the material of posts 18, 20, 24. Thus, the retaining force applied by tensioner bodies 38 is substantially internal to posts 18, 20, 24. Furthermore, the retaining force applied by the tensioner bodies 38 is generally on the side of posts 18, 20, 24 closest to the cables 30.
According to one installation method, caps 82 (see
It will be understood by one of skill in the arts that the particular geometries of the hardware depicted in this disclosure are merely a preferred embodiment and may be modified or altered within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practices in the art to which this disclosure pertains.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 62/179,382, titled “PARALLEL SCREW CABLE TENSIONING DEVICE,” to Daniel Jay Schlatter, filed May 7, 2015, the complete disclosure of which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
349985 | De Witt | Sep 1886 | A |
606873 | Matthews | Jul 1898 | A |
607410 | Flanagan et al. | Jul 1898 | A |
680438 | Pierce | Aug 1901 | A |
1985878 | Aubol | Jan 1935 | A |
3661360 | Windham | May 1972 | A |
3990665 | Joussemet | Nov 1976 | A |
6053480 | De Guise | Apr 2000 | A |
6135424 | Bracke | Oct 2000 | A |
6568658 | Strome | May 2003 | B2 |
6679480 | Hara | Jan 2004 | B1 |
7198253 | Striebel | Apr 2007 | B2 |
9249577 | Ross | Feb 2016 | B2 |
20050207838 | Striebel | Sep 2005 | A1 |
20060196053 | Pratt | Sep 2006 | A1 |
20110140063 | Sandor, Sr. | Jun 2011 | A1 |
20120168703 | Napier | Jul 2012 | A1 |
20140008597 | Herman | Jan 2014 | A1 |
20140138596 | Ross | May 2014 | A1 |
20140299829 | Herman | Oct 2014 | A1 |
20150021533 | Johnson | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
3000531 | Jul 2014 | FR |
Entry |
---|
Design of Machine Elements. Babu, et al. New Delhi, India: Tata McGraw Hill Education Private Limited, 2009. p. 131. ISBN: 9780070672840. |
Feeney, CableRail Composite Solutions, Webpage, Nov. 10, 2012, http://www.feeneyinc.com/CableRail. |
Atlantis Rail Systems, Cable Railing, Webpage, May 16, 2009, http://www.atlantisrail.com/cable-railing. |
Feeney, Step-by-Step Solutions, PDF, 2017. |
Atlantis Rail Systems, Design Parameters Rail Easy Cable Railing, PDF. |
Atlantis Rail Systems, Rail Easy Nautilus Installation Instructions, PDF, 2015, 1-7. |
Feeney, Quick-Connect fittings make cable projects quicker and easier than ever, Webpage, Nov. 10, 2012, http://www.feeneyinc.com/Architectural/CableRail-Standard-Assemblies#prod_info. |
Number | Date | Country | |
---|---|---|---|
20160326768 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
62179382 | May 2015 | US |