The present invention relates to a cable for high-frequency alternating-current power transmission.
Conventionally, as a cable for high-frequency alternating-current power transmission, one including a magnetic shield is proposed (e.g., refer to Patent Literature 1). In the cable described in Patent Literature 1, an outside of a pair of electric wires having different phases from each other is covered with a magnetic shield to reduce leakage flux, which is particularly problematic at the time of transmission of high-frequency alternating-current power.
However, in the cable described in Patent Literature 1, providing a magnetic shield 104 causes magnetic flux B to concentrate between an electric wire 102 and an electric wire 103 as illustrated in
An object of the present invention is to provide a cable enabling to reduce leakage flux and to restrict an increase of high-frequency resistance.
A cable according to the present invention is a cable provided with a magnetic shield and having a pair of electric wires transmitting alternating-current power and includes a first electric wire as a first side of the pair of electric wires having a plurality of first conductive wires and a second electric wire as a second side of the pair of electric wires having a plurality of second conductive wires. The first conductive wires and the second conductive wires are arranged alternately and disposed annularly in a circumferential direction of the cable.
According to the present invention described above, by providing the magnetic shield, leakage flux is reduced. Also, by alternately arranging the first conductive wires and the second conductive wires having different phases from each other, each of the conductive wires is adjacent to two conductive wires having the other phase. Accordingly, concentration of magnetic flux is prevented further, and a proximity effect is restricted further than in a configuration in which each of the conductive wires is adjacent to one conductive wire having the other phase.
At this time, in the cable according to the present invention, each of the number of the first conductive wires and the number of the second conductive wires is preferably two.
According to this configuration, since a cross-sectional area of a space surrounded by the conductive wires disposed annularly is minimum, an occupancy ratio of the electric wires in a cross-sectional area of the entire cable is higher, and an outside diameter of the cable can be shortened while securing the cross-sectional area of the electric wires. Also, a configuration in which each of the conductive wires is adjacent to two conductive wires having the other phase can be simplified most.
Also, in the cable according to the present invention, an end portion of the first electric wire is preferably provided with a first terminal having a first terminal surface parallel to an opposing direction of the first conductive wires and an axial direction of the cable, an end portion of the second electric wire is preferably provided with a second terminal having a second terminal surface parallel to the first terminal surface, the two first conductive wires preferably extend in the axial direction and are collectively connected to the first terminal, and the two second conductive wires are preferably bent in a plane parallel to the second terminal surface, extend in the axial direction to avoid interference with the first terminal, and are collectively connected to the second terminal.
According to this configuration, since the first terminal surface and the second terminal surface are parallel to each other, a connecting structure to an outside can be simplified. Also, since the first conductive wires extend linearly in the axial direction and are connected to the first terminal, the two first conductive wires can have equal length dimensions. Also, since the second conductive wires are bent in the plane parallel to the second terminal surface and extend in the axial direction, the two second conductive wires can have equal length dimensions. Circulating current is prevented from being generated respectively in the first electric wire and the second electric wire. At this time, a difference of the length dimensions between each first conductive wire and each second conductive wire having different phases from each other does not contribute to circulating current.
Furthermore, in the cable according to the present invention, a circumference of each of the first conductive wires and the second conductive wires is preferably provided with an insulating cover.
According to this configuration, since the insulating cover secures a distance between each first conductive wire and each second conductive wire, insulation between the conductive wires can be secured, and concentration of magnetic flux can further be restricted.
With the above cable according to the present invention, a magnetic shield is provided to enable to reduce leakage flux, and magnetic flux is dispersed, and a proximity effect is restricted to enable to prevent an increase of high-frequency resistance.
Hereinbelow, embodiments of the present invention will be described based on the drawings.
In
Here, in the present embodiment, a right-left direction in
The first electric wire 2 is configured to include the two first conductive wires 21 and a first terminal 22 to which the two first conductive wires 21 are connected at an end portion on the Z-direction instrument side. Each of the first conductive wires 21 is a litz wire for reduction of high-frequency resistance, for example.
The second electric wire 3 is configured to include the two second conductive wires 31 and a second terminal 32 to which the second conductive wires 31 are connected at an end portion on the Z-direction instrument side. Each of the second conductive wires 31 is a litz wire for reduction of high-frequency resistance, for example.
As for the insulating cover 4, a thickness in a radial direction is set to enable to withstand voltage between wires, and the covers covering the adjacent conductive wires abut on each other.
The inner sheath 5 is made of resin, forms the cable to have a circular cross-section to keep positional relationship among the first conductive wires 21 and the second conductive wires 31 covered with the insulating covers 4, and is provided to secure a predetermined separation dimension between each of the conductive wires 21 and 31 and the magnetic shield 6.
The magnetic shield 6 is made of a material with high magnetic permeability and covers a circumference of the inner sheath 5. When current flows in the first conductive wires 21 and the second conductive wires 31 to cause a magnetic field to be generated, magnetic flux B preferentially passes through the magnetic shield 6 to prevent the magnetic flux B from leaking outside.
The outer sheath 7 is made of resin and covers an outside of the magnetic shield 6 to protect the cable 1 from external mechanical impact and the like.
Next, the positional relationship among the first conductive wires 21 and the second conductive wires 31 and flow of the magnetic flux B will be described.
As illustrated in
Next, configurations of the first electric wire 2 and the second electric wire 3 at the end portions on the Z-direction instrument side will be described.
As illustrated in
The present embodiment exerts the following effects.
That is, since the magnetic flux B flowing inside the cable 1 when current flows in the first electric wire 2 and the second electric wire 3 concentrates on both the adjacent sides of each of the conductive wires 21 and 31, a cross-sectional area of a region V easily carrying current is larger, and high-frequency resistance decreases further than in a comparative example illustrated in
Also, respectively providing the two first conductive wires 21 and the two second conductive wires 31 enables a cross-sectional area of a space surrounded by the conductive wires disposed annularly to be minimum. Also, a configuration in which each of the conductive wires 21 and 31 is adjacent to two conductive wires having the other phase can be simplified most.
Furthermore, arranging the first terminal surface 22b and the second terminal surface 32b in the approximately equal plane approximately parallel to the YZ plane and at the approximately equal positions in the Z direction simplifies a connecting structure to the instrument. At this time, since the two first conductive wires 21 as well as the two second conductive wires 31 have the approximately equal length dimensions, circulating current is prevented from flowing respectively in the first electric wire 2 and the second electric wire 3.
It is to be noted that the present invention is not limited to the above embodiment, includes other configurations and the like that can achieve the object of the present invention, and includes the following modifications.
For example, although the first electric wire 2 and the second electric wire 3 respectively have the two first conductive wires 21 and the two second conductive wires 31 in the above embodiment, the first electric wire 2 and the second electric wire 3 may respectively have the three or more ones so that the numbers thereof may be equal. In the case in which the numbers increase, the cross-sectional area of the aforementioned space is larger, and this space can be provided with a coaxial cable for signal transmission and reception, for example.
Also, although the first terminal 22 and the second terminal 32 are provided on the Z-direction instrument side in the above embodiment, these components can be omitted. The conductive wires may be connected to an instrument provided with as many connection parts as the number of the conductive wires, and the conductive wires having the same phases may be electrically connected inside the instrument. Alternatively, the first terminal 22 and the second terminal 32 may be provided at both end portions in the Z direction. According to this configuration, not only the coil and the instrument but also two instruments can be connected to each other, and high-frequency alternating-current power can be transmitted.
Also, although the circumference of each of the conductive wires 21 and 31 is covered with the insulating cover 4 in the above embodiment, an inside of the inner sheath 5 may entirely be filled with an insulator, for example. Any configuration in which the conductive wires are kept insulated is available.
Also, although the resin-made outer sheath 7 is provided in the above embodiment, the outer sheath 7 may be made of metal. According to this configuration, the cable can be protected reliably. Moreover, in a case in which the outer sheath 7 is made of metal with high magnetic permeability, the outer sheath 7 can function as a magnetic shield, and the magnetic shield 6 can be omitted for cost reduction.
Although the best configuration, method, and the like for carrying out the present invention are disclosed in the above description, the present invention is not limited thereto. That is, although the present invention is mainly illustrated and described based on a specific embodiment, those skilled in the art can modify the aforementioned embodiment in various forms in terms of the shapes, materials, quantities, and other detailed configurations without departing from the technical spirit and objective scope of the present invention.
Accordingly, since the above description disclosed by limiting the shapes, materials, and the like is illustrative only to facilitate understanding of the present invention and does not limit the present invention, description using names of members from which part of limitations of these shapes, materials, and the like or all of the limitations have been removed shall be included in the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2012-285478 | Dec 2012 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2013/084505 | Dec 2013 | US |
Child | 14744152 | US |