Cable trough system and method

Information

  • Patent Grant
  • 7471868
  • Patent Number
    7,471,868
  • Date Filed
    Friday, October 7, 2005
    19 years ago
  • Date Issued
    Tuesday, December 30, 2008
    15 years ago
Abstract
A telecommunications cable management system includes trough elements including a planar top surface and sides for cable routing and management. The trough elements are made from separate parts assembled together with a mating arrangement. The mating arrangement allows assembly of the system on site, such as by snapping the parts together. The trough elements are then assembled together to form the cable management system.
Description
FIELD OF THE INVENTION

This application relates to a system for the management and routing of cables, such as telecommunications cables. More particularly, this invention pertains to troughs, fittings, and couplings for the system.


BACKGROUND OF THE INVENTION

In the telecommunications industry, the use of optical fibers for signal transmissions is accelerating. With the increased utilization of optical fiber systems, optical fiber cable management requires industry attention.


One area of optical fiber management that is necessary is the routing of optical fibers from one piece of equipment to another. For example, in a telecommunications facility, optical fiber cables may be routed between fiber distribution equipment and optical line terminating equipment. In buildings and other structures which carry such equipment, the cable routing can take place in concealed ceiling areas or in any other manner to route cables from one location to another. Copper cables, hybrid cables or other transmission cables also need proper management and protection.


When routing optical fibers, it is desirable that a routing system will be easy to assemble, readily accessible and adaptable to changes in equipment needs. Accordingly, such routing systems include a plurality of trough members such as troughs and couplings for forming the cable routing paths. The trough system members are joined together by couplings. U.S. Pat. No. 5,067,678 to Henneberger et al dated Nov. 26, 1991 concerns a cable routing system that includes a plurality of troughs and fittings. The '678 patent further discloses a coupling (element 250 in FIG. 1 of the '678 patent) for joining trough members and fittings. With best reference to FIGS. 6-7 of the '678 patent, a plurality of hardware is disclosed for joining the trough members. U.S. Pat. Nos. 5,316,243; 5,752,781 and 6,715,719 show additional examples of couplings.


U.S. Pat. No. 6,631,875 shows a cable trough system with various separate components joined together to assemble the system.


Several concerns arise with cable routing systems, including the ease of manufacture and installation of the troughs, couplings, and fittings, and the adequacy of the size of the system components to handle the number of cables in the system. Having enough space for the cables passing through the system is a particular concern as higher and higher densities are desired. There is a need for continued development of cable management systems.


SUMMARY OF THE INVENTION

A telecommunications cable management system includes trough elements including a planar top surface and sides for cable routing and management. In one preferred embodiment, the trough elements are made from separate parts assembled together. In one preferred embodiment, a mating arrangement is used to assemble the parts together. The mating arrangement allows assembly of the system on site, such as by snapping the parts together. The trough elements are then assembled together to form the cable management system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top perspective view of a telecommunications cable management system in accordance with the present invention;



FIG. 2 is a top perspective view of a longitudinal trough member of the system of FIG. 1;



FIG. 3 is an end view of the trough member of FIG. 2;



FIG. 4 is an enlarged portion of the mating arrangement between sections of the longitudinal trough member of FIGS. 2 and 3;



FIG. 5 is a view similar to the view FIG. 4, showing the sections during the mating operation;



FIG. 6 is a top perspective view of one of the couplers of the system of FIG. 1;



FIG. 7 is a top view of the cross component of the system of FIG. 1;



FIG. 8 is a side view of the cross component of FIG. 7;



FIG. 9 is a bottom view of the cross component of FIG. 7;



FIG. 10 is an enlarged portion of the view of FIG. 9;



FIG. 11 is a cross-sectional side view of the mating arrangement between two sections of the cross component;



FIG. 12 is a top perspective view of the cross component of FIG. 7 showing two sections separated from the rest;



FIG. 13 is an enlarged portion of the view of FIG. 12;



FIG. 14 is a top perspective view of one of the sections of the cross component of FIG. 7;



FIG. 15 is a bottom perspective view of the section of FIG. 14;



FIG. 16 is a top view of the section of FIG. 14;



FIG. 17 is a bottom view of the section of FIG. 14;



FIG. 18 is a first side view of the section of FIG. 14;



FIG. 19 is a further side view of the section of FIG. 14;



FIG. 20 is a top view of the Tee component of the system of FIG. 1;



FIG. 21 is a first side view of the Tee component of FIG. 20;



FIG. 22 is a further side view of the Tee component of FIG. 20;



FIG. 23 is a top perspective view of the Tee component of FIG. 20 showing one section separated from the rest;



FIG. 24 is an enlarged portion of the view of FIG. 23;



FIG. 25 is a top perspective view of the elbow component of the system of FIG. 1;



FIG. 26 is a top view of the elbow component of FIG. 25;



FIG. 27 is a side view of the elbow component of FIG. 25;



FIG. 28 is a top perspective view of the reducer component of the system of FIG. 1;



FIG. 29 is a top perspective view of an alternative embodiment of a coupler;



FIG. 30 is a top perspective view of a further alternative embodiment of a coupler;



FIG. 31 is a bottom perspective view of the coupler of FIG. 30;



FIG. 32 is an exploded perspective view of portions of the coupler FIGS. 30 and 31;



FIG. 33 is a first bottom perspective view of one of the sections of the coupler of FIGS. 30 and 31;



FIG. 34 is a further bottom perspective view of the section of FIG. 33.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates to a cable management system with improved manufacturability and customization capabilities over prior art cable management systems. One aspect of the present invention is the use of sections which are assembled into trough components which are then assembled together to form the cable management system. Various components and configurations are anticipated in accordance with the present invention. Various examples of the components and configurations are illustrated in FIGS. 1-34. However, it is to be appreciated that numerous other components and configurations are possible.


Referring now to FIG. 1, a system 10 for cable management is positioned over a cabinet, a frame, bay or other equipment (not shown) which may include an array of connectors or other telecommunications equipment for connecting to the cables in system 10. System 10 is hung from the ceiling or mounted to the equipment, with various brackets and hardware.


Example system 10 includes various trough elements which together form cable pathways for holding and managing fiber optic cables. System 10 includes longitudinal trough members 14, and couplers 16 for joining the longitudinal trough members 14 to other trough elements including a cross component 18, a Tee component 20, an elbow component 22, and a reducer 24. System 10 can be expanded in various directions by adding further components 14, 16, 18, 20, 22, and 24. Other arrangements are possible for the noted components including arrangements that use less than all of the noted components, or additional components, as desired. For example, a cable exit trough can be added to allow cables to enter and exit the trough components for downward travel to equipment below trough components. U.S. Pat. No. 6,625,373, the disclosure of which is incorporated by reference, shows an example cable exit trough mountable to lateral trough member 14.


Referring now to FIGS. 2-5, longitudinal trough member 14 preferably has a continuous cross-section, and can be cut to the desired length L1. Longitudinal trough member 14 is preferably by an extrusion process. As shown, longitudinal trough member 14 is made from separate sections assembled together to form longitudinal trough member 14. A mating arrangement 30 mounts the separate sides 32 to middle 34. In one preferred embodiment, the mating arrangement 30 includes a snap fit. FIGS. 4 and 5 show the snap fit between one of sides 32 and middle 34. As shown, mating arrangement 30 includes first and second pockets 38, 40, which receive first and second projections 44, 46, respectively. During assembly, first projection 44 is inserted into first pocket 38, and the side 32 is pivoted relative to middle 34 until second projection 46 is received in second pocket 40 to hold the side to the middle. (See FIGS. 4 and 5). First projection 44 has a bent shape which fits into first pocket 38 defined by base 39 and tab 41. Second projection 46 is flexible outward and includes a shoulder 47 which is positioned against shoulder 43 of second pocket 40. A similar mating arrangement 30 mounts the other side 32 to the other side of middle 34.


One advantage in assembling longitudinal trough member 14 from separate parts is that larger longitudinal trough members 14 can be made more easily than might be possible if the whole structure was made in a single extrusion. For example, making longitudinal trough member 14 in sizes over 12 inches across (see dimension W1 in FIGS. 2 and 3), including as much as 24 inches across or more, can be difficult to mold in a single part with an extrusion. Also, different sides 32 can be mated with different middles 34, as desired.


Longitudinal trough member 14 preferably includes structure on ends 50 for mating with other system components. As shown, longitudinal trough member 14 preferably includes attachment members 52 and pockets 54, for mating with couplers 16, as will be described below.


As shown, middle 34 of longitudinal trough member 14 is generally a planar shaped element. Sides 32 have a planar bottom portion 41, and an upstanding side portion 42. If desired, upstanding side portions 42 can be separate side elements mounted to planar bottom portion 41, such as with a snap mount. U.S. Pat. No. 6,631,875 discloses various arrangements including separate side elements. The disclosure of U.S. Pat. No. 6,631,875 is hereby incorporated by reference.


As shown in FIGS. 2 and 3, longitudinal trough member 14 defines a bottom 56 and upstanding side walls 58 for holding cables within an interior. Sufficient numbers of longitudinal trough members 14 are included in system 10 to define the appropriate cable routing pathways. Cross components 18 and Tee components 20 allow for side exits in a horizontal direction from the longitudinal pathways defined by longitudinal trough members 14. Couplers 16 join longitudinal trough members 14 to cross components 18 and Tee components 20 as shown in FIG. 1. Elbows 22 can also be used to change the cable pathway direction between two longitudinal trough members 14, or between a longitudinal trough member 14 and one of the cross components 18 or Tee components 20.


Now with reference to FIG. 6, coupler 16 includes at least one locking element 62 for mating with an attachment member 52 of longitudinal trough member 14. Further details of locking of coupler 16 to longitudinal trough member 14 are described in U.S. Pat. No. 6,715,719, the disclosure of which is incorporated by reference. Other couplers can be used such as the couplers disclosed in U.S. Pat. No. 5,752,781, the disclosure of which is incorporated by reference. The couplers of U.S. Pat. No. 5,752,781 use fasteners to mount the system components. Still further couplers usable in system 10 are disclosed in U.S. Pat. Nos. 5,067,678 and 5,316,243, the disclosures of which are incorporated by reference. The system components matable with couplers 16 or other couplers may need appropriately configured mating structures, or be capable of attachment by other means to the couplers, such as by springs or fasteners, as in the prior noted patents.


Coupler 16 also includes projections 64 on both ends 66 for receipt in pockets 54 of longitudinal trough members 14. Coupler defines a bottom 68 and upstanding side walls 70 for holding cables within an interior.


Referring now to FIGS. 7-19, further features of cross component 18 are shown. Cross component 18 includes a base 82, four upstanding side walls 84, and four ends 86. Ends are connectable to couplers 16. Base 82 and side walls 84 define cable pathways across cross component 18. Side walls 84 have a convexly curved shape to provide bend radius protection for the cables that may bend around within cross component 18 from one end 86 to an adjacent end 86. Ends 86 are mountable to couplers 16, or other couplers configured to lock to cross component 18.


Cross component 18 is preferably assembled from separate parts or sections 88. A mating arrangement 90 connects the sections 88 together. Each section 88 includes edges 92, 94, 96, 98, a base 100, and one side wall 84. Mating arrangement 90 mates edges 92 to edges 94 of adjacent sections 88. Edges 96, 98 form ends 86. In the illustrated embodiment, cross component 18 is made from four identical sections 88. One advantage of such a construction is that the mold for making component 18 out of moldable materials does not have to be as large as the mold would need to be to mold component 18 as a single integral part.


Mating arrangement 90 includes a shoulder 102 on edge 92, and a flexible tab 110 on edge 94. Tab 110 includes an edge surface 112 which engages shoulder 102. Tab 110 also includes a ramp 114 for allowing tab 110 to clear shoulder 102, so edge surface 112 can engage shoulder 102. Preferably, a plurality of mating shoulders 102 and tabs 110 are provided along edges 92, 94, respectively. A u-shaped projection 116 surrounds tab 110. An enclosure 104 on edge 92 surrounds projection 116 when mated. To mount one section 88 to another section 88, edge 94 is positioned vertically above edge 92. Tabs 110 and projections 116 enter enclosure 104, until edge 112 engages shoulder 102. In one method of assembly, two sections are mated together, and two further sections are mated together, then the two mated portions are mated together by rotating the two mated portions so that the respective shoulders 102 and tabs 110 are mated between the two mated portions.


Referring now to FIGS. 20-24, Tee component 20 is formed from two sections 88 as described above, and a longitudinal section 150. Sections 88 snap together as noted above. Sections 88 snap to longitudinal section 150 with a mating arrangement 152, including flexible tabs 110 along edge portion 192, and shoulders 102 along edge portion 194, of the types as noted above. The mated sections 88 are rotated relative to longitudinal section 150 in order for the shoulders 102 and tabs 110 to be mated. With this construction, sections 88 can be used to assemble cross component 18 or Tee component 20. Tee component 20 has three ends, ends 86 of the type noted above, and opposite ends 154, all of which are mountable to couplers 16, or other couplers configured to lock to Tee component 20.


Referring now to FIGS. 25-27, elbow component 22 is shown in further detail. Elbow component 22 includes a base 200, and upstanding inner side wall 202 and outer side wall 204. Edges 212 and 214 connect to couplers 16. Edges 212 and 214 are at an angle to one another, such as at an angle of about 45 degrees. Such a construction allows for a change of direction of the cable pathway between components connected at each end. Two can be used for a 90 degree elbow. In the illustrated embodiment, curved guide walls or fins 206, 208, 210 are positioned in the interior of elbow to help guide the cables and help keep the cables from bunching up against inner side wall 202.


Referring now to FIG. 28, reducer component 24 is shown reducing the width of the lateral trough section pathway from one dimension W1 to a smaller dimension W2. End 220 is at the wider dimension W1, such as 24 inches, and opposite end 222 is at the narrower dimension W2, such as 12 inches. Reducer component 24 is mountable to couplers 16, or other couplers configured to lock to cross component 18.


Referring now to FIG. 29, and alternative embodiment of a coupler 260 is shown with guide tabs 262 protruding from projections 64. Guide tabs 262 assist with locating projections 62 in the pockets of longitudinal trough members 14 during assembly of the system.


Referring now to FIGS. 30-34, an alternative embodiment of a coupler 360 is shown. Coupler 360 is provided in two sections 362, 364, which are preferably identical. A mating arrangement 370 mounts the two sections 362, 364 together. One preferred embodiment of mating arrangement 370 includes snaps. Each section 362, 364 includes first and second walls 372, 374 offset from one another. First wall 372 includes first tabs 380 with shoulders 382, and an aperture 384. Second wall 374 includes second tabs 390 with shoulders 392, and an aperture 394. The first tabs 380 of each wall 372 fit into the aperture 384 of the other wall 372 of the other section. The second tabs 390 of each wall 374 fit into the aperture 394 of the other wall 374 of the other section. Further cutouts 396, 398 are also matable together when mounting the sections together. By making the coupler in two sections, a less costly mold is needed for making coupling 360 from moldable materials.


The above specification, examples and data provide a complete description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Claims
  • 1. A telecommunications cable management system, comprising: a first cross component section including: a base including a planar top surface;first and second edges of the base defining mating arrangements, wherein the first edge extends at a fight angle with respect to the second edge;third and fourth edges of the base; andan upstanding side extending from the base, the upstanding side being positioned to extend between the third and fourth edges;wherein the first, second, third, and fourth edges of the first cross component section define a perimeter of the first cross component section;second cross component section including: a base including a planar top surface;first and second edges of the base defining mating arrangements;third and fourth edges of the base; andan upstanding side extending from the base, the upstanding side being positioned to extend between the third and fourth edges;wherein the first, second, third, and fourth edges of the second cross component section define a perimeter of the second cross component section;a third cross component section including an edge with a mating arrangement configured to mate with at least one of the first and second cross component sections; anda fourth cross component section including an edge with a mating arrangement configured to mate with at least one of the first, second, and third cross component sections:wherein at least one of the mating arrangements of the first and second edges of the second cross component section is configured to mate with one of the mating arrangements of the first and second edges of the first cross component section;wherein the first, second, third, and fourth cross component sections form a cross component; andwherein the first, second, third, and fourth cross component sections are identical.
  • 2. The system of claim 1, wherein the cross component defines four entrances.
  • 3. The system of claim 1, wherein at least one of the mating arrangements of the first and second edges of the first cross component includes snaps.
  • 4. The system of claim 3, wherein at least one of the mating arrangements of the first and second edges of the first cross component includes sockets sized to receive the snaps.
  • 5. The system of claim 1, wherein the upstanding side of the first cross component section defines a first wall section and a second wall section, the first wall section extending perpendicularly with respect to the second wall section.
  • 6. The system of claim 1, wherein the base of the first cross component section includes a bottom surface defining a plurality of ribs.
  • 7. A telecommunications cable management system, comprising: a first cross component section, including a base including a planar top surface, first and second edges of the base defining mating arrangements, third and fourth edges of the base; and
  • 8. The system of claim 7, wherein the first portion is mated with the second portion to form a cross component.
  • 9. The system of claim 8, wherein the cross component defines four entrances.
  • 10. The system of claim 7, wherein at least one of the mating arrangements of the first and second edges of each of the first, second, third, and fourth cross component sections includes snaps.
  • 11. The system of claim 10, wherein the snaps are configured to be rotatably mated from an unsnapped position to a snapped position to mate the first portion with the second portion to form a cross component.
  • 12. The system of claim 10, wherein at least one of the mating arrangements of the first and second edges of each of the first, second, third, and fourth cross component sections includes sockets sized to receive the snaps.
  • 13. The system of claim 7, wherein the upstanding side of each of the first and second cross component sections defines a first wall section and a second wall section, the first wall section extending perpendicularly with respect to the second wall section.
US Referenced Citations (47)
Number Name Date Kind
799320 Franks Sep 1905 A
3351699 Merckle Nov 1967 A
3761603 Hays et al. Sep 1973 A
3927698 Johannsen Dec 1975 A
4077434 Sieckert et al. Mar 1978 A
4907767 Corsi et al. Mar 1990 A
4951716 Tsunoda et al. Aug 1990 A
D321682 Henneberger Nov 1991 S
D321862 Henneberger Nov 1991 S
5067678 Henneberger et al. Nov 1991 A
5160811 Ritzmann Nov 1992 A
5161580 Klug Nov 1992 A
5240209 Kutsch Aug 1993 A
5271585 Zetena, Jr. Dec 1993 A
5316243 Henneberger May 1994 A
5316244 Zetena, Jr. May 1994 A
5335349 Kutsch et al. Aug 1994 A
5469893 Caveney et al. Nov 1995 A
5503354 Lohf et al. Apr 1996 A
5752781 Haataja et al. May 1998 A
5753855 Nicoli et al. May 1998 A
5899025 Casey et al. May 1999 A
5923753 Haataja et al. Jul 1999 A
5937131 Haataja et al. Aug 1999 A
5995699 Vargas et al. Nov 1999 A
6037538 Brooks Mar 2000 A
6037543 Nicoli et al. Mar 2000 A
6076779 Johnson Jun 2000 A
6107575 Miranda Aug 2000 A
6198047 Barr Mar 2001 B1
6450458 Bernard Sep 2002 B1
6522823 Wentworth et al. Feb 2003 B1
6535683 Johnson et al. Mar 2003 B1
6559378 Bernard May 2003 B1
6625373 Wentworth et al. Sep 2003 B1
6631875 Kampf et al. Oct 2003 B1
6634805 Templeton et al. Oct 2003 B1
6708918 Ferris et al. Mar 2004 B2
6709186 Ferris et al. Mar 2004 B2
6715719 Nault et al. Apr 2004 B2
6727434 Jadaud et al. Apr 2004 B2
6739795 Haataja et al. May 2004 B1
7034227 Fox Apr 2006 B2
7045707 Galasso May 2006 B1
20020096606 Bernard et al. Jul 2002 A1
20030047343 Ferris Mar 2003 A1
20040124321 Kampf et al. Jul 2004 A1
Foreign Referenced Citations (9)
Number Date Country
1 130 492 May 1962 DE
37 42 448 Jun 1989 DE
296 10 947 Aug 1996 DE
0 863 594 Sep 1998 EP
0 933 850 Aug 1999 EP
2 238 828 Feb 1975 FR
2 735 557 Dec 1996 FR
5-172281 Jul 1993 JP
1272387 Nov 1986 SU
Related Publications (1)
Number Date Country
20070092196 A1 Apr 2007 US