This application is a national stage application of PCT/IB2011/055717, filed on Dec. 15, 2011, which claims the benefit of and priority to Italian Patent Application No. MI2010A 002302, filed on Dec. 15, 2010, the entire contents of which are each incorporated by reference herein.
French Patent No. FR 2,665,131 and German Patent No. DE 25 12 966 are each directed to known cable transportation systems.
A bearing assembly of this type of cable transportation system requires constant maintenance for the pulley to rotate smoothly, and lubrication to prevent the bearing assembly from seizing. Even with thorough care and maintenance, however, the bearing assembly may accidentally seize, thus resulting in stoppage of the entire cable transportation system. Particularly when used for passenger transport, stoppage of the system calls for emergency rescue procedures to disembark the passengers, which in some cases is extremely slow, painstaking work requiring the use of special equipment.
The present disclosure relates to a cable transportation system with at least one haul cable.
More specifically, the present disclosure relates to a cable transportation system comprising a supporting structure defining an axis of rotation; a pulley extending about the axis of rotation, and having a groove configured to be engaged by the haul pulley; and a bearing assembly connected to the pulley and the supporting structure to enable the pulley to rotate about the axis of rotation with respect to the supporting structure.
It is an advantage of the present disclosure to provide a cable transportation system configured to eliminate certain of the drawbacks of known systems.
Another advantage of the present disclosure is to provide a cable transportation system configured to enable relatively easy, low-cost passenger rescue.
According to the present disclosure, there is provided a cable transportation system with at least one haul cable, the cable transportation system comprising an arrival/departure station comprising a supporting structure with a tubular portion defining an axis of rotation; a pulley extending about the axis of rotation; and a bearing assembly, which is connected to the pulley and the supporting structure to enable the pulley to rotate about the axis of rotation with respect to the supporting structure, the cable transportation system being characterized by comprising at least a first and at least a second bearing arranged concentrically and in series, so as to ensure rotation of the pulley about the axis of rotation and with respect to the supporting structure utilizing at least the first or second bearing.
A first bearing may thus be used for normal operation of the system, and a second bearing for operating the system in emergency passenger rescue situations.
In one embodiment of the cable transportation system, the bearing assembly comprises a sleeve located between the first and second bearing, and fixable selectively to the supporting structure and the pulley.
The pulley can thus be selected to rotate about the tubular portion of the supporting structure utilizing the first or second bearing. To select which of the first and second bearings is to be used, the sleeve is fixable selectively to the pulley or the supporting structure.
Fixing the sleeve to the supporting structure utilizing at least one dynamometer pin is particularly advantageous, by enabling constant monitoring of the first bearing, such as for normal operation of the cable transportation system. Moreover, the dynamometer pin is configured to break when subjected to a load exceeding a designated or given break load.
In one embodiment, the sleeve is fixable to the pulley utilizing at least one lock pin, by which to simply lock the damaged bearing quickly and easily in an emergency situation, and so prevent the damage to the bearing from getting any worse.
Additional features and advantages are described in, and will be apparent from the following Detailed Description and the figures.
A non-limiting embodiment of the present disclosure will be described by way of example with reference to the accompanying drawings, in which:
Referring now to the example embodiments of the present disclosure illustrated in
In the example described, specific reference is made to a cable transportation system with one haul and support cable 2; it being understood, however, that the present disclosure also applies to transportation systems with more than one cable.
Cable transportation system 1 and haul cable 2 extend between two arrival/departure stations 3, only one of which is shown in the drawings. Arrival/departure station 3 comprises a supporting structure 4; a pulley 5, which rotates about an axis A with respect to supporting structure 4; and an electric drive member 6 connected to the pulley by a transmission 7. Supporting structure 4 comprises a frame, in turn comprising a beam 8, and a tubular portion 9 (
In a variation (not shown), drive member 6 and/or reduction gear 10 are/is located beneath beam 8.
Pulley 5 comprises an outer-edge groove 13 configured to house haul cable 2, and is connected to supporting structure 4 to rotate about axis A utilizing a bearing assembly 14 (
In other words, as shown in
Sleeve 15 is fitted along the inner edge of pulley 5, and has a shoulder 19 for assembling bearings 17. Sleeve 16 has a shoulder 20 for assembling bearings 17, is fitted loosely about tubular portion 9, has a shoulder 21 engaging a shoulder 22 of tubular portion 9, and is locked axially by an annular flange 23 integral with tubular portion 9. And bearing 18 comprises sliding elements 24, normally made of Teflon or similar.
In the example shown, the two rolling bearings 17 are separated by a spacer 25.
Rolling bearings 17 and sliding bearing 18 are arranged concentrically—in the example shown, with sliding bearing 18 inwards of rolling bearings 17—and permit rotation of pulley 5 about supporting structure 4—in the example shown, about axis A. In other words, the two rolling bearings 17 are arranged “parallel”, and sliding bearing 18 is located “in series” with rolling bearings 17. In actual use, sliding bearing 18 is used as an emergency bearing, and is normally locked. More specifically, sleeve 16 is connected integrally to supporting structure 4 utilizing at least one dynamometer pin 26. The example shown employs two dynamometer pins 26 (only one shown in
In an emergency situation (breakdown of bearings 17), sleeve 16 can be connected integrally to pulley 5 as shown more clearly in
With reference to
In actual use, during normal operation of cable transportation system 1, sliding bearing 18 is maintained in the locked position shown in
Cable transportation system 1 can thus be kept running to rescue the passengers, without causing any further damage to rolling bearings 17.
Dynamometer pins 26 also provide for constantly monitoring the efficiency, and so preventing critical operation, of rolling bearings 17.
In the
In the example shown, connecting pin 33 and hole 34 define two opposite shoulders, between which is located a spring 36 configured to prevent accidental insertion of connecting pin 33 inside hole 35.
Due to its location, dynamometer pin 26 is not visible in
The
The present disclosure also applies to embodiments not covered in the above detailed description, and to equivalent embodiments within the protective scope of the accompanying Claims. That is, changes may be made to the present disclosure without, however, departing from the scope of the present disclosure as defined in the accompanying Claims. It should thus be understood that various changes and modifications to the presently disclosed embodiments will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
MI2010A2302 | Dec 2010 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2011/055717 | 12/15/2011 | WO | 00 | 8/21/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/080983 | 6/21/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3452349 | Wood | Jun 1969 | A |
3603654 | Bird | Sep 1971 | A |
4058353 | Frommlet et al. | Nov 1977 | A |
4492416 | Kaufmann | Jan 1985 | A |
4664539 | Li | May 1987 | A |
5322373 | Oakes et al. | Jun 1994 | A |
5616976 | Fremerey et al. | Apr 1997 | A |
7036435 | Morand et al. | May 2006 | B2 |
20030123767 | Fite et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
101837783 | Sep 2010 | CN |
25 12 966 | Sep 1976 | DE |
2512966 | Sep 1976 | DE |
2665131 | Jan 1992 | FR |
1463486 | Feb 1977 | GB |
Entry |
---|
Chinese Office Action for Chinese Patent Application No. 2011800604203 dated Feb. 28, 2015 (7 Pages). |
Notice of Opposition with enclosed non-patient literature documents for European Patent Application No. 11813406.3 dated Aug. 10, 2015. |
International Search Report and Written Opinion for International Application No. PCT/IB2011/055717 dated Mar. 14, 2012. |
Notification Concerning Submission, Obtention or Transmittal of Priority Document (Form PCT/IB/304) dated Mar. 22, 2012. |
Response to International Search Report and the associated Written Opinion dated Oct. 12, 2012. |
PCT Demand (Form PCT/IPEA/401). |
Notification of Receipt of Demand by Competent International Preliminary Examining Authority (Form PCT/IPEA/402) dated Oct. 19, 2012. |
Second Written Opinion of the International Preliminary Examining Authority dated Dec. 11, 2012. |
Response to the Second Written Opinion dated Feb. 4, 2013. |
Notification of Transmittal of the International Preliminary Report on Patentability (Form PCT/IPEA/416) dated Mar. 1, 2013. |
International Preliminary Report on Patentability (Form PCT/IPEA/409) dated Mar. 1, 2013. |
Number | Date | Country | |
---|---|---|---|
20130333588 A1 | Dec 2013 | US |