This U.S. Patent Application claims priority from commonly-assigned U.S. patent application Ser. No. 12/892,315, filed Sep. 28, 2010, which is hereby incorporated by reference in its entirety.
This invention relates to structures formed from intertwined fibers, and more particularly, to ways in which to form structures for electronic devices from intertwined fibers.
Electronic devices such as music players often use headsets. Some headsets are formed from wires that are contained within a cable formed from braided fibers. Seams may be present at a bifurcation where the headset cable splits into left and right branches. The end of the cable may be terminated with an audio jack. To help prevent damage to the cable in the vicinity of the audio jack, a plastic strain relief structure is typically formed over the cable.
Headsets with cables such as these may be unsightly due to the presence of undesired seams and strain relief features. Moreover, if care is not taken, the fibers of the cable may be prone to unraveling in the vicinity of the bifurcation.
It would therefore be desirable to be able to provide improved cable structures such as improved intertwined cables with bifurcations and strain relief structures for devices such as headsets.
Accessories such as audio headsets may include cabling. A cable for an audio headset may contain wires. The wires in a headset may be electrically connected between headset components such as speakers, buttons, and an audio jack or other connector.
To provide the cable in a headset or other device with an attractive and durable finish, the cable may be covered with an intertwined cable cover (e.g., a braided or woven cable cover). Fibers in the intertwined cable cover may be formed from polymers or other suitable materials.
Fibers may be intertwined to form the intertwined cable cover using computer-controlled intertwining equipment (e.g., braiding or weaving equipment). The intertwining equipment may include servo motors that can be controlled in real time to adjust interweaving formation parameters such as intertwining density and intertwining tension (e.g., braid density and braid tension or weave density and weave tension). The intertwining density and intertwining tension of an intertwined cable cover may affect the attributes of the intertwined cable cover. For example, segments of an intertwined cable cover that are formed with an elevated intertwining tension and an elevated intertwining density may be stiffer and more durable than segments of the intertwined cable cover that are formed with reduced intertwining tension and intertwining density.
To accommodate left and right speakers, the cable in the headset may have a bifurcation. Below the bifurcation, the wires may be covered in a single segment of intertwined cable cover. Above the bifurcation, the cable cover can split into left and right portions. The bifurcation can be formed seamlessly using the intertwining equipment. To reduce the susceptibility of the intertwined cable cover to unraveling fibers in the vicinity of the bifurcation, one or more intertwined attributes such as intertwining density and intertwining tension may be locally increased in a segment of the cable that includes the bifurcation.
There is a potential for strain to damage the cable in the vicinity of the segment of cable that terminates at the audio jack. This segment of cable may also be locally increased in strength. In particular, the intertwining equipment may locally increase intertwining tension and intertwining density to form an integral strain relief structure in the cable cover at the audio jack. The audio jack may also be provided with an internal tapered strain relief member.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
Cables may be used in headphones, patch cords, power cords, or other equipment they conveys electrical signals. As an example, cables are sometimes described herein in the context of accessories such as headsets. This is, however, merely illustrative. Any suitable apparatus may be provided with a cable if desired.
The inner portions of a cable may contain wires for carrying power and data signals and an optional strengthening cord. Electromagnetic shielding (e.g., a metal braid, interwoven metal, and/or wrapped metal foil), a plastic sheath, and other layers may be used to cover the wires and strengthening cord. To provide the cable with an attractive and durable outer layer, the cable may be covered with intertwined fibers. The intertwined fibers of the outer layer may be formed by an intertwining tool such as an intertwining tool. The outer layer may have a tubular shape and may sometimes be referred to as an intertwined fiber cable cover or tubular intertwined fiber cable cover. An illustrative device that may include cabling with an intertwined cable cover is the headset shown in
A cross-sectional view of cable 92 is shown in
Cover 100 may enclose fibers such as fibers 106. Fibers 106 may include wires 104 for conducting electrical signals. Wires 104 may be used to carry power, digital signals, analog signals, etc. Wires 104 may include conductors 110 such as stranded conductors or solid conductors. Wire insulation 112 may be provided by dielectric coatings (e.g., polymer coatings). Fibers 106 may also include one or more strengthening cords such as optional cord 108 (e.g., a cord formed from polymer fibers such as aramid fibers).
Fibers 106 may optionally be covered with one or more layers such as layer 114. Layer 114 may include one or more layers of electromagnetic shielding structures (e.g., intertwined or wrapped foil conductive sheaths that surround bundles of wires within jacket 100) and/or plastic sheath layers (e.g., an inner jacket for cable 92).
Cable 92 may include any suitable number of wires 104 (e.g., one or more). For example, cable 92 may include two wires 104 (e.g., a positive wire and a negative wire). Cable 92 may also include three wires 104, four wires 104, five wires 104, six wires 104, or more than six wires 104. Arrangements with more wires 104 may be used to handle additional audio channels (e.g., left and right speaker channels, surround sound channels, etc.). Arrangements with more wires 104 may also be able to use two or more wires 104 for conveying power (e.g., by forming a power path that is not used to handle any data signals or that handles only a minimal number of data signals). The incorporation of additional wires 104 within cable 92 may also allow cable 92 to handle control signals (e.g., by providing a signal path for conveying signals from a controller in region 96 of headset 88 of
Cover 100 may include intertwined fibers 102. Binder materials (sometimes referred to as matrix materials) such as epoxy or other binders that fill interstitial spaces between intertwined fibers, coatings, or other suitable materials may, if desired, be incorporated into some or all of cover 100.
Cover 100 may be formed from one or more layers of fibers 102. As shown in the illustrative cross-sectional view of
Fibers 102 may be formed from any suitable materials. Examples of fibers 102 include metal fibers (e.g., strands of steel or copper), glass fibers (e.g., fiber-optic fibers that can internally convey light through total internal reflection), plastic fibers, etc. Some fibers may exhibit high strength (e.g., polymers such as aramid fibers). Other fibers such as nylon may offer good abrasion resistance (e.g., by exhibiting high performance on a Tabor test). Yet other fibers may be highly flexible (e.g., to stretch without exhibiting plastic deformation). Fibers may have different magnetic properties, different thermal properties, different melting points, different dielectric constants, different conductivities, different colors, etc.
The fibers of cable 92 including cable cover fibers 102 and interior fibers 106 (e.g., wires 104 and strengthening cord 108) may be formed from metal, dielectric, or other suitable materials. The fibers of cable 92 may be relatively thin (e.g., less than 20 microns or less than 5 microns in diameter—i.e., carbon nanotubes or carbon fiber) or may be thicker (e.g., metal wire). The fibers of cable 92 may be formed from twisted bundles of smaller fibers (sometimes referred to as filaments) or may be formed as unitary fibers of a single untwisted material. Regardless of their individual makeup (i.e., whether thick, thin, or twisted or otherwise formed from smaller fibers), the strands of material that make up the wires, strengthening cords, and fibers in cover 100 are referred to herein as fibers. In some contexts, the fibers of cable 92 may also be referred to as cords, threads, ropes, yarns, filaments, strings, twines, etc.
Fabrication equipment of the type that may be used to form headset 88 is shown in
Intertwining tool(s) 14 may be based on any suitable fiber intertwining technology. For example, intertwining equipment 14 may include computer-controlled intertwining tools. Equipment 14 may be used to form tubular interwoven structures such as cover 100 surrounding fibers 106 (e.g., around wires 104 and one or more strengthening cords 108). Seamless bifurcations (see, e.g., bifurcation 94 of
Different portions of cable 92 may be subject to different forces. For example, the fibers in the region of bifurcation 94 (
To address these concerns, tools 14 may include computer-controlled servo motors that are used to adjust the tension of fibers 102 (i.e., intertwining tension) and the speed with which cable 92 is passed through the intertwining tool (which controls intertwining density and fiber-to-fiber pitch). By adjusting intertwined formation attributes such as fiber tension and intertwining density (pitch) in real time during the intertwining process, the physical attributes of the intertwined structures (i.e., the closeness of the weave braid, or other intertwining and therefore the flexibility and durability of the intertwined structures) may be varied as a function of position along the longitudinal axis (length) of cable 92. In portions of cable 92 that are subject to potential wear such as bifurcation 94, the intertwined structures may be formed in a stiffer and more durable configuration (e.g., by using a higher intertwining density, by intertwining together fibers using a higher fiber tension, and/or by increasing stiffness by locally increasing the number of layers of fiber 102 in the intertwined structures). A strain relief structure may be formed in this way at connector 98 if desired.
After intertwining fibers 102 to form cable cover 100 using tools 14, tools 16 may be used to process cable 92. Tools 16 may include tools such as molds, spraying equipment, and other suitable equipment for incorporating binder into portions of the intertwined fibers produced by intertwining equipment 14. Tools 16 may also include dipping tools for forming coatings, heating tools for applying heat to cable 92 (e.g., to melt, dry, or cure a binder, to melt fibers in cable cover 100 or elsewhere in cable 92, etc.). An ultraviolet (UV) lamp may be included in tools 16 for UV curing operations. A cutting tool may include blades or other cutting equipment for dividing cover 100 and fibers 106 into desired lengths for forming cable 92 for accessory 88. The tools of equipment 16 may be controlled by computers or other suitable control equipment. If desired, additional tools may be included in system 10. The examples of
Equipment in system 10 such as intertwining tool 14 and equipment 16 may be used to form finished parts such as finished part 26 (e.g., cable 92 for headset 88 of
Conventional cables often have unsightly and bulky strain relief structures. Conventional cables with strain relief structures are shown in
A conventional cable without a fiber cover is shown in
A conventional cable with an intertwined cover is shown in
As shown in
Cable 92 has longitudinal axis 92A. Distance along the longitudinal dimension (length) of cable 92 may be represented by distance X. The distance X may be measured in direction 220 starting at origin ORG. Origin ORG may be longitudinally aligned with top surface of shell 98S, may be longitudinally aligned with an internal portion of connector 98 (e.g., a position within connector shell 98S such as position 98TP as shown in
To form an integral strain relief structure within cable 92 without adding unsightly strain relief structures such as structures 204 and 214 of
Consider, as an example, the graph of
The quality of cable cover 100 may also be adjusted in the vicinity of bifurcation 94 in cable 92. As shown in
As shown in
Strain relief member SR may be cylindrical, rectangular, or may have other shapes. If desired, strain relief member SR may have a stiffness that tapers off as a function of distance X, so that the amount of stiffening that is provided to cable 92 is gradually reduced as distance from connector 98 increases. This provides a smooth transition between the reinforced portion of cable 92 near connector 98 and the flexible unreinforced portion of cable 92 along its main length. The gradual reduction in stiffness of member SR may be implemented using different materials at different distances X, using different amounts of materials in member SR as a function of X, using different shapes or sizes for the cross-section of member SR as a function of X, etc.
A perspective view of an illustrative conical shape that may be used for strain relief member SR is shown in
Illustrative steps involved in using computer-controlled intertwining equipment such as tools 14 of
At step 308, fibers such as fibers 106 for the interior of cable 92 and fibers such as fibers 102 for intertwined cable cover 100 may be loaded into fiber sources 12.
At step 310, tool 14 may be used to form cover 100 around fibers 106, as shown in
Tool 14 may braid, weave, or otherwise intertwine fibers 102 around fibers 106 and layer 114. In doing so, computer controlled servo motors may be used to control intertwining tension (e.g., by increasing or decreasing tension on each individual fiber that is being fed from a respective bobbin in the intertwining tool to the intertwined structure as the bobbin passes along a predefined track path), fiber density (e.g., by increasing or decreasing the speed with which the cable passes through the intertwining tool), or other intertwined formation attributes.
These intertwined formation attributes affect the physical attributes of the resultant intertwined cable cover 100 such as the strength of the cable cover 100, the closeness of the individual fibers to each other (e.g., the tightness of the weave, braid, or other intertwining in cover 100), the fiber density in the cover, the stiffness of the cable, the resistance of the cable cover to wear, etc. By controlling equipment 14 during intertwining, these physical attributes may be adjusted in real time to provide certain sections of cable 92 with localized strength. In particular, integral strain relief structures may be formed in the portions of cable 92 that are connected to connector 98 (e.g., by increasing the intertwining tension and/or intertwining density and thereby stiffening and strengthening the cable cover and cable to form a strain relief structure for connector 98), strengthening structures may be formed to locally adjust the attributes of cable 92 in the vicinity of bifurcation 94 relative to the other portions of cable 92 (e.g., by increasing the intertwining tension and/or intertwining density and thereby stiffening and strengthening the cable cover and cable in a 3 mm to 5 cm segment of the cable cover that surrounds bifurcation 94 to form a strengthening structure for bifurcation 94 that helps prevent fiber unraveling), etc.
During the operations of step 312, the process of forming cable 92 and headset 88 (or other suitable device) may be completed using tools 16. During these steps, tool 16 may incorporate binder into the fibers of cable cover 100, cable cover 100 may be coated with liquid, heat may be applied, a cutting tool may divide cable 92 into sections, internal strain relief members such as member SR of
The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
1523051 | Carpenter et al. | Jan 1925 | A |
1706284 | Fortin | Mar 1929 | A |
4363019 | Miyamoto et al. | Dec 1982 | A |
4509877 | Sobin et al. | Apr 1985 | A |
5339657 | McMurray | Aug 1994 | A |
5388497 | Akiyama et al. | Feb 1995 | A |
5398586 | Akiyama et al. | Mar 1995 | A |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6622604 | Chouinard et al. | Sep 2003 | B1 |
6907810 | Kim | Jun 2005 | B2 |
7004967 | Chouinard et al. | Feb 2006 | B2 |
7069835 | Nishri et al. | Jul 2006 | B2 |
7311030 | Renaud | Dec 2007 | B2 |
7444916 | Hirukawa | Nov 2008 | B2 |
7622670 | Sanderson et al. | Nov 2009 | B1 |
7908956 | Dow et al. | Mar 2011 | B2 |
8006601 | Inazawa et al. | Aug 2011 | B2 |
8442257 | Aase et al. | May 2013 | B2 |
20020111674 | Chouinard et al. | Aug 2002 | A1 |
20040094024 | Kim | May 2004 | A1 |
20050020319 | Kim et al. | Jan 2005 | A1 |
20050150370 | Nishri et al. | Jul 2005 | A1 |
20090188380 | Dow et al. | Jul 2009 | A1 |
20100315299 | Bibl et al. | Dec 2010 | A1 |
20100316229 | Bibl et al. | Dec 2010 | A1 |
20110054589 | Bashiri et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
08-315645 | Nov 1996 | JP |
2006-093018 | Apr 2006 | JP |
2010051856 | May 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20130298518 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12892315 | Sep 2010 | US |
Child | 13894822 | US |