Cache optimization

Information

  • Patent Grant
  • 11194719
  • Patent Number
    11,194,719
  • Date Filed
    Friday, December 14, 2018
    5 years ago
  • Date Issued
    Tuesday, December 7, 2021
    2 years ago
Abstract
A system and method for management and processing of resource requests at cache server computing devices is provided. Cache server computing devices segment content into an initialization fragment for storage in memory and one or more remaining fragments for storage in a media having higher latency than the memory. Upon receipt of a request for the content, a cache server computing device transmits the initialization fragment from the memory, retrieves the one or more remaining fragments, and transmits the one or more remaining fragments without retaining the one or more remaining fragments in the memory for subsequent processing.
Description
BACKGROUND

Generally described, computing devices and communication networks can be utilized to exchange information. In a common application, a computing device can request content from another computing device via the communication network. For example, a user at a personal computing device can utilize a software browser application to request a Web page from a server computing device via the Internet. In such embodiments, the user computing device can be referred to as a client computing device and the server computing device can be referred to as a content provider.


Content providers are generally motivated to provide requested content to client computing devices often with consideration of efficient transmission of the requested content to the client computing device and/or consideration of a cost associated with the transmission of the content. For larger scale implementations, a content provider may receive content requests from a high volume of client computing devices which can place a strain on the content provider's computing resources. Additionally, the content requested by the client computing devices may have a number of components, which can further place additional strain on the content provider's computing resources.


With reference to an illustrative example, a requested Web page, or original content, may be associated with a number of additional resources, such as images or videos, that are to be displayed with the Web page. In one specific embodiment, the additional resources of the Web page are identified by a number of embedded resource identifiers, such as uniform resource locators (“URLs”). In turn, software on the client computing devices typically processes embedded resource identifiers to generate requests for the content. Often, the resource identifiers associated with the embedded resources reference a computing device associated with the content provider such that the client computing device would transmit the request for the additional resources to the referenced content provider computing device. Accordingly, in order to satisfy a content request, the content provider would provide client computing devices data associated with the Web page as well as the data associated with the embedded resources.


Some content providers attempt to facilitate the delivery of requested content, such as Web pages and/or resources identified in Web pages, through the utilization of a content delivery network (“CDN”) service provider. A CDN server provider typically maintains a number of computing devices in a communication network that can maintain content from various content providers. In turn, content providers can instruct, or otherwise suggest to, client computing devices to request some, or all, of the content provider's content from the CDN service provider's computing devices.


As with content providers, CDN service providers are also generally motivated to provide requested content to client computing devices often with consideration of efficient transmission of the requested content to the client computing device and/or consideration of a cost associated with the transmission of the content. Accordingly, CDN service providers often consider factors such as latency of delivery of requested content in order to meet service level agreements or to generally improve the quality of delivery service.





DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a block diagram illustrative of one embodiment of a content delivery network (CDN) based system including one or more cache servers;



FIG. 2 is a block diagram of the CDN-based system of FIG. 1 illustrating the processing of a content request by a content provider;



FIG. 3 is a block diagram of the CDN-based system of FIG. 1 illustrating the processing of a DNS query and assignment of a resource cache component;



FIGS. 4A-4F are simplified block diagrams of the CDN-based system of FIG. 1 illustrating embodiments associated with the processing of the resource request by a cache server;



FIG. 5 is a flow diagram of an illustrative method for processing a resource request at a cache server; and



FIG. 6 is a flow diagram of an illustrative method for managing storage of a resource at a cache server.





DETAILED DESCRIPTION

Generally described, the present disclosure is directed to the management of cache resources utilized when a client computing device requests content from a network resource, such as content delivery network (“CDN”) service providers. Specifically, aspects of the disclosure will be described with regard to the processing, by a resource cache component, of content, and segmentation of the content with respect to both the storage and retrieval thereof. Although various aspects of the disclosure will be described with regard to illustrative examples and embodiments, one skilled in the art will appreciate that the disclosed embodiments and examples should not be construed as limiting.



FIG. 1 is a block diagram illustrative of a content delivery environment 100 for the management of content storage and delivery. As illustrated in FIG. 1, the content delivery environment 100 includes a number of client computing devices 102 (generally referred to as clients) for requesting content from a content provider and/or a CDN service provider. In an illustrative embodiment, the client computing devices 102 can correspond to a wide variety of computing devices including personal computing devices, laptop computing devices, hand-held computing devices, terminal computing devices, mobile devices, wireless devices, various electronic devices and appliances and the like. In an illustrative embodiment, the client computing devices 102 include necessary hardware and software components for establishing communications over a communication network 108, such as a wide area network or local area network. For example, the client computing devices 102 may be equipped with networking equipment and browser software applications that facilitate communications via the Internet or an intranet.


Additionally, the client computing devices 102 may also include necessary hardware and software components to execute, or otherwise process, translation information as will be described in greater detail below. One skilled in the relevant art will appreciate that additional hardware/software components for processing the translation information may be included with the execution of a multi-purpose software application, such as a browser software application. Alternatively, some or all of the additional hardware/software components may be embodied in stand alone or specialized components configured for processing the translation information. Although not illustrated in FIG. 1, each client computing device 102 utilizes some type of local DNS resolver component, such as a DNS Name server, that generates the DNS queries attributed to the client computer. In one embodiment, the local DNS resolver component may belong to an enterprise network to which the client computer belongs. In another embodiment, the local DNS resolver component may belong to an Internet Service Provider (ISP) that provides the network connection to the client computer.


The content delivery environment 100 can also include a content provider 104 in communication with the one or more client computing devices 102 via the communication network 108. The content provider 104 illustrated in FIG. 1 corresponds to a logical association of one or more computing devices associated with a content provider. Specifically, the content provider 104 can include a web server component 110 corresponding to one or more server computing devices for obtaining and processing requests for content (such as Web pages) from the client computing devices 102. The content provider 104 can further include an origin server component 112 and associated storage component 114 corresponding to one or more computing devices for obtaining and processing requests for network resources from the CDN service provider. One skilled in the relevant art will appreciate that the content provider 104 can be associated with various additional computing resources, such additional computing devices for administration of content and resources, DNS name servers, and the like.


With continued reference to FIG. 1, the content delivery environment 100 can further include a CDN service provider 106 in communication with the one or more client computing devices 102 and the content providers 104 via the communication network 108. The CDN service provider 106 illustrated in FIG. 1 corresponds to a logical association of one or more computing devices associated with a CDN service provider. Specifically, the CDN service provider 106 can include a number of Point of Presence (POP) locations 116, 122 that correspond to nodes on the communication network 108. Each POP 116, 122 includes a DNS component 118, 124 made up of a number of DNS server computing devices for resolving DNS queries from the client computers 102.


Each POP 116, 122 also includes a resource cache component 120, 126 for storing objects from content providers and transmitting various requested objects to various client computers. Each resource cache component 120, 126 is made up of a number of cache server computing devices 130, 132, 134 for obtaining and processing requests for network resources. Each cache server computing device 130, 132, 134 includes a memory 140, 142, 144 having the lowest data access latency, generally referred to as latency, for the corresponding cache server computing device. One skilled in the relevant art will appreciate that for purposes of the present disclosure data access latency can include, among other things, a minimal time period in which stored data can be retrieved from a memory location and available for transmission. In addition, each cache server computing device 130, 132, 134 can be associated with, either directly or shared via a bus or otherwise, a storage media 150, 152, 154 having a higher latency than the attached memory 140, 142, 144. Storage media 150, 152, 154 can include, for example, non-volatile memory such as a disk memory, flash memory, optical memory, and the like. Even further, the content delivery environment 100 can include a network-based memory 160 which can be utilized by cache server computing devices 130, 132, 134, as well as by other computing devices, for the management of content. Similar to storage media 150, 152, 154, the network-based memory 160 is associated with a higher latency than the attached memory 140, 142, 144.


In an illustrative embodiment, the DNS component 118, 124 and resource cache component 120, 126 are considered to be logically grouped, regardless of whether the components, or portions of the components, are physically separate. Additionally, although the POPs 116, 122 are illustrated in FIG. 1 as logically associated with the CDN service provider 106, the POPs will be geographically distributed throughout the communication network 108 in a manner to best serve various demographics of client computing devices 102. Additionally, one skilled in the relevant art will appreciate that the CDN service provider 106 can be associated with various additional computing resources, such additional computing devices for administration of content and resources, and the like.


One skilled in the relevant art will appreciate that the components and configurations provided in FIG. 1 are illustrative in nature. Accordingly, additional or alternative components and/or configurations, especially regarding the additional components, systems and subsystems for facilitating communications may be utilized.


With reference now to FIGS. 2-4, the interaction between various components of the content delivery environment 100 of FIG. 1 will be illustrated. For purposes of the examples, however, the illustrations have been simplified such that many of the components utilized to facilitate communications are not shown. One skilled in the relevant art will appreciate that such components can be utilized and that additional interactions would accordingly occur without departing from the spirit and scope of the present disclosure. Additionally, although communications may be illustrated as direct communications between components, one skilled in the relevant art will appreciate that all the illustrative communications may occur directly between components or facilitated via the communication network 108. Prior to discussing the management of objects by the cache server computing devices 140, 142, 144, a brief overview of the general processing of resource requests from a client computing device 102 in a CDN-based system will be described.


With reference to FIG. 2, a client computing device 102 generates a content request that is received and processed by the content provider 104, such as through the Web server 110. In accordance with an illustrative embodiment, the request for content can be in accordance with common network protocols, such as the hypertext transfer protocol (“HTTP”). Upon receipt of the content request, the content provider 104 identifies the appropriate responsive content. In an illustrative embodiment, the requested content can correspond to a Web page that is displayed on the client computing device 102 via the processing of information, such as hypertext markup language (“HTML”), extensible markup language (“XML”), and the like. The requested content can also include a number of embedded resource identifiers, described above, that corresponds to resource objects that should be obtained by the client computing device 102 as part of the processing of the requested content. The embedded resource identifiers can be generally referred to as original resource identifiers or original URLs.


In one embodiment, the original URLs identify the domain of the CDN service provider 106 (e.g., “cdnprovider.com”), the same name of the resource to be requested (e.g., “resource.xxx”) and the same path where the resource will be found (e.g., “path”). Additionally, the original URL can include additional processing information (e.g., “additional information”). The original URL would have the form of:


http://additional_information.cdnprovider.com/path/resources.xxx


In another embodiment, the information associated with the CDN service provider 106 is included the original URL, such as through prepending or other techniques, such that the original URL can maintain all of the information associated with a URL previously associated with the content provider 104. In this embodiment, the original URL would have the form of:


http://additional_information.cdnprovider.com/www.contentprovider.com/path/resource.xxx


Upon receipt of the requested content, the client computing device 102, such as through a browser software application, begins processing any of the markup code included in the content and attempts to acquire the resources identified by the embedded resource identifiers. Accordingly, the first step in acquiring the content correspond to the issuance, by the client computing device 102 (through its local DNS resolver), a DNS query for the Original URL resource identifier that results in the identification of a DNS server authoritative to the “.” and the “com” portions of the translated URL. After resolving the “.” and “com” portions of the embedded URL, the client computing device 102 then issues a DNS query for the resource URL that results in the identification of a DNS server authoritative to the “.cdnprovider” portion of the embedded URL. The issuance of DNS queries corresponding to the “.” and the “com” portions of a URL are well known and have not been illustrated.


With reference now to FIG. 3, in an illustrative embodiment, the successful resolution of the “cdnprovider” portion of the original URL identifies a network address, such as an IP address, of a DNS server component 118 associated with the CDN service provider 106. In one embodiment, the IP address is a specific network address unique to a DNS server component 118 of POP 116. In another embodiment, the IP address can be shared by one or more POPs 116, 122. In this embodiment, a DNS query to the shared IP address utilizes a one-to-many network routing schema, such as anycast, such a specific POP, POP 118, will receive the request as a function of network topology. For example, in an anycast implementation, a DNS query issued by a client computing device 102 to a shared IP address will arrive at a DNS server component logically having the shortest network topology distance, often referred to as network hops, from the client computing device. The network topology distance does not necessarily correspond to geographic distance. However, in some embodiments, the network topology distance can be inferred to be the shortest network distance between a client computing device 102 and a POP.


With continued reference to FIG. 3, in either of the above identified embodiments (or any other embodiment), a specific DNS server in the DNS component 118 of a POP 116 receives the DNS query corresponding to the original URL from the client computing device 102. Once one of the DNS servers in the DNS component 118 receives the request, the specific DNS server attempts to resolve the request. In an illustrative embodiment, a specific DNS server can resolve the DNS query by identifying an IP address of a cache server component that will process the request for the requested resource. As described above, a selected resource cache component 120, 126 can process the request by either providing the requested resource if it is available or attempt to obtain the requested resource from another source, such as a peer cache server computing device or the origin server 112 of the content provider 104.


Upon selection of a cache server computing device 140, 142, 144 (or a resource cache component 120, 126), the DNS server component 118 provides an IP address of the cache server computing device, resource cache component or load balancer/load share device associated with a resource cache component. The client computing device 102 can then utilize Internet communication protocols to request the resource from a cache server computing device 140, 142, 144 identified by the IP address. The cache server computing device 140, 142, 144 then processes the request, as will be described in greater detail below, to provide the resource to the client computing device 102. Specifically, the cache server computing device can begin transmitting an initialization portion of the requested content from a local memory while receiving the remaining portions of the requested the content from other storage locations. Upon receipt, the requested resource is then processed by the browser application on the client computing device 102 as appropriate.


Referring now to FIGS. 4A-4F, multiple embodiments of the interaction between various components of the content delivery environment 100 will be described with respect to the processing of a resource request by a cache server computing device 140, 142, 144. For purposes of the examples in FIGS. 4A-4F, however, the illustrations have been simplified such that many of the systems, subsystems, and components utilized to facilitate communications are not shown. In general, and as will be described in greater detail below, objects stored in cache server computing devices 130, 132, 134 are each segmented into an initialization fragment for storage in memory 140, 142, 144 and one or more remaining fragments for storage in a media having a higher latency than the memory in which the initialization fragment is stored. In one embodiment, the one or more remaining fragments comprise a majority fragment.


With reference now to FIG. 4A, a cache server computing device 132 receives a request for an object from a client computing device 102. Upon receipt of the request for the object, the cache server computing device 132 begins retrieving a majority fragment of the object from a storage media associated with the cache server computing device, such as a local disk memory 152 in this example. In one example, the storage location of the majority may be previously known to the cache server computing device 132 such that the request for the majority fragment portion may be sent immediately. Alternatively, in another example, the cache server computing device 132 may query a directory or a service to identify an appropriate storage location for the majority fragment portion. The service may be utilized to identify a best or available storage locations if the majority fragment portion is stored in multiple storage locations (such as for purposes of geographic distribution).


Substantially at the same time as the request for the majority fragment portion, the cache server computing device 132 begins transmitting the initialization fragment over a network to the requesting client computing device 102 from a memory component 142. In this embodiment, the local disk memory 152 likely has a higher latency associated with recall of data therefrom than the memory 142 (e.g. RAM) of the cache server computing device 132. Accordingly, retrieving the initialization fragment from the memory 132 allows the cache server computing device to begin transmitting at least a portion of the requested object as soon as the request is processed. At the same time, the size of the initialization fragment is sufficiently large such that the majority fragment, or fragments, can be retrieved prior to completion of the transmission of the initialization fragment portion. The cache server computing device 132 can then begin transmitting the majority fragment over the communication network to the requesting client computing device 102 upon completion of the transmission of the initialization fragment portion from memory 142. Alternatively, the cache server computing device 132 can then begin transmitting the majority fragment over the communication network to the requesting client computing device 102 as soon as it begins receiving the majority fragment. Although the initialization fragment portion is shown as being provided from the local cache server computing device memory 142, one skilled in the relevant art will appreciate that the initialization fragment portion may be stored and transmitted from other storage locations and/or by other cache server computing devices.


In one embodiment, the majority fragment portion is not retained by the cache server computing device 132 for processing a subsequent request for the same object. One skilled in the relevant art will appreciate that in accordance with the operation of a cache server computing device, such as cache server computing device 132, the majority fragment portion may be stored in memory 142 in order to be transmitted to the client computing device 102. In this embodiment, however, such storage would be considered to be generally transient as the majority fragment portion may be deleted (or at least prioritized for overwriting).


It will be appreciated by one skilled in the relevant art that the precise timing of locating, retrieving and transmitting the initialization and majority fragments can vary. It will also be appreciated by one skilled in the relevant art that as a network includes a number of local and non-local storage media, the majority fragments can be stored on any storage media within a POP 116, 122 or in the network 108 having a higher latency than the memory on which the initialization fragment is stored. For example, one or more majority fragments may be stored in the local disks of peer cache server computing devices of a POP, on a network-based storage 160, on the content provider's origin server 112, and the like. As described above, when an object is requested by a client computing device 102, the receiving cache server computing device can begin providing the initialization fragment immediately from a local memory, while the majority fragment segment is retrieved from another location such as a cache peer's disk.


In another illustrative embodiment, the requested object can be segmented into three or more fragments for retrieval. In this embodiment, the initialization fragment can be stored in memory of a cache server computing device in a manner as previously described. Additionally, an intermediate fragment is stored on another storage location, such as a cache server computing device disk, while the majority fragment is stored on yet another storage location, such as on the origin server 112. When the initialization fragment begins to be served, the intermediate fragment is retrieved and served, and the majority fragment is retrieved from the origin server. In one embodiment, the storage location of the intermediate fragment may have a higher latency than the memory (e.g., storage location of the initialization fragment portion) but a lower latency than the storage location of the majority fragment portion. Accordingly, the size of the intermediate fragment portion would be a function to the time required to retrieve the majority fragment portion. Alternatively, the latency of the storage locations of the intermediate and majority fragment portions may not be substantially different. In this embodiment, the intermediate and majority fragment portions may be allocated according to financial or service criteria, such as cost of storage, cost of bandwidth, guaranteed service availability, redundant storage, and the like. As also described above with regard to FIG. 4A, in one embodiment, the initialization and majority fragment portions would not be retained by the cache server computing device for processing a subsequent request for the same object.


With reference now to FIGS. 4B-4D, the processing performed by the various components in these illustrative embodiments is similar to that described in reference to FIG. 4A with the exception that the storage location from which the majority fragment is provided. With reference to FIG. 4B, the cache server computing device 132 obtains the request for an object and then begins retrieving the majority fragment of the requested object from disk memory 150 of another cache server computing device 130. In this example, the cache server computing device 130 is in the same POP 116. In the same manner described above, the receiving cache server computing device 132 then transmits the initialization fragment portion and the majority fragment portion to the client computing device 102. As previously described, the majority fragment portion may be stored in memory 142 to facilitate the transmission to the client computing device 102. The majority fragment portion may not be maintained in the memory 142 however for subsequent requests for the object.


With reference now to FIG. 4C, the cache server computing device 132 again receives the request for an object from the client computing device 102. In this illustrative example, however, the cache server computing device 132 requests the majority fragment from disk memory 150 of another cache server computing device 130 from a different POP 122. The cache server computing device 132 would then begin transmitting the initialization fragment portion while retrieving the majority fragment portion. Subsequently, the majority fragment portion would be transmitted. In yet another alternative embodiment, the majority fragment may be retrieved from a separate network-based memory 160 as shown in FIG. 4D, or from a storage media 114 associated with the origin server component 112 as shown in FIG. 4E. In both of these embodiments, the size of the initialization fragment portion may be larger than the size of the initialization fragment portion discussed with regard to the examples in FIGS. 4B-4D in the event of additional latencies associated with the network communications. As will be described below, the size of the initialization fragment portion may be dynamically adjusted.


Turning now to FIG. 4F, in yet a further embodiment, the requested object transmitted by the cache server computing device 132 can be segmented into an initialization fragment, an intermediate fragment, and a majority fragment. In particular, upon request of the object, the cache server computing device 132 retrieves the intermediate fragment associated with the object from a first storage media, such as hard disk 152. As previously described, the hard disk 152 has a higher latency than the memory 142 of the cache server computing device 132. At the same time, the cache server computing device 140, 142, 144 begins retrieving the majority fragment associated with the object from a second storage media, also having higher latency than the memory 142 of the cache server computing device 132. In this embodiment, the second storage media is a storage media associated with the origin server component 112. Substantially at the same time, the cache server computing device 132 begins transmitting the initialization fragment of the object from memory 142 over the network to the requesting client computing device 102. As soon as the intermediate fragment is retrieved, the cache server computing device starts transmitting the intermediate fragment over the network to the requesting client computing device, and likewise for the majority fragment. Again, it will be appreciated by one skilled in the relevant art that the precise timing of locating, retrieving and transmitting the initialization, intermediate, and majority fragments can vary. Additionally, as previously described, although the intermediary and majority fragment portions may be stored in memory 142 to facilitate the transmission to the client computing device 102, these portions may not be maintained in the memory 142 however for subsequent requests for the object.


With reference now to FIG. 5, one embodiment of a routine 500 for processing a resource request at a cache server computing device 130, 132, 134 will be described. At block 502, the routine 500 begins with the receipt of a request for an object at the cache server computing device 130, 132, 134. As previously described, a specific IP address of a cache server may be assigned by a DNS server associated with the CDN service provider 106. Alternatively, a specific cache server computing device 130, 132, 134 may be selected by software/hardware components at a resource cache component.


At block 504, the cache server computing device 130, 132, 134 finds and begins transmission of an initialization fragment for the object from memory 140, 142, 144 of the cache server computing device. In an illustrative embodiment, the memory 140, 142, 144 corresponds to a local memory associated with the receiving cache server computing device. Alternatively, the memory may correspond to a memory of a peer cache server computing device, such as within the same POP or across POPs. Still further, although the initialization fragment portion has always been illustrated as stored on a memory, one skilled in the relevant art will appreciate that the initialization fragment portion may also be provided from other storage locations. Such variations are considered to be within the scope and spirit of the present disclosure.


At block 506, the cache server computing device begins retrieving all remaining portions of the object, including all intermediary and majority fragments. In an illustrative embodiment, the intermediary and majority fragment portion are stored on a media having a higher latency than the memory. As previously described, the cache server computing device can utilize a service or transmit a request in the event that the storage location for the majority fragment portion is not known or if multiple storage locations exist. At decision block 508, a test is conducted to determine whether the transmission of the initialization fragment portion is complete. If the transmission is not complete, the cache server computing device continues to transmit the initialization fragment portion from memory. Additionally, if the majority fragment portion is not downloaded, the cache server computing device continues to download the majority fragment portion (or intermediate fragment portions).


Upon completion of the transmission of the initialization fragment portions, at block 510, the cache server computing device then begins transmission of the remaining fragment portions (including all intermediary and majority fragments) over the network to the requesting client computing device 102. At block 514, the cache server computing device can then delete any intermediary or majority fragment portions that were stored in memory as part of the transmission process. In an illustrative embodiment, the cache server computing device may explicitly delete the intermediary or majority fragment portions from memory. In another embodiment, the cache server computing device may mark the memory used to store the intermediary or majority fragment portions as available for overwriting. In still a further embodiment, the cache server computing device may lower the priority in a memory management algorithm for the memory used to store the intermediary or majority fragment portions. Additionally, block 514 may be optionally omitted. The routine ends at block 516.


In other embodiments, the commencement of transmission of the initialization fragment occurs immediately upon receipt of the request for the associated object, with the request for retrieval of the majority fragment occurring simultaneously with or immediately subsequent to the commencement of transmission of the initialization fragment.


With reference now to FIG. 6, one embodiment of a routine 600 for managing storage of a resource at a cache server computing device will be described. At block 602, the cache server computing device receives a request for storage of an object. At block 604, the cache server computing device determines an initialization fragment and one or more remaining fragments associated with the object. Part of the process of making such determination includes determining the size of the initialization fragment. In one embodiment, the size of the initialization fragment is based on the latency associated with retrieving the one or more remaining fragments from other storage location as compared to the latency associated with transmitting (at the same time) the initialization fragment portion. As previously described, the size of the initialization chunk can be selected such that the retrieval of the intermediary and/or majority fragment portions is complete prior to completion of the transmission of the initialization fragment portion to the client computing device 102. Specifically, the size of the initialization fragment can be based on the throughput of the number of network packets that can be sent during the average or maximum latency of the storage media as compared to the fastest possible throughput of packets to a client computing device 102. It will be appreciated by one skilled in the relevant art that the size of the initialization fragment can be determined in a number of ways, such as statically or dynamically or otherwise, and based on a variety of factors, including those described above, as well as others such as the encoding rate of the object.


In another embodiment, additional cache management methodologies may be integrated into the consideration size of the initialization fragment portion. In one example, the size of the initialization fragment can be based on a frequency of a request for the object. For example, an object that is frequently requested could have a larger initialization fragment size so as to reduce the number of I/O requests required to serve the one or more remaining fragments from the higher latency storage media. In another example, the size of the initialization fragment is based on a frequency of a request for another object related to the requested object.


With reference again to FIG. 6, at block 606, the cache server computing device then stores the initialization fragment in memory of the cache server computing device. Alternatively, the cache server computing device may simply associate the initialization fragment with a storage location and store the association, especially for example where another computing device controls the storage of the initialization fragment. At block 608, the cache server computing device stores the one or more remaining fragments in one or more storage locations. Again, alternatively, the cache server computing device may simply associate the one or more remaining fragments with the selected one or more storage locations and store the association.


In another illustrative embodiment, the size of the majority fragment is the whole file size of the object. In accordance with this embodiment, the cache server component can receive the entire object as the intermediary and/or majority fragment portion and filter the fragments that have not yet been transmitted. Alternatively, the cache server computing device may request only portions of the majority file from its storage location. However, by storing the entire object as the majority and/or intermediary fragments, the size of the initialization fragment portion may be dynamically modified without requiring a corresponding modification to the other fragment portions. Alternatively, in another embodiment, the size of the intermediate and majority fragments each correspond such that all the fragments sum up to the whole file size of the object.


At decision block 610, the cache server computing device determines whether the initialization fragment needs to be updated. There are a number of ways in which such determination may be made. In a few illustrative examples, the decision block 610 can be based on a determination of a latency associated with retrieval of the majority fragment, a frequency of a request for the object, and/or a frequency of a request for another object related to the requested object. In one embodiment, the decision block 610 includes a specific determination as to a new file size for the initialization fragment. The new file size can be determined in similar ways and based on similar factors presented above for determining the initial file size of the initialization fragment.


At block 612, if a determination is made that an update is needed, the cache server computing device stores an incremental fragment in the memory of the cache server computing device to supplement the initialization fragment. In one embodiment, the size of the incremental fragment and the original initialization fragment together correspond to the newly determined file size for the initialization fragment. Alternatively, in another embodiment, if an update is needed, a new initialization fragment of the appropriate size, which is determined through the update process, replaces the original initialization fragment in the memory. The routine ends at block 614. One skilled in the relevant art will appreciate that portions of routine 600 (such as blocks 610 and 612) may be continuously implemented to update the fragment portions.


It will be appreciated by those skilled in the art and others that all of the functions described in this disclosure may be embodied in software executed by one or more processors of the disclosed components and mobile communication devices. The software may be persistently stored in any type of non-volatile storage.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer readable storing the computer executable components such as a CD-ROM, DVD-ROM, or network interface. Further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims
  • 1. A computer-implemented method comprising: receiving, at a cache component, an object for storage;segmenting the object into an initialization fragment for storage in memory and one or more remaining fragments for storage in a media having higher latency than the memory;receiving a request for the object;causing transmission of the initialization fragment from the memory;retrieving the one or more remaining fragments from the media having higher latency than the memory;causing transmission of the one or more remaining fragments;determining that a file size for the initialization fragment should be updated; andstoring, based on this determination, an incremental fragment in the memory to supplement the initialization fragment resulting in a plurality of fragments of the object stored in the memory, wherein a total size of the incremental fragment and the initialization fragment together corresponds to the determined file size.
  • 2. The computer-implemented method of claim 1, wherein segmenting the object comprises segmenting the object by the cache component.
  • 3. The computer-implemented method of claim 1, wherein the one or more remaining fragments comprise a majority fragment.
  • 4. The computer-implemented method of claim 1, wherein the one or more remaining fragments comprise an intermediate fragment and a majority fragment.
  • 5. The computer-implemented method of claim 4, wherein the intermediate fragment is stored in a separate location from the majority fragment.
  • 6. The computer-implemented method of claim 1, wherein determining if the file size of the initialization fragment should be updated is based on a determination of latency associated with retrieval of the one or more remaining fragments.
  • 7. The computer-implemented method of claim 1, wherein determining if the file size of the initialization fragment should be updated is based on a frequency of a request for the object, such that a change in the size of the incremental fragment is based on a change in request frequency.
  • 8. The computer-implemented method of claim 1, wherein the size of the initialization fragment is based on a latency associated with retrieval of the one or more remaining fragments.
  • 9. The computer-implemented method of claim 1, wherein the size of the initialization fragment is based on a frequency of a request for the object.
  • 10. The computer-implemented method of claim 1, wherein the segmenting of the object into the initialization fragment and each of the one or more remaining fragments is performed based at least in part on one or more of a fragment retrieval latency, cost, or service criterion.
  • 11. A system comprising: a memory for storing initialization fragments of objects; andone or more computing devices configured with specific executable instructions and operative to: receive an object for storage;segment the object into an initialization fragment for storage in the memory and one or more remaining fragments for storage in a media having higher latency than the memory;receive a request for the object;cause transmission of the initialization fragment from the memory;retrieve the one or more remaining fragments from the media having higher latency than the memory;cause transmission of the one or more remaining fragments;determine that a file size for the initialization fragment should be updated; andstore, based on this determination, an incremental fragment in the memory to supplement the initialization fragment resulting in a plurality of fragments of the object stored in the memory, wherein a total size of the incremental fragment and the initialization fragment together corresponds to the determined file size.
  • 12. The system of claim 11, wherein the one or more computing devices comprise a cache component.
  • 13. The system of claim 11, wherein the one or more remaining fragments comprise a majority fragment.
  • 14. The system of claim 11, wherein the one or more remaining fragments comprise an intermediate fragment and a majority fragment.
  • 15. The system of claim 14, wherein the intermediate fragment is stored in a separate location from the majority fragment.
  • 16. The system of claim 11, wherein determining if the file size of the initialization fragment should be updated is based on a determination of latency associated with retrieval of the one or more remaining fragments.
  • 17. The system of claim 11, wherein determining if the file size of the initialization fragment should be updated is based on a frequency of a request for the object, such that a change in the size of the incremental fragment is based on a change in request frequency.
  • 18. The system of claim 11, wherein the size of the initialization fragment is based on a latency associated with retrieval of the one or more remaining fragments.
  • 19. The system of claim 11, wherein the size of the initialization fragment is based on a frequency of a request for the object.
  • 20. The system of claim 11, wherein the segmenting of the object into the initialization fragment and each of the one or more remaining fragments is performed based at least in part on one or more of a fragment retrieval latency, cost, or service criterion.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/886,937, now U.S. Pat. No. 10,157,135, entitled “CACHE OPTIMIZATION” and filed Oct. 19, 2015, which in turn is a continuation of U.S. patent application Ser. No. 14/078,274, now U.S. Pat. No. 9,208,097, entitled “CACHE OPTIMIZATION” and filed Nov. 12, 2013, which in turn is a continuation of U.S. patent application Ser. No. 12/060,015, now U.S. Pat. No. 8,606,996, entitled “CACHE OPTIMIZATION” and filed Mar. 31, 2008, the disclosures of which are incorporated herein by reference.

US Referenced Citations (1743)
Number Name Date Kind
1075551 D'Amours Oct 1913 A
5063500 Shorter Nov 1991 A
5341477 Pitkin et al. Aug 1994 A
5459837 Caccavale Oct 1995 A
5611049 Pitts Mar 1997 A
5627889 Eslambolchi May 1997 A
5701467 Freeston Dec 1997 A
5764910 Shachar Jun 1998 A
5774660 Brendel et al. Jun 1998 A
5815649 Utter et al. Sep 1998 A
5852717 Bhide et al. Nov 1998 A
5892914 Pitts Apr 1999 A
5893116 Simmonds et al. Apr 1999 A
5895462 Toki Apr 1999 A
5905248 Russell et al. May 1999 A
5933811 Angles et al. Aug 1999 A
5937427 Shinagawa et al. Aug 1999 A
5974454 Apfel et al. Oct 1999 A
5991306 Burns et al. Nov 1999 A
5999274 Lee et al. Dec 1999 A
6006264 Colby et al. Dec 1999 A
6016512 Ma Jan 2000 A
6026452 Pitts Feb 2000 A
6038601 Lambert et al. Mar 2000 A
6052718 Gifford Apr 2000 A
6018619 Allard et al. Jun 2000 A
6078960 Ballard Jun 2000 A
6085234 Pitts et al. Jul 2000 A
6092100 Berstis et al. Jul 2000 A
6098096 Tsirigotis Aug 2000 A
6108703 Leighton et al. Aug 2000 A
6128279 O'Neil et al. Oct 2000 A
6151631 Ansell et al. Nov 2000 A
6157942 Chu et al. Dec 2000 A
6167438 Yates et al. Dec 2000 A
6167446 Lister et al. Dec 2000 A
6173316 De Boor et al. Jan 2001 B1
6182111 Inohara et al. Jan 2001 B1
6182125 Borella et al. Jan 2001 B1
6185598 Farber et al. Feb 2001 B1
6192051 Lipman et al. Feb 2001 B1
6205475 Pitts Mar 2001 B1
6223288 Byrne Apr 2001 B1
6232209 Watson et al. Apr 2001 B1
6243761 Mogul et al. Jun 2001 B1
6256671 Strentzsch et al. Jul 2001 B1
6275496 Burns et al. Aug 2001 B1
6286043 Cuomo et al. Sep 2001 B1
6286084 Wexler et al. Sep 2001 B1
6304913 Rune Oct 2001 B1
6324580 Jindal et al. Nov 2001 B1
6330602 Law et al. Dec 2001 B1
6338082 Schneider Jan 2002 B1
6345308 Abe Feb 2002 B1
6351743 DeArdo et al. Feb 2002 B1
6351775 Yu Feb 2002 B1
6363411 Dugan et al. Mar 2002 B1
6366952 Pitts Apr 2002 B2
6374290 Scharber et al. Apr 2002 B1
6377257 Borrel et al. Apr 2002 B1
6386043 Millins May 2002 B1
6389532 Gupta et al. May 2002 B1
6405252 Gupta et al. Jun 2002 B1
6408360 Chamberlain et al. Jun 2002 B1
6411967 Van Renesse Jun 2002 B1
6415280 Farber et al. Jul 2002 B1
6430607 Kavner Aug 2002 B1
6438592 Killian Aug 2002 B1
6442165 Sitaraman et al. Aug 2002 B1
6452925 Sistanizadeh et al. Sep 2002 B1
6457047 Chandra et al. Sep 2002 B1
6459909 Bilcliff et al. Oct 2002 B1
6473804 Kaiser et al. Oct 2002 B1
6484143 Swildens et al. Nov 2002 B1
6484161 Chipalkatti et al. Nov 2002 B1
6493765 Cunningham et al. Dec 2002 B1
6505241 Pitts Jan 2003 B2
6513112 Craig et al. Jan 2003 B1
6523036 Hickman et al. Feb 2003 B1
6529910 Fleskes Mar 2003 B1
6529953 Van Renesse Mar 2003 B1
6553413 Leighton et al. Apr 2003 B1
6560610 Eatherton et al. May 2003 B1
6564380 Murphy May 2003 B1
6611873 Kanehara Aug 2003 B1
6622168 Datta Sep 2003 B1
6643357 Lumsden Nov 2003 B2
6643707 Booth Nov 2003 B1
6654807 Farber et al. Nov 2003 B2
6658462 Dutta Dec 2003 B1
6665706 Kenner et al. Dec 2003 B2
6678717 Schneider Jan 2004 B1
6678791 Jacobs et al. Jan 2004 B1
6681282 Golden et al. Jan 2004 B1
6687846 Adrangi et al. Jan 2004 B1
6694358 Swildens et al. Feb 2004 B1
6697805 Choquier et al. Feb 2004 B1
6718324 Edlund et al. Apr 2004 B2
6724770 Van Renesse Apr 2004 B1
6732237 Jacobs et al. May 2004 B1
6754699 Swildens et al. Jun 2004 B2
6754706 Swildens et al. Jun 2004 B1
6760721 Chasen et al. Jul 2004 B1
6769031 Bero Jul 2004 B1
6782398 Bahl Aug 2004 B1
6785704 McCanne Aug 2004 B1
6795434 Kumar et al. Sep 2004 B1
6799214 Li Sep 2004 B1
6804706 Pitts Oct 2004 B2
6810291 Card et al. Oct 2004 B2
6810411 Coughlin et al. Oct 2004 B1
6829654 Jungck Dec 2004 B1
6862607 Vermeulen Mar 2005 B1
6868439 Basu et al. Mar 2005 B2
6874017 Inoue et al. Mar 2005 B1
6917951 Orbits et al. Jul 2005 B2
6925499 Chen et al. Aug 2005 B1
6928467 Peng et al. Aug 2005 B2
6928485 Krishnamurthy et al. Aug 2005 B1
6941562 Gao et al. Sep 2005 B2
6944167 McPherson Sep 2005 B1
6950848 Yousefi'zadeh et al. Sep 2005 B1
6961783 Cook et al. Nov 2005 B1
6963850 Bezos et al. Nov 2005 B1
6968389 Menditto et al. Nov 2005 B1
6976090 Ben-Shaul et al. Dec 2005 B2
6981017 Kasriel et al. Dec 2005 B1
6981025 Frazier et al. Dec 2005 B1
6985945 Farhat et al. Jan 2006 B2
6986018 O'Rourke et al. Jan 2006 B2
6990526 Zhu Jan 2006 B1
6996616 Leighton et al. Feb 2006 B1
7003555 Jungck Feb 2006 B1
7006099 Gut et al. Feb 2006 B2
7007089 Freedman Feb 2006 B2
7010578 Lewin et al. Mar 2006 B1
7010598 Sitaraman et al. Mar 2006 B2
7024466 Outten et al. Apr 2006 B2
7027582 Khello et al. Apr 2006 B2
7031445 Lumsden Apr 2006 B2
7032010 Swildens et al. Apr 2006 B1
7058633 Gnagy et al. Jun 2006 B1
7058706 Iyer et al. Jun 2006 B1
7058953 Willard et al. Jun 2006 B2
7062158 Ayaki Jun 2006 B1
7065587 Huitema et al. Jun 2006 B2
7072982 Teodosiu et al. Jul 2006 B2
7076633 Tormasov et al. Jul 2006 B2
7082476 Cohen et al. Jul 2006 B1
7086061 Joshi et al. Aug 2006 B1
7092505 Allison et al. Aug 2006 B2
7092997 Kasriel et al. Aug 2006 B1
7095715 Buckman et al. Aug 2006 B2
7096266 Lewin et al. Aug 2006 B2
7099936 Chase et al. Aug 2006 B2
7103645 Leighton et al. Sep 2006 B2
7114160 Suryanarayana et al. Sep 2006 B2
7117262 Bai et al. Oct 2006 B2
7133905 Dilley et al. Nov 2006 B2
7136922 Sundaram et al. Nov 2006 B2
7139808 Anderson et al. Nov 2006 B2
7139821 Shah et al. Nov 2006 B1
7143169 Champagne et al. Nov 2006 B1
7143170 Swildens et al. Nov 2006 B2
7146560 Dang et al. Dec 2006 B2
7149747 Cheng et al. Dec 2006 B1
7149809 Barde et al. Dec 2006 B2
7152118 Anderson, IV et al. Dec 2006 B2
7162539 Garcie-Luna-Aceves Jan 2007 B2
7165117 Sitaraman et al. Jan 2007 B1
7171469 Ackaouy et al. Jan 2007 B2
7174382 Ramanathan et al. Feb 2007 B2
7185046 Ferstl et al. Feb 2007 B2
7185063 Kasriel et al. Feb 2007 B1
7185084 Sirivara et al. Feb 2007 B2
7188214 Kasriel et al. Mar 2007 B1
7194522 Swildens et al. Mar 2007 B1
7194552 Schneider Mar 2007 B1
7200667 Teodosiu et al. Apr 2007 B2
7200673 Augart Apr 2007 B1
7216170 Ludvig et al. May 2007 B2
7225254 Swildens et al. May 2007 B1
7228350 Hong et al. Jun 2007 B2
7228359 Monteiro Jun 2007 B1
7233978 Overton et al. Jun 2007 B2
7240100 Wein et al. Jul 2007 B1
7249196 Peiffer et al. Jul 2007 B1
7251675 Kamakura et al. Jul 2007 B1
7254626 Kommula et al. Aug 2007 B1
7254634 Davis et al. Aug 2007 B1
7254636 O'Toole, Jr. et al. Aug 2007 B1
7257581 Steele et al. Aug 2007 B1
7260598 Liskov et al. Aug 2007 B1
7260639 Afergan et al. Aug 2007 B2
7269784 Kasriel et al. Sep 2007 B1
7272227 Beran Sep 2007 B1
7274658 Bornstein et al. Sep 2007 B2
7284056 Ramig Oct 2007 B2
7289519 Liskov Oct 2007 B1
7293093 Leighton Nov 2007 B2
7308499 Chavez Dec 2007 B2
7310686 Uysal Dec 2007 B2
7316648 Kelly et al. Jan 2008 B2
7318074 Iyengar et al. Jan 2008 B2
7320131 O'Toole, Jr. Jan 2008 B1
7321918 Burd et al. Jan 2008 B2
7337968 Wilz, Sr. et al. Mar 2008 B2
7339937 Mitra et al. Mar 2008 B2
7340505 Lisiecki et al. Mar 2008 B2
7343397 Kochanski Mar 2008 B2
7350075 Eastham et al. Mar 2008 B1
7362703 Taft et al. Apr 2008 B1
7363291 Page Apr 2008 B1
7363626 Koutharapu et al. Apr 2008 B2
7370089 Boyd et al. May 2008 B2
7372809 Chen May 2008 B2
7373416 Kagan et al. May 2008 B2
7376716 Dilley et al. May 2008 B2
7376736 Sundaram et al. May 2008 B2
7380078 Ikegaya et al. May 2008 B2
7389354 Sitaraman et al. Jun 2008 B1
7392236 Rusch et al. Jun 2008 B2
7398301 Hennessey et al. Jul 2008 B2
7406512 Swildens et al. Jul 2008 B2
7406522 Riddle Jul 2008 B2
7409712 Brooks et al. Aug 2008 B1
7430610 Pace et al. Sep 2008 B2
7441045 Skene et al. Oct 2008 B2
7441261 Slater et al. Oct 2008 B2
7451230 Corrado et al. Nov 2008 B2
7454457 Lowery et al. Nov 2008 B1
7454500 Hsu et al. Nov 2008 B1
7461170 Taylor et al. Dec 2008 B1
7464142 Flurry et al. Dec 2008 B2
7472201 Aitken Dec 2008 B1
7478148 Neerdaels Jan 2009 B2
7492720 Pruthi et al. Feb 2009 B2
7496651 Joshi Feb 2009 B1
7499998 Toebes et al. Mar 2009 B2
7502836 Menditto et al. Mar 2009 B1
7506034 Coates et al. Mar 2009 B2
7519705 Papagiannaki et al. Apr 2009 B1
7519720 Fishman et al. Apr 2009 B2
7519726 Palliyil et al. Apr 2009 B2
7523181 Swildens et al. Apr 2009 B2
7543024 Holstege Jun 2009 B2
7548947 Kasriel et al. Jun 2009 B2
7552235 Chase et al. Jun 2009 B2
7555542 Ayers et al. Jun 2009 B1
7561571 Lovett et al. Jul 2009 B1
7565407 Hayball Jul 2009 B1
7568032 Feng et al. Jul 2009 B2
7573916 Bechtolsheim et al. Aug 2009 B1
7574499 Swildens et al. Aug 2009 B1
7581009 Hsu et al. Aug 2009 B1
7584507 Nucci Sep 2009 B1
7593935 Sullivan Sep 2009 B2
7594189 Walker et al. Sep 2009 B1
7596619 Leighton et al. Sep 2009 B2
7603439 Dilley et al. Sep 2009 B2
7613815 Prakash et al. Nov 2009 B1
7617222 Coulthard et al. Nov 2009 B2
7623460 Miyazaki Nov 2009 B2
7624169 Lisiecki et al. Nov 2009 B2
7624264 Aura et al. Nov 2009 B2
7626940 Jain Dec 2009 B2
7631101 Sullivan et al. Dec 2009 B2
7640296 Fuchs et al. Dec 2009 B2
7650376 Blumenau Jan 2010 B1
7653689 Champagne et al. Jan 2010 B1
7653700 Bahl et al. Jan 2010 B1
7653725 Yahiro et al. Jan 2010 B2
7657613 Hanson et al. Feb 2010 B1
7657622 Douglis et al. Feb 2010 B1
7661027 Langen et al. Feb 2010 B2
7664831 Cartmell et al. Feb 2010 B2
7664879 Chan et al. Feb 2010 B2
7676570 Levy et al. Mar 2010 B2
7680897 Carter et al. Mar 2010 B1
7684394 Cutbill et al. Mar 2010 B1
7685109 Ransil et al. Mar 2010 B1
7685251 Houlihan et al. Mar 2010 B2
7685270 Vermeulen et al. Mar 2010 B1
7685273 Anastas et al. Mar 2010 B1
7693813 Cao et al. Apr 2010 B1
7693959 Leighton et al. Apr 2010 B2
7698418 Shimada et al. Apr 2010 B2
7702724 Brydon et al. Apr 2010 B1
7706740 Collins et al. Apr 2010 B2
7707071 Rigole Apr 2010 B2
7707314 McCarthy et al. Apr 2010 B2
7711647 Gunaseelan et al. May 2010 B2
7711788 Lev Ran et al. May 2010 B2
7716367 Leighton et al. May 2010 B1
7725602 Liu et al. May 2010 B2
7725658 Lang et al. May 2010 B2
7730187 Raciborski et al. Jun 2010 B2
7739400 Lindbo et al. Jun 2010 B2
7747720 Toebes et al. Jun 2010 B2
7748005 Romero et al. Jun 2010 B2
7756017 Goyal et al. Jul 2010 B2
7756032 Feick et al. Jul 2010 B2
7756913 Day Jul 2010 B1
7756965 Joshi Jul 2010 B2
7757202 Dahlsted et al. Jul 2010 B2
7761572 Auerbach Jul 2010 B1
7765295 Anastas et al. Jul 2010 B2
7765304 Davis et al. Jul 2010 B2
7769823 Jenny et al. Aug 2010 B2
7773596 Marques Aug 2010 B1
7774342 Virdy Aug 2010 B1
7783727 Foley et al. Aug 2010 B1
7787380 Aggarwal et al. Aug 2010 B1
7792989 Toebes et al. Sep 2010 B2
7805516 Kettler et al. Sep 2010 B2
7809597 Das et al. Oct 2010 B2
7813308 Reddy et al. Oct 2010 B2
7814229 Cabrera et al. Oct 2010 B1
7818454 Kim et al. Oct 2010 B2
7827256 Phillips et al. Nov 2010 B2
7836177 Kasriel et al. Nov 2010 B2
7853680 Phatak Dec 2010 B2
7853719 Cao et al. Dec 2010 B1
7860735 Evanitsky Dec 2010 B2
7865594 Baumback et al. Jan 2011 B1
7865953 Hsieh et al. Jan 2011 B1
7873065 Mukerji et al. Jan 2011 B1
7890612 Todd et al. Feb 2011 B2
7890989 Hofrichter et al. Feb 2011 B1
7899899 Joshi Mar 2011 B2
7904875 Hegyi Mar 2011 B2
7912921 O'Rourke et al. Mar 2011 B2
7925713 Day et al. Apr 2011 B1
7925782 Sivasubramanian et al. Apr 2011 B2
7930393 Baumback et al. Apr 2011 B1
7930402 Swildens et al. Apr 2011 B2
7930427 Berg et al. Apr 2011 B2
7933988 Nasuto et al. Apr 2011 B2
7937456 McGrath Apr 2011 B2
7937477 Day et al. May 2011 B1
7945693 Farber et al. May 2011 B2
7949779 Farber et al. May 2011 B2
7958222 Pruitt et al. Jun 2011 B1
7958258 Yeung et al. Jun 2011 B2
7961736 Ayyagari Jun 2011 B2
7962597 Richardson et al. Jun 2011 B2
7966404 Hedin et al. Jun 2011 B2
7970816 Chess et al. Jun 2011 B2
7970940 van de Ven et al. Jun 2011 B1
7979509 Malmskog et al. Jul 2011 B1
7991910 Richardson et al. Aug 2011 B2
7996404 Wong et al. Aug 2011 B2
7996533 Leighton et al. Aug 2011 B2
7996535 Auerbach Aug 2011 B2
8000724 Rayburn et al. Aug 2011 B1
8001187 Stochosky Aug 2011 B2
8010705 Sebastian et al. Aug 2011 B1
8010707 Elzur et al. Aug 2011 B2
8019869 Kriegsman Sep 2011 B2
8024441 Kommula et al. Sep 2011 B2
8028090 Richardson et al. Sep 2011 B2
8041773 Abu-Ghazaleh et al. Oct 2011 B2
8041809 Sundaram et al. Oct 2011 B2
8041818 Gupta et al. Oct 2011 B2
8042054 White et al. Oct 2011 B2
8051166 Baumback et al. Oct 2011 B1
8065275 Eriksen et al. Nov 2011 B2
8069231 Schran et al. Nov 2011 B2
8073940 Richardson et al. Dec 2011 B1
8079087 Spies et al. Dec 2011 B1
8082348 Averbuj et al. Dec 2011 B1
8099487 Smirnov et al. Jan 2012 B1
8108623 Krishnaprasad et al. Jan 2012 B2
8117306 Baumback et al. Feb 2012 B1
8122098 Richardson et al. Feb 2012 B1
8122124 Baumback et al. Feb 2012 B1
8132242 Wu Mar 2012 B1
8135820 Richardson et al. Mar 2012 B2
8155126 Mao et al. Apr 2012 B1
8156199 Hoche-Mong et al. Apr 2012 B1
8156243 Richardson et al. Apr 2012 B2
8161184 Sekar et al. Apr 2012 B2
8165915 Lucash Apr 2012 B1
8175863 Ostermeyer et al. May 2012 B1
8180720 Kovacs et al. May 2012 B1
8190682 Paterson-Jones et al. May 2012 B2
8195605 Chellappa et al. May 2012 B2
8195837 McCarthy et al. Jun 2012 B2
8209695 Pruyne et al. Jun 2012 B1
8218965 Uhlhom et al. Jul 2012 B1
8219647 Harvell et al. Jul 2012 B2
8224942 Presotto et al. Jul 2012 B1
8224971 Miller et al. Jul 2012 B1
8224986 Liskov et al. Jul 2012 B1
8224994 Schneider Jul 2012 B1
8234403 Richardson et al. Jul 2012 B2
8239530 Sundaram et al. Aug 2012 B2
8250135 Driesen et al. Aug 2012 B2
8250211 Swildens et al. Aug 2012 B2
8250219 Raciborski et al. Aug 2012 B2
8260914 Ranjan Aug 2012 B1
8261062 Aura et al. Sep 2012 B2
8266288 Banerjee et al. Sep 2012 B2
8266327 Kumar et al. Sep 2012 B2
8271471 Kamvar et al. Sep 2012 B1
8280998 Joshi Oct 2012 B2
8281035 Farber et al. Oct 2012 B2
8286176 Baumback et al. Oct 2012 B1
8291046 Farber et al. Oct 2012 B2
8291117 Eggleston et al. Oct 2012 B1
8296375 Katzer et al. Oct 2012 B1
8296393 Alexander et al. Oct 2012 B2
8296429 Baumback et al. Oct 2012 B2
8296786 Faust et al. Oct 2012 B2
8301600 Helmick et al. Oct 2012 B1
8301645 Crook Oct 2012 B1
8316124 Baumback et al. Oct 2012 B1
8321568 Sivasubramanian et al. Nov 2012 B2
8321588 Richardson et al. Nov 2012 B2
8331370 Hamilton et al. Nov 2012 B2
8341745 Chat et al. Dec 2012 B1
8356074 Ehrlich et al. Jan 2013 B1
8380831 Barber Feb 2013 B2
8380851 McCarthy et al. Feb 2013 B2
8392928 Forys et al. Feb 2013 B1
8396908 Moore et al. Mar 2013 B2
8402137 Sivasuramanian et al. Mar 2013 B2
8423408 Barnes et al. Apr 2013 B1
8423662 Weihl et al. Apr 2013 B1
8423667 Richardson et al. Apr 2013 B2
8433749 Wee et al. Apr 2013 B2
8443167 Fallone et al. May 2013 B1
8447831 Sivasubramanian et al. May 2013 B1
8447854 Jasinskyj May 2013 B1
8447876 Verma et al. May 2013 B2
8452745 Ramakrishna May 2013 B2
8452870 Baumback et al. May 2013 B2
8452874 MacCarthaigh et al. May 2013 B2
8458360 Richardson et al. Jun 2013 B2
8463877 Richardson Jun 2013 B1
8468222 Sakata et al. Jun 2013 B2
8468245 Farber et al. Jun 2013 B2
8473613 Farber et al. Jun 2013 B2
8478883 Day et al. Jul 2013 B2
8478903 Farber et al. Jul 2013 B2
8489737 Baumback et al. Jul 2013 B2
8504721 Hsu et al. Aug 2013 B2
8504775 Plamondon Aug 2013 B2
8510428 Joshi Aug 2013 B2
8510807 Elazary et al. Aug 2013 B1
8516082 Cadwell et al. Aug 2013 B2
8521851 Richardson et al. Aug 2013 B1
8521876 Goodman et al. Aug 2013 B2
8521880 Richardson et al. Aug 2013 B1
8521885 Richardson et al. Aug 2013 B1
8521908 Holmes et al. Aug 2013 B2
8526405 Curtis et al. Sep 2013 B2
8527639 Liskov et al. Sep 2013 B1
8527645 Proffit et al. Sep 2013 B1
8527658 Holmes et al. Sep 2013 B2
8549646 Stavrou et al. Oct 2013 B2
8572208 Farber et al. Oct 2013 B2
8572210 Farber et al. Oct 2013 B2
8577963 Trahan et al. Nov 2013 B2
8577992 Richardson et al. Nov 2013 B1
8589996 Ma et al. Nov 2013 B2
8606926 Ulevitch Dec 2013 B2
8606996 Richardson et al. Dec 2013 B2
8612565 Schneider Dec 2013 B2
8612588 Ehrlich et al. Dec 2013 B1
8615549 Knowles et al. Dec 2013 B2
8619780 Brandwine Dec 2013 B1
8626950 Richardson et al. Jan 2014 B1
8635340 Schneider Jan 2014 B1
8639817 Sivasubramanian et al. Jan 2014 B2
8645539 McCarthy et al. Feb 2014 B2
8645700 Smith et al. Feb 2014 B2
8667127 Bettis et al. Feb 2014 B2
8676918 Richardson et al. Mar 2014 B2
8683023 Brandwine et al. Mar 2014 B1
8683076 Farber et al. Mar 2014 B2
8688837 Richardson et al. Apr 2014 B1
8694642 Dempsky et al. Apr 2014 B2
8712950 Smith et al. Apr 2014 B2
8732309 Richardson et al. May 2014 B1
8738766 Kazerani et al. May 2014 B1
8745177 Kazerani et al. Jun 2014 B1
8756322 Lynch Jun 2014 B1
8756325 Sivasubramanian et al. Jun 2014 B2
8756341 Richardson et al. Jun 2014 B1
8762526 Baumback et al. Jun 2014 B2
8775553 Cansino et al. Jul 2014 B2
8782207 Qiu et al. Jul 2014 B2
8782236 Marshall et al. Jul 2014 B1
8782279 Eggleston et al. Jul 2014 B2
8788671 Richardson et al. Jul 2014 B2
8812727 Sorenson, III et al. Aug 2014 B1
8819187 Hofmann Aug 2014 B1
8819283 Richardson et al. Aug 2014 B2
8826032 Yahalom et al. Sep 2014 B1
8843625 Baumback et al. Sep 2014 B2
8902897 Hamilton et al. Sep 2014 B2
8904009 Marshall et al. Dec 2014 B1
8914514 Jenkins et al. Dec 2014 B1
8914626 Adogla et al. Dec 2014 B1
8914797 Osogami et al. Dec 2014 B2
8914814 Middleton et al. Dec 2014 B1
8924528 Richardson et al. Dec 2014 B1
8930513 Richardson et al. Jan 2015 B1
8930544 Richardson et al. Jan 2015 B2
8935744 Osterweil et al. Jan 2015 B2
8938526 Richardson et al. Jan 2015 B1
8949161 Borst et al. Feb 2015 B2
8949459 Scholl Feb 2015 B1
8966318 Shah Feb 2015 B1
8971328 Judge et al. Feb 2015 B2
8972580 Fleischman et al. Mar 2015 B2
8976711 Li et al. Mar 2015 B2
9003035 Richardson et al. Apr 2015 B1
9003040 MacCarthaigh et al. Apr 2015 B2
9009286 Sivasubramanian et al. Apr 2015 B2
9009334 Jenkins et al. Apr 2015 B1
9021127 Richardson et al. Apr 2015 B2
9021128 Sivasubramanian et al. Apr 2015 B2
9021129 Richardson et al. Apr 2015 B2
9026616 Sivasubramanian et al. May 2015 B2
9037975 Taylor et al. May 2015 B1
9071502 Baumback et al. May 2015 B2
9075777 Pope et al. Jul 2015 B1
9075893 Jenkins Jul 2015 B1
9083675 Richardson et al. Jul 2015 B2
9083743 Patel et al. Jul 2015 B1
9088460 Baumback et al. Jul 2015 B2
9106701 Richardson et al. Aug 2015 B2
9116803 Agrawal et al. Aug 2015 B1
9118543 Baumback et al. Aug 2015 B2
9118680 Dunlap et al. Aug 2015 B1
9130756 Richardson et al. Sep 2015 B2
9130977 Zisapel et al. Sep 2015 B2
9137210 Joglekar et al. Sep 2015 B1
9137301 Dunlap et al. Sep 2015 B1
9137302 Makhijani et al. Sep 2015 B1
9154551 Watson Oct 2015 B1
9160641 Baumback et al. Oct 2015 B2
9160703 Richardson et al. Oct 2015 B2
9172674 Patel et al. Oct 2015 B1
9176894 Marshall et al. Nov 2015 B2
9185012 Richardson et al. Nov 2015 B2
9191338 Richardson et al. Nov 2015 B2
9191393 Tovar Nov 2015 B2
9191458 Richardson et al. Nov 2015 B2
9195996 Walsh et al. Nov 2015 B1
9208097 Richardson et al. Dec 2015 B2
9210099 Baumback et al. Dec 2015 B2
9210235 Sivasubramanian et al. Dec 2015 B2
9219686 Hilt et al. Dec 2015 B2
9237087 Risbood et al. Jan 2016 B1
9237114 Richardson et al. Jan 2016 B2
9240954 Ellsworth et al. Jan 2016 B1
9246776 Ellsworth et al. Jan 2016 B2
9251112 Richardson et al. Feb 2016 B2
9253065 Richardson et al. Feb 2016 B2
9276812 Nagargadde et al. Mar 2016 B1
9282032 Judge et al. Mar 2016 B2
9294391 Mostert Mar 2016 B1
9300535 Popli et al. Mar 2016 B2
9323577 Marr et al. Apr 2016 B2
9332078 Sivasubramanian et al. May 2016 B2
9367929 Bettis et al. May 2016 B2
9386038 Martini Jul 2016 B2
9391949 Richardson et al. Jul 2016 B1
9407539 Dickinson et al. Aug 2016 B1
9407676 Archer et al. Aug 2016 B2
9407681 Richardson et al. Aug 2016 B1
9407699 Sivasubramanian et al. Aug 2016 B2
9444718 Khakpour et al. Sep 2016 B2
9444759 Richardson et al. Sep 2016 B2
9479476 Richardson et al. Oct 2016 B2
9491073 Baumback et al. Oct 2016 B2
9495338 Hollis et al. Nov 2016 B1
9497259 Richardson et al. Nov 2016 B1
9515949 Richardson et al. Dec 2016 B2
9525659 Sonkin et al. Dec 2016 B1
9544388 Li et al. Jan 2017 B1
9544394 Richardson et al. Jan 2017 B2
9571389 Richardson et al. Feb 2017 B2
9584328 Graham-cumming Feb 2017 B1
9590946 Richardson et al. Mar 2017 B2
9608957 Sivasubramanian et al. Mar 2017 B2
9621660 Sivasubramanian et al. Apr 2017 B2
9628403 Baumback et al. Apr 2017 B2
9628509 Holloway et al. Apr 2017 B2
9628554 Marshall et al. Apr 2017 B2
9645808 Turpie May 2017 B1
9660890 Baumback et al. May 2017 B2
9703713 Nadgowda Jul 2017 B2
9705922 Foxhoven et al. Jul 2017 B2
9712325 Richardson et al. Jul 2017 B2
9712484 Richardson et al. Jul 2017 B1
9734472 Richardson et al. Aug 2017 B2
9742795 Radlein et al. Aug 2017 B1
9760420 Letz et al. Sep 2017 B1
9769248 Krishnan et al. Sep 2017 B1
9774619 Radlein et al. Sep 2017 B1
9787599 Richardson et al. Oct 2017 B2
9787775 Richardson et al. Oct 2017 B1
9794188 Baumback et al. Oct 2017 B2
9794216 Richardson et al. Oct 2017 B2
9794281 Radlein et al. Oct 2017 B1
9800539 Richardson et al. Oct 2017 B2
9811451 Arguelles et al. Nov 2017 B1
9819567 Uppal et al. Nov 2017 B1
9825831 Baumback et al. Nov 2017 B2
9832141 Raftery Nov 2017 B1
9871794 Joffe et al. Jan 2018 B2
9887914 Bergman Feb 2018 B2
9887915 Richardson et al. Feb 2018 B2
9887931 Uppal et al. Feb 2018 B1
9887932 Uppal et al. Feb 2018 B1
9888089 Sivasubramanian et al. Feb 2018 B2
9893957 Ellsworth et al. Feb 2018 B2
9894168 Sivasubramanian et al. Feb 2018 B2
9900402 Li et al. Feb 2018 B1
9912740 Richardson et al. Mar 2018 B2
9929959 Mostert Mar 2018 B2
9930131 MacCarthaigh et al. Mar 2018 B2
9954934 Sivasubramanian et al. Apr 2018 B2
9985927 Richardson et al. May 2018 B2
9992086 Mizik et al. Jun 2018 B1
9992303 Richardson et al. Jun 2018 B2
9996501 Nelson et al. Jun 2018 B1
10015237 Richardson et al. Jul 2018 B2
10015241 Marr et al. Jul 2018 B2
10021179 Velummylum et al. Jul 2018 B1
10027582 Richardson et al. Jul 2018 B2
10027739 Krishnan et al. Jul 2018 B1
10033627 Howard et al. Jul 2018 B1
10033691 Mizik et al. Jul 2018 B1
10033699 Sullivan et al. Jul 2018 B2
10162753 Marshall et al. Jul 2018 B2
10049051 Baldwin Aug 2018 B1
10063459 Judge et al. Aug 2018 B2
10075551 Baldwin et al. Sep 2018 B1
10079742 Richardson et al. Sep 2018 B1
10091096 Howard et al. Oct 2018 B1
10097398 Richardson et al. Oct 2018 B1
10097448 Howard et al. Oct 2018 B1
10097566 Radlein et al. Oct 2018 B1
10104009 Baumback et al. Oct 2018 B2
10110694 Watson et al. Oct 2018 B1
10116584 Richardson et al. Oct 2018 B2
10135620 Richardson et al. Nov 2018 B2
10148542 Baumback et al. Nov 2018 B2
10157135 Richardson et al. Dec 2018 B2
10158729 Sivasubramanian et al. Dec 2018 B2
10180993 Raftery Jan 2019 B2
10200402 Radlein et al. Jan 2019 B2
10200492 MacCarthaigh et al. Feb 2019 B2
10205644 Baumback et al. Feb 2019 B2
10205698 Petersen et al. Feb 2019 B1
10218584 Ellsworth et al. Feb 2019 B2
10225322 Richardson et al. Feb 2019 B2
10225326 Puchala et al. Mar 2019 B1
10225362 Watson Mar 2019 B2
10225365 Hotchkies et al. Mar 2019 B1
10230819 Richardson et al. Mar 2019 B2
10257307 Baldwin Apr 2019 B1
10264062 Richardson et al. Apr 2019 B2
10270878 Uppal et al. Apr 2019 B1
10284446 Baumback et al. Apr 2019 B2
10305797 Richardson et al. May 2019 B2
10311371 Hotchkies et al. May 2019 B1
10348639 Puchala et al. Jul 2019 B2
10372499 Radhakrishnan et al. Aug 2019 B1
10374955 Mostert Aug 2019 B2
10410085 Bettis et al. Sep 2019 B2
10447648 Bliss et al. Oct 2019 B2
10462025 Baumback et al. Oct 2019 B2
10467042 Mercier et al. Nov 2019 B1
10469355 Uppal et al. Nov 2019 B2
10469513 Uppal et al. Nov 2019 B2
10491534 Richardson et al. Nov 2019 B2
10505961 Uppal et al. Dec 2019 B2
10506029 Hollis et al. Dec 2019 B2
10511567 Richardson et al. Dec 2019 B2
10516590 Mizik et al. Dec 2019 B2
10521348 Marshall et al. Dec 2019 B2
10523783 Richardson et al. Dec 2019 B2
10530874 Sivasubramanian et al. Jan 2020 B2
10542079 Marr et al. Jan 2020 B2
10554748 Sivasubramanian et al. Feb 2020 B2
10574787 Richardson et al. Feb 2020 B2
10601767 Richardson et al. Mar 2020 B2
10616250 Uppal et al. Apr 2020 B2
10623408 Marshall et al. Apr 2020 B1
10630771 Garza et al. Apr 2020 B1
10645149 Sivasubramanian et al. May 2020 B2
10666756 Baldwin et al. May 2020 B2
10691752 Raftery Jun 2020 B2
10742550 Richardson et al. Aug 2020 B2
10742593 Vasquez et al. Aug 2020 B1
10771552 Sivasubramanian et al. Sep 2020 B2
10778554 Richardson et al. Sep 2020 B2
10783077 Marshall et al. Sep 2020 B2
10785037 Richardson et al. Sep 2020 B2
10797995 Richardson et al. Oct 2020 B2
10812358 Navaneetha et al. Oct 2020 B2
10831549 Radhakrishnan et al. Nov 2020 B1
10931738 Radhakrishnan et al. Feb 2021 B2
10938884 Baldwin et al. Mar 2021 B1
10958501 Richardson et al. Mar 2021 B1
11025747 Keogh Jun 2021 B1
20010000811 May et al. May 2001 A1
20010025305 Yoshiasa et al. Sep 2001 A1
20010027479 Delaney et al. Oct 2001 A1
20010032133 Moran Oct 2001 A1
20010034704 Farhat et al. Oct 2001 A1
20010049741 Skene et al. Dec 2001 A1
20010052016 Skene et al. Dec 2001 A1
20010056416 Garcia-Luna-Aceves Dec 2001 A1
20010056500 Farber et al. Dec 2001 A1
20020002613 Freeman et al. Jan 2002 A1
20020004816 Vange et al. Jan 2002 A1
20020004846 Garcia-Luna-Aceves et al. Jan 2002 A1
20020007404 Vange et al. Jan 2002 A1
20020007413 Garcia-Luna-Aceves et al. Jan 2002 A1
20020009079 Jungck et al. Jan 2002 A1
20020010783 Primak et al. Jan 2002 A1
20020010798 Ben-Shaul et al. Jan 2002 A1
20020016831 Peled et al. Feb 2002 A1
20020035624 Kim Mar 2002 A1
20020048269 Hong et al. Apr 2002 A1
20020049608 Hartsell et al. Apr 2002 A1
20020049842 Huetsch et al. Apr 2002 A1
20020049857 Farber et al. Apr 2002 A1
20020006591 Dutta May 2002 A1
20020052942 Swildens et al. May 2002 A1
20020062372 Hong et al. May 2002 A1
20020068554 Dusse Jun 2002 A1
20020069420 Russell et al. Jun 2002 A1
20020078233 Biliris et al. Jun 2002 A1
20020082858 Heddaya et al. Jun 2002 A1
20020083118 Sim Jun 2002 A1
20020083148 Shaw et al. Jun 2002 A1
20020083178 Brothers Jun 2002 A1
20020083198 Kim et al. Jun 2002 A1
20020087374 Boubez et al. Jul 2002 A1
20020087797 Adrangi Jul 2002 A1
20020091786 Yamaguchi et al. Jul 2002 A1
20020091801 Lewin et al. Jul 2002 A1
20020092026 Janniello et al. Jul 2002 A1
20020099616 Sweldens Jul 2002 A1
20020099850 Farber et al. Jul 2002 A1
20020101836 Dorenbosch Aug 2002 A1
20020103820 Cartmell et al. Aug 2002 A1
20020103972 Satran et al. Aug 2002 A1
20020107944 Bai et al. Aug 2002 A1
20020112049 Elnozahy et al. Aug 2002 A1
20020112123 Becker et al. Aug 2002 A1
20020116481 Lee Aug 2002 A1
20020116491 Boyd et al. Aug 2002 A1
20020116582 Copeland et al. Aug 2002 A1
20020120666 Landsman et al. Aug 2002 A1
20020120782 Dillon et al. Aug 2002 A1
20020124047 Gartner et al. Sep 2002 A1
20020124098 Shaw Sep 2002 A1
20020129123 Johnson Sep 2002 A1
20020131428 Pecus et al. Sep 2002 A1
20020133601 Kennamer et al. Sep 2002 A1
20020133741 Maeda et al. Sep 2002 A1
20020135611 Deosaran et al. Sep 2002 A1
20020138286 Engstrom Sep 2002 A1
20020138437 Lewin et al. Sep 2002 A1
20020138443 Schran et al. Sep 2002 A1
20020138649 Cartmell et al. Sep 2002 A1
20020138761 Kanemaki et al. Sep 2002 A1
20020143675 Orshan Oct 2002 A1
20020143798 Lisiecki et al. Oct 2002 A1
20020143989 Huitema et al. Oct 2002 A1
20020145993 Chowdhury et al. Oct 2002 A1
20020147770 Tang Oct 2002 A1
20020147774 Lisiecki et al. Oct 2002 A1
20020150094 Cheng et al. Oct 2002 A1
20020150276 Chang Oct 2002 A1
20020152326 Orshan Oct 2002 A1
20020154157 Sherr et al. Oct 2002 A1
20020156884 Bertram et al. Oct 2002 A1
20020156911 Croman et al. Oct 2002 A1
20020161745 Call Oct 2002 A1
20020161767 Shapiro et al. Oct 2002 A1
20020163882 Bornstein et al. Nov 2002 A1
20020165912 Wenocur et al. Nov 2002 A1
20020169890 Beaumont et al. Nov 2002 A1
20020184368 Wang Dec 2002 A1
20020187935 Redmond et al. Dec 2002 A1
20020188722 Banerjee et al. Dec 2002 A1
20020194324 Guha Dec 2002 A1
20020194382 Kausik et al. Dec 2002 A1
20020198953 O'Rourke et al. Dec 2002 A1
20030002484 Freedman Jan 2003 A1
20030004998 Datta Jan 2003 A1
20030005036 Mitzenmacher Jan 2003 A1
20030005111 Allan Jan 2003 A1
20030007482 Khello et al. Jan 2003 A1
20030009488 Hart, III Jan 2003 A1
20030009591 Hayball et al. Jan 2003 A1
20030002641 Lumsden Feb 2003 A1
20030028642 Agarwal et al. Feb 2003 A1
20030033283 Evans et al. Feb 2003 A1
20030037108 Peiffer et al. Feb 2003 A1
20030037139 Shteyn Feb 2003 A1
20030037284 Srinivasan et al. Feb 2003 A1
20030041094 Lara et al. Feb 2003 A1
20030046343 Krishnamurthy et al. Mar 2003 A1
20030065739 Shnier Apr 2003 A1
20030070096 Pazi et al. Apr 2003 A1
20030074401 Connell et al. Apr 2003 A1
20030074471 Anderson et al. Apr 2003 A1
20030074472 Lucco et al. Apr 2003 A1
20030079027 Slocombe et al. Apr 2003 A1
20030093523 Cranor et al. May 2003 A1
20030099202 Lear et al. May 2003 A1
20030099237 Mitra et al. May 2003 A1
20030101278 Garcia-Luna-Aceves et al. May 2003 A1
20030105829 Hayward Jun 2003 A1
20030105857 Kamen et al. Jun 2003 A1
20030112792 Cranor et al. Jun 2003 A1
20030120741 Wu et al. Jun 2003 A1
20030126387 Watanabe Jul 2003 A1
20030133554 Nykanen et al. Jul 2003 A1
20030135467 Okamoto Jul 2003 A1
20030135509 Davis et al. Jul 2003 A1
20030140087 Lincoln et al. Jul 2003 A1
20030145038 Bin Tariq et al. Jul 2003 A1
20030145066 Okada et al. Jul 2003 A1
20030149581 Chaudhri et al. Aug 2003 A1
20030154239 Davis et al. Aug 2003 A1
20030154284 Bernardin et al. Aug 2003 A1
20030163722 Anderson, IV Aug 2003 A1
20030172145 Nguyen Sep 2003 A1
20030172183 Anderson, IV et al. Sep 2003 A1
20030172291 Judge et al. Sep 2003 A1
20030174648 Wang et al. Sep 2003 A1
20030177321 Watanabe Sep 2003 A1
20030182305 Balva et al. Sep 2003 A1
20030182413 Allen et al. Sep 2003 A1
20030182447 Schilling Sep 2003 A1
20030187935 Agarwalla et al. Oct 2003 A1
20030187970 Chase et al. Oct 2003 A1
20030191822 Leighton et al. Oct 2003 A1
20030200394 Ashmore et al. Oct 2003 A1
20030204602 Hudson et al. Oct 2003 A1
20030206520 Wu et al. Nov 2003 A1
20030221000 Cherkasova et al. Nov 2003 A1
20030229682 Day Dec 2003 A1
20030233423 Dilley et al. Dec 2003 A1
20030233445 Levy et al. Dec 2003 A1
20030233455 Leber et al. Dec 2003 A1
20030236700 Arning et al. Dec 2003 A1
20030236779 Choi et al. Dec 2003 A1
20040003032 Ma et al. Jan 2004 A1
20040010562 Itonaga Jan 2004 A1
20040010563 Forte et al. Jan 2004 A1
20040010588 Slater et al. Jan 2004 A1
20040010601 Afergan Jan 2004 A1
20040010621 Afergan et al. Jan 2004 A1
20040010683 Huitema Jan 2004 A1
20040015584 Cartmell et al. Jan 2004 A1
20040019518 Abraham et al. Jan 2004 A1
20040019781 Chari et al. Jan 2004 A1
20040024841 Becker et al. Feb 2004 A1
20040030620 Benjamin et al. Feb 2004 A1
20040032278 Orii et al. Feb 2004 A1
20040034744 Karlsson et al. Feb 2004 A1
20040039798 Hotz et al. Feb 2004 A1
20040044731 Chen et al. Mar 2004 A1
20040044791 Pouzzner Mar 2004 A1
20040054757 Ueda et al. Mar 2004 A1
20040059805 Dinker et al. Mar 2004 A1
20040064335 Yang Apr 2004 A1
20040064501 Jan et al. Apr 2004 A1
20040068542 Lalonde et al. Apr 2004 A1
20040073596 Kloninger et al. Apr 2004 A1
20040073707 Dillon Apr 2004 A1
20040073867 Kausik et al. Apr 2004 A1
20040078468 Hedin et al. Apr 2004 A1
20040078487 Cernohous et al. Apr 2004 A1
20040083283 Sundaram et al. Apr 2004 A1
20040083307 Uysal Apr 2004 A1
20040098478 Koetke et al. May 2004 A1
20040105544 Haneda et al. Jun 2004 A1
20040114579 Karaoguz et al. Jun 2004 A1
20040117309 Inoue et al. Jun 2004 A1
20040117455 Kaminksy et al. Jun 2004 A1
20040128344 Trossen Jul 2004 A1
20040128346 Melamed et al. Jul 2004 A1
20040148520 Talpade et al. Jul 2004 A1
20040167981 Douglas et al. Aug 2004 A1
20040167982 Cohen et al. Aug 2004 A1
20040170379 Yao et al. Sep 2004 A1
20040172466 Douglas et al. Sep 2004 A1
20040184456 Binding et al. Sep 2004 A1
20040194085 Beaubien et al. Sep 2004 A1
20040194102 Neerdaels Sep 2004 A1
20040203630 Wang Oct 2004 A1
20040205149 Dillon et al. Oct 2004 A1
20040205162 Parikh Oct 2004 A1
20040205374 Poletto et al. Oct 2004 A1
20040215823 Kleinfelter et al. Oct 2004 A1
20040221019 Swildens et al. Nov 2004 A1
20040221034 Kausik et al. Nov 2004 A1
20040246948 Lee et al. Dec 2004 A1
20040249939 Amini et al. Dec 2004 A1
20040249971 Klinker Dec 2004 A1
20040249975 Tuck et al. Dec 2004 A1
20040250119 Shelest et al. Dec 2004 A1
20040254921 Cohen et al. Dec 2004 A1
20040260769 Yamamoto Dec 2004 A1
20040267906 Truty Dec 2004 A1
20040267907 Gustafsson Dec 2004 A1
20050010653 McCanne Jan 2005 A1
20050015471 Zhang et al. Jan 2005 A1
20050021706 Maggi et al. Jan 2005 A1
20050021862 Schroeder et al. Jan 2005 A1
20050027882 Sullivan et al. Feb 2005 A1
20050038967 Umbehocker et al. Feb 2005 A1
20050039019 Delany Feb 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050102683 Branson et al. May 2005 A1
20050108169 Balasubramanian et al. May 2005 A1
20050108262 Fawcett May 2005 A1
20050108529 Juneau May 2005 A1
20050114296 Farber et al. May 2005 A1
20050117717 Lumsden Jun 2005 A1
20050132083 Raciborski et al. Jun 2005 A1
20050147088 Bao et al. Jul 2005 A1
20050149529 Gutmans Jul 2005 A1
20050157712 Rangarajan et al. Jul 2005 A1
20050160133 Greenlee et al. Jul 2005 A1
20050163168 Sheth et al. Jul 2005 A1
20050168782 Kobashi et al. Aug 2005 A1
20050171959 Deforche et al. Aug 2005 A1
20050172080 Miyauchi Aug 2005 A1
20050174989 Chen et al. Aug 2005 A1
20050181769 Kogawa Aug 2005 A1
20050188073 Nakamichi et al. Aug 2005 A1
20050192814 Challener et al. Aug 2005 A1
20050192008 Desai et al. Sep 2005 A1
20050198170 LeMay et al. Sep 2005 A1
20050198200 Subramanian et al. Sep 2005 A1
20050198303 Knauerhase et al. Sep 2005 A1
20050198334 Farber et al. Sep 2005 A1
20050198453 Osaki Sep 2005 A1
20050198571 Kramer et al. Sep 2005 A1
20050201302 Gaddis et al. Sep 2005 A1
20050216483 Armstrong et al. Sep 2005 A1
20050216569 Coppola et al. Sep 2005 A1
20050216674 Robbin et al. Sep 2005 A1
20050223095 Volz et al. Oct 2005 A1
20050228856 Swildens et al. Oct 2005 A1
20050229119 Torvinen Oct 2005 A1
20050232165 Brawn et al. Oct 2005 A1
20050234864 Shapiro Oct 2005 A1
20050240574 Challenger et al. Oct 2005 A1
20050256880 Nam Koong et al. Nov 2005 A1
20050259645 Chen et al. Nov 2005 A1
20050259672 Eduri Nov 2005 A1
20050262248 Jennings, III et al. Nov 2005 A1
20050266835 Agrawal et al. Dec 2005 A1
20050267928 Anderson et al. Dec 2005 A1
20050267937 Daniels et al. Dec 2005 A1
20050267991 Huitema et al. Dec 2005 A1
20050267992 Huitema et al. Dec 2005 A1
20050267993 Huitema et al. Dec 2005 A1
20050278259 Gunaseelan et al. Dec 2005 A1
20050283759 Peteanu et al. Dec 2005 A1
20050283784 Suzuki Dec 2005 A1
20050286564 Hatley et al. Dec 2005 A1
20060005014 Aura et al. Jan 2006 A1
20060013158 Ahuja et al. Jan 2006 A1
20060020596 Liu et al. Jan 2006 A1
20060020684 Mukherjee et al. Jan 2006 A1
20060020714 Girouard et al. Jan 2006 A1
20060020715 Jungck Jan 2006 A1
20060021001 Giles et al. Jan 2006 A1
20060026067 Nicholas et al. Feb 2006 A1
20060026154 Altinel et al. Feb 2006 A1
20060031239 Koenig Feb 2006 A1
20060031319 Nelson et al. Feb 2006 A1
20060031503 Gilbert Feb 2006 A1
20060034494 Holloran Feb 2006 A1
20060036720 Faulk, Jr. Feb 2006 A1
20060036966 Yevdayev Feb 2006 A1
20060037037 Miranz Feb 2006 A1
20060039352 Karstens Feb 2006 A1
20060041614 Oe Feb 2006 A1
20060045005 Blackmore et al. Mar 2006 A1
20060047787 Aggarwal et al. Mar 2006 A1
20060047813 Aggarwal et al. Mar 2006 A1
20060059246 Grove Mar 2006 A1
20060063534 Kokkonen et al. Mar 2006 A1
20060064476 Decasper et al. Mar 2006 A1
20060064500 Roth et al. Mar 2006 A1
20060070060 Tantawi et al. Mar 2006 A1
20060074750 Clark et al. Apr 2006 A1
20060075084 Lyon Apr 2006 A1
20060075139 Jungck Apr 2006 A1
20060083165 McLane et al. Apr 2006 A1
20060085536 Meyer et al. Apr 2006 A1
20060088026 Mazur et al. Apr 2006 A1
20060106938 Dini et al. Apr 2006 A1
20060107036 Randle et al. May 2006 A1
20060112066 Hamzy May 2006 A1
20060112176 Liu et al. May 2006 A1
20060120385 Atchison et al. Jun 2006 A1
20060129665 Toebes et al. Jun 2006 A1
20060129766 Cassia et al. Jun 2006 A1
20060136453 Kwan Jun 2006 A1
20060143293 Freedman Jun 2006 A1
20060143442 Smith Jun 2006 A1
20060146820 Friedman et al. Jul 2006 A1
20060149529 Nguyen et al. Jul 2006 A1
20060155823 Tran et al. Jul 2006 A1
20060155862 Kathi et al. Jul 2006 A1
20060161541 Cencini Jul 2006 A1
20060165051 Banerjee et al. Jul 2006 A1
20060168088 Leighton et al. Jul 2006 A1
20060173855 Turner et al. Aug 2006 A1
20060173957 Robinson Aug 2006 A1
20060179080 Meek et al. Aug 2006 A1
20060184936 Abels et al. Aug 2006 A1
20060188097 Taniguchi et al. Aug 2006 A1
20060190605 Franz et al. Aug 2006 A1
20060193247 Naseh et al. Aug 2006 A1
20060195866 Thukral Aug 2006 A1
20060206568 Verma et al. Sep 2006 A1
20060206586 Ling et al. Sep 2006 A1
20060218265 Farber et al. Sep 2006 A1
20060218304 Mukherjee et al. Sep 2006 A1
20060221971 Andrieux et al. Oct 2006 A1
20060224752 Parekh et al. Oct 2006 A1
20060227740 McLaughlin et al. Oct 2006 A1
20060227758 Rana et al. Oct 2006 A1
20060230137 Gare et al. Oct 2006 A1
20060230265 Krishna Oct 2006 A1
20060233155 Srivastava Oct 2006 A1
20060242227 Rao Oct 2006 A1
20060253546 Chang et al. Nov 2006 A1
20060253609 Andreev et al. Nov 2006 A1
20060259581 Piersol Nov 2006 A1
20060259690 Vittal et al. Nov 2006 A1
20060259984 Juneau Nov 2006 A1
20060265497 Ohata et al. Nov 2006 A1
20060265508 Angel et al. Nov 2006 A1
20060265516 Schilling Nov 2006 A1
20060265720 Cai et al. Nov 2006 A1
20060271641 Stavrakos et al. Nov 2006 A1
20060282505 Hasha et al. Dec 2006 A1
20060282522 Lewin et al. Dec 2006 A1
20060288119 Kim et al. Dec 2006 A1
20060288424 Saito Dec 2006 A1
20070005689 Leighton et al. Jan 2007 A1
20070005801 Kumar et al. Jan 2007 A1
20070005892 Mullender et al. Jan 2007 A1
20070011267 Overton et al. Jan 2007 A1
20070014241 Banerjee et al. Jan 2007 A1
20070021998 Laithwaite et al. Jan 2007 A1
20070028001 Phillips et al. Feb 2007 A1
20070038729 Sullivan et al. Feb 2007 A1
20070038994 Davis et al. Feb 2007 A1
20070041393 Westhead et al. Feb 2007 A1
20070043667 Qawami et al. Feb 2007 A1
20070043859 Ruul Feb 2007 A1
20070006461 Khandani Mar 2007 A1
20070050522 Grove et al. Mar 2007 A1
20070050703 Lebel Mar 2007 A1
20070055764 Dilley et al. Mar 2007 A1
20070055765 Lisiecki et al. Mar 2007 A1
20070061440 Sundaram et al. Mar 2007 A1
20070076872 Juneau Apr 2007 A1
20070086429 Lawrence et al. Apr 2007 A1
20070094361 Hoynowski et al. Apr 2007 A1
20070101061 Baskaran et al. May 2007 A1
20070101377 Six et al. May 2007 A1
20070118667 McCarthy et al. May 2007 A1
20070118668 McCarthy et al. May 2007 A1
20070124309 Takase et al. May 2007 A1
20070134641 Lieu Jun 2007 A1
20070156726 Levy Jul 2007 A1
20070156919 Potti et al. Jul 2007 A1
20070162331 Sullivan Jul 2007 A1
20070168336 Ransil et al. Jul 2007 A1
20070168517 Weller Jul 2007 A1
20070174426 Swildens et al. Jul 2007 A1
20070174442 Sherman et al. Jul 2007 A1
20070174490 Choi et al. Jul 2007 A1
20070183342 Wong et al. Aug 2007 A1
20070195800 Yang et al. Aug 2007 A1
20070198982 Bolan et al. Aug 2007 A1
20070204107 Greenfield et al. Aug 2007 A1
20070022001 Ertugrul Sep 2007 A1
20070208737 Li et al. Sep 2007 A1
20070214232 Belimpasakis et al. Sep 2007 A1
20070219795 Park et al. Sep 2007 A1
20070226294 Pruitt et al. Sep 2007 A1
20070233705 Farber et al. Oct 2007 A1
20070233706 Farber et al. Oct 2007 A1
20070233846 Farber et al. Oct 2007 A1
20070233884 Farber et al. Oct 2007 A1
20070233896 Hilt et al. Oct 2007 A1
20070242824 Vishik Oct 2007 A1
20070243860 Aiello et al. Oct 2007 A1
20070244964 Challenger et al. Oct 2007 A1
20070245022 Olliphant et al. Oct 2007 A1
20070250467 Mesnik et al. Oct 2007 A1
20070250468 Pieper Oct 2007 A1
20070250560 Wein et al. Oct 2007 A1
20070250601 Amlekar et al. Oct 2007 A1
20070250611 Bhogal et al. Oct 2007 A1
20070253377 Janneteau et al. Nov 2007 A1
20070255843 Zubev Nov 2007 A1
20070263604 Tai Nov 2007 A1
20070266113 Koopmans et al. Nov 2007 A1
20070266311 Westphal Nov 2007 A1
20070266333 Cossey et al. Nov 2007 A1
20070270165 Poosala Nov 2007 A1
20070271375 Hwang Nov 2007 A1
20070271385 Davis et al. Nov 2007 A1
20070271560 Wahlert et al. Nov 2007 A1
20070271608 Shimizu et al. Nov 2007 A1
20070280197 Pearlman et al. Dec 2007 A1
20070280229 Kenney Dec 2007 A1
20070281689 Altman et al. Dec 2007 A1
20070288588 Wein et al. Dec 2007 A1
20070291739 Sullivan et al. Dec 2007 A1
20070294419 Ulevitch Dec 2007 A1
20080005057 Ozzie et al. Jan 2008 A1
20080005275 Overton et al. Jan 2008 A1
20080008089 Bornstein et al. Jan 2008 A1
20080016233 Schneider Jan 2008 A1
20080025304 Venkataswami et al. Jan 2008 A1
20080028463 Dagon et al. Jan 2008 A1
20080222647 Taylor et al. Jan 2008 A1
20080037536 Padmanabhan et al. Feb 2008 A1
20080046550 Mazur et al. Feb 2008 A1
20080046596 Afergan et al. Feb 2008 A1
20080049615 Bugenhagen Feb 2008 A1
20080056207 Eriksson et al. Mar 2008 A1
20080062997 Nix Mar 2008 A1
20080065724 Seed et al. Mar 2008 A1
20080065745 Leighton et al. Mar 2008 A1
20080066072 Yurekli et al. Mar 2008 A1
20080071859 Seed et al. Mar 2008 A1
20080071987 Karn Mar 2008 A1
20080072264 Rayford Mar 2008 A1
20080082551 Farber et al. Apr 2008 A1
20080082662 Dandliker et al. Apr 2008 A1
20080086434 Chesla Apr 2008 A1
20080086559 Davis et al. Apr 2008 A1
20080086574 Raciborski et al. Apr 2008 A1
20080092242 Rowley Apr 2008 A1
20080101358 Van Ewijk et al. May 2008 A1
20080103805 Shear et al. May 2008 A1
20080104268 Farber et al. May 2008 A1
20080109679 Wright et al. May 2008 A1
20080114829 Button et al. May 2008 A1
20080125077 Velazquez et al. May 2008 A1
20080126706 Newport et al. May 2008 A1
20080134043 Georgis et al. Jun 2008 A1
20080140800 Farber et al. Jun 2008 A1
20080147866 Stolorz et al. Jun 2008 A1
20080147873 Matsumoto Jun 2008 A1
20080155059 Hardin et al. Jun 2008 A1
20080155061 Afergan et al. Jun 2008 A1
20080155613 Benya et al. Jun 2008 A1
20080155614 Cooper et al. Jun 2008 A1
20080155694 Kwon et al. Jun 2008 A1
20080162667 Verma et al. Jul 2008 A1
20080162821 Duran et al. Jul 2008 A1
20080162843 Davis et al. Jul 2008 A1
20080172488 Jawahar et al. Jul 2008 A1
20080175222 Barnea et al. Jul 2008 A1
20080184357 Drako et al. Jul 2008 A1
20080189437 Halley Aug 2008 A1
20080201332 Souders et al. Aug 2008 A1
20080201401 Pugh et al. Aug 2008 A1
20080215718 Stolorz et al. Sep 2008 A1
20080215730 Sundaram et al. Sep 2008 A1
20080215735 Farber et al. Sep 2008 A1
20080215747 Menon et al. Sep 2008 A1
20080215750 Farber et al. Sep 2008 A1
20080215755 Farber et al. Sep 2008 A1
20080222281 Dilley et al. Sep 2008 A1
20080222291 Weller et al. Sep 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080225779 Bragiel et al. Sep 2008 A1
20080228574 Stewart et al. Sep 2008 A1
20080228920 Souders et al. Sep 2008 A1
20080235383 Schneider Sep 2008 A1
20080235400 Slocombe et al. Sep 2008 A1
20080256087 Piironen et al. Oct 2008 A1
20080256175 Lee et al. Oct 2008 A1
20080263135 Olliphant Oct 2008 A1
20080270882 Rollins et al. Oct 2008 A1
20080275772 Suryanarayana et al. Nov 2008 A1
20080281946 Swildens et al. Nov 2008 A1
20080281950 Wald et al. Nov 2008 A1
20080288458 Sun et al. Nov 2008 A1
20080288722 Lecoq et al. Nov 2008 A1
20080301670 Gouge et al. Dec 2008 A1
20080312766 Couckuyt Dec 2008 A1
20080319862 Golan et al. Dec 2008 A1
20080320123 Houlihan et al. Dec 2008 A1
20080320269 Houlihan et al. Dec 2008 A1
20090013063 Soman Jan 2009 A1
20090016236 Alcala et al. Jan 2009 A1
20090029644 Sue et al. Jan 2009 A1
20090031042 Phatak Jan 2009 A1
20090031367 Sue Jan 2009 A1
20090031368 Ling Jan 2009 A1
20090031376 Riley et al. Jan 2009 A1
20090043900 Barber Feb 2009 A1
20090049098 Pickelsimer et al. Feb 2009 A1
20090063038 Shrivathsan et al. Mar 2009 A1
20090063704 Taylor et al. Mar 2009 A1
20090070533 Elazary Mar 2009 A1
20090083228 Shatz et al. Mar 2009 A1
20090083279 Hasek Mar 2009 A1
20090083413 Levow et al. Mar 2009 A1
20090086728 Gulati et al. Apr 2009 A1
20090086741 Zhang Apr 2009 A1
20090089869 Varghese Apr 2009 A1
20090094252 Wong et al. Apr 2009 A1
20090103707 McGary et al. Apr 2009 A1
20090106202 Mizrahi Apr 2009 A1
20090106381 Kasriel et al. Apr 2009 A1
20090112703 Brown Apr 2009 A1
20090125393 Hwang et al. May 2009 A1
20090125934 Jones et al. May 2009 A1
20090132368 Cotter et al. May 2009 A1
20090132640 Verma et al. May 2009 A1
20090132648 Swildens et al. May 2009 A1
20090138533 Iwasaki et al. May 2009 A1
20090138582 Turk May 2009 A1
20090144411 Winkler et al. Jun 2009 A1
20090144412 Ferguson et al. Jun 2009 A1
20090150926 Schlack Jun 2009 A1
20090157504 Braemer et al. Jun 2009 A1
20090157850 Gagliardi et al. Jun 2009 A1
20090158163 Stephens et al. Jun 2009 A1
20090164331 Bishop et al. Jun 2009 A1
20090164614 Christian et al. Jun 2009 A1
20090172167 Drai et al. Jul 2009 A1
20090177667 Ramos et al. Jul 2009 A1
20090182815 Czechowski et al. Jul 2009 A1
20090182837 Rogers Jul 2009 A1
20090182945 Aviles et al. Jul 2009 A1
20090187575 DaCosta Jul 2009 A1
20090198817 Sundaram et al. Aug 2009 A1
20090204682 Jeyaseelan et al. Aug 2009 A1
20090210549 Hudson et al. Aug 2009 A1
20090228708 Trostle Sep 2009 A1
20090233623 Johnson Sep 2009 A1
20090241167 Moore Sep 2009 A1
20090248697 Richardson et al. Oct 2009 A1
20090248786 Richardson et al. Oct 2009 A1
20090248787 Sivasubramanian et al. Oct 2009 A1
20090248852 Fuhrmann et al. Oct 2009 A1
20090248858 Sivasubramanian et al. Oct 2009 A1
20090248893 Richardson et al. Oct 2009 A1
20090249222 Schmidt et al. Oct 2009 A1
20090253435 Olofsson Oct 2009 A1
20090254661 Fullagar et al. Oct 2009 A1
20090254989 Achan et al. Oct 2009 A1
20090259588 Lindsay Oct 2009 A1
20090259971 Rankine et al. Oct 2009 A1
20090262741 Jungck et al. Oct 2009 A1
20090265707 Goodman et al. Oct 2009 A1
20090265786 Xie et al. Oct 2009 A1
20090271498 Cable Oct 2009 A1
20090271577 Campana et al. Oct 2009 A1
20090271730 Rose et al. Oct 2009 A1
20090276771 Nickolov et al. Nov 2009 A1
20090279444 Ravindran et al. Nov 2009 A1
20090282038 Subotin et al. Nov 2009 A1
20090287750 Banavar et al. Nov 2009 A1
20090307307 Igarashi Dec 2009 A1
20090327489 Swildens et al. Dec 2009 A1
20090327517 Sivasubramanian et al. Dec 2009 A1
20090327914 Adar et al. Dec 2009 A1
20100005175 Swildens et al. Jan 2010 A1
20100011061 Hudson et al. Jan 2010 A1
20100011126 Hsu et al. Jan 2010 A1
20100020699 On Jan 2010 A1
20100023601 Lewin et al. Jan 2010 A1
20100023621 Ezolt et al. Jan 2010 A1
20100030662 Klein Feb 2010 A1
20100030914 Sparks et al. Feb 2010 A1
20100034470 Valencia-Campo et al. Feb 2010 A1
20100036944 Douglis et al. Feb 2010 A1
20100037314 Perdisci et al. Feb 2010 A1
20100042725 Jeon et al. Feb 2010 A1
20100049862 Dixon Feb 2010 A1
20100057894 Glasser Mar 2010 A1
20100058352 Esfahany et al. Mar 2010 A1
20100070603 Moss et al. Mar 2010 A1
20100070700 Borst et al. Mar 2010 A1
20100074268 Raza Mar 2010 A1
20100082320 Wood et al. Apr 2010 A1
20100082787 Kommula et al. Apr 2010 A1
20100088367 Brown et al. Apr 2010 A1
20100088405 Huang et al. Apr 2010 A1
20100095008 Joshi Apr 2010 A1
20100100629 Raciborski et al. Apr 2010 A1
20100103837 Jungck et al. Apr 2010 A1
20100106934 Calder et al. Apr 2010 A1
20100111059 Bappu et al. May 2010 A1
20100115133 Joshi May 2010 A1
20100115342 Shigeta et al. May 2010 A1
20100121953 Friedman et al. May 2010 A1
20100121981 Drako May 2010 A1
20100122069 Gonion May 2010 A1
20100125626 Lucas et al. May 2010 A1
20100125673 Richardson et al. May 2010 A1
20100125675 Richardson et al. May 2010 A1
20100131646 Drako May 2010 A1
20100138559 Sullivan et al. Jun 2010 A1
20100150155 Napierala Jun 2010 A1
20100161564 Lee et al. Jun 2010 A1
20100161565 Lee et al. Jun 2010 A1
20100161799 Maloo Jun 2010 A1
20100169392 Lev Ran et al. Jul 2010 A1
20100169452 Atluri et al. Jul 2010 A1
20100174811 Musiri et al. Jul 2010 A1
20100191854 Isci et al. Jul 2010 A1
20100192225 Ma et al. Jul 2010 A1
20100217801 Leighton et al. Aug 2010 A1
20100217856 Falkena Aug 2010 A1
20100025071 Cadwell et al. Sep 2010 A1
20100223364 Wei Sep 2010 A1
20100226372 Watanabe Sep 2010 A1
20100228819 Wei Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100257024 Holmes et al. Oct 2010 A1
20100257266 Holmes et al. Oct 2010 A1
20100257566 Matila Oct 2010 A1
20100262964 Uyeda et al. Oct 2010 A1
20100268789 Yoo et al. Oct 2010 A1
20100268814 Cross et al. Oct 2010 A1
20100274765 Murphy et al. Oct 2010 A1
20100281482 Pike et al. Nov 2010 A1
20100293296 Hsu et al. Nov 2010 A1
20100293479 Rousso et al. Nov 2010 A1
20100299427 Joshi Nov 2010 A1
20100299438 Zimmerman et al. Nov 2010 A1
20100299439 McCarthy et al. Nov 2010 A1
20100306382 Cardosa et al. Dec 2010 A1
20100312861 Kolhi et al. Dec 2010 A1
20100318508 Brawer et al. Dec 2010 A1
20100322255 Hao et al. Dec 2010 A1
20100325365 Colglazier et al. Dec 2010 A1
20100332595 Fullagar et al. Dec 2010 A1
20100332601 Walter et al. Dec 2010 A1
20100332658 Elyashev Dec 2010 A1
20110010244 Hatridge Jan 2011 A1
20110016214 Jackson Jan 2011 A1
20110029398 Boudville Feb 2011 A1
20110029598 Arnold et al. Feb 2011 A1
20110035469 Smith et al. Feb 2011 A1
20110040893 Karaoguz et al. Feb 2011 A1
20110051738 Xu Mar 2011 A1
20110055386 Middleton et al. Mar 2011 A1
20110055714 Vemulapalli et al. Mar 2011 A1
20110055921 Narayanaswamy et al. Mar 2011 A1
20110057790 Martin et al. Mar 2011 A1
20110058675 Brueck et al. Mar 2011 A1
20110072138 Canturk et al. Mar 2011 A1
20110072366 Spencer Mar 2011 A1
20110078000 Ma et al. Mar 2011 A1
20110078230 Sepulveda Mar 2011 A1
20110082916 Swanson et al. Apr 2011 A1
20110085654 Jana et al. Apr 2011 A1
20110087769 Holmes et al. Apr 2011 A1
20110093584 Qiu et al. Apr 2011 A1
20110096987 Morales et al. Apr 2011 A1
20110099294 Kapur et al. Apr 2011 A1
20110106949 Patel et al. Apr 2011 A1
20110113467 Agarwal et al. May 2011 A1
20110125894 Anderson et al. May 2011 A1
20110153938 Verzunov et al. Jun 2011 A1
20110153941 Spatscheck et al. Jun 2011 A1
20110154318 Oshins et al. Jun 2011 A1
20110154350 Doyle et al. Jun 2011 A1
20110161461 Niven-Jenkins Jun 2011 A1
20110166935 Armentrout et al. Jul 2011 A1
20110182290 Perkins Jul 2011 A1
20110191445 Dazzi Aug 2011 A1
20110191446 Dazzi et al. Aug 2011 A1
20110191447 Dazzi et al. Aug 2011 A1
20110191449 Swildens et al. Aug 2011 A1
20110191459 Joshi Aug 2011 A1
20110196892 Xia Aug 2011 A1
20110208876 Richardson et al. Aug 2011 A1
20110208958 Stuedi et al. Aug 2011 A1
20110209064 Jorgensen et al. Aug 2011 A1
20110219120 Farber et al. Sep 2011 A1
20110219372 Agarwal et al. Sep 2011 A1
20110238501 Almeida Sep 2011 A1
20110238793 Bedare et al. Sep 2011 A1
20110239215 Sugai Sep 2011 A1
20110252142 Richardson et al. Oct 2011 A1
20110252143 Baumback et al. Oct 2011 A1
20110255445 Johnson et al. Oct 2011 A1
20110258049 Ramer et al. Oct 2011 A1
20110258614 Tamm Oct 2011 A1
20110270964 Huang et al. Nov 2011 A1
20110276623 Girbal Nov 2011 A1
20110295940 Saleem et al. Dec 2011 A1
20110295942 Raghunath et al. Dec 2011 A1
20110296053 Medved et al. Dec 2011 A1
20110296370 Ferris et al. Dec 2011 A1
20110296473 Babic Dec 2011 A1
20110302304 Baumback et al. Dec 2011 A1
20110307533 Saeki Dec 2011 A1
20110320522 Endres et al. Dec 2011 A1
20110320559 Foti Dec 2011 A1
20120011190 Driesen et al. Jan 2012 A1
20120023090 Holloway et al. Jan 2012 A1
20120023226 Petersen et al. Jan 2012 A1
20120031626 Clayton et al. Feb 2012 A1
20120036238 Sundaram et al. Feb 2012 A1
20120041899 Greene et al. Feb 2012 A1
20120041970 Ghosh et al. Feb 2012 A1
20120042381 Antonakakis et al. Feb 2012 A1
20120054860 Wyschogrod et al. Feb 2012 A1
20120066360 Ghosh Mar 2012 A1
20120072600 Richardson et al. Mar 2012 A1
20120072608 Peters et al. Mar 2012 A1
20120078998 Son et al. Mar 2012 A1
20120079096 Cowan et al. Mar 2012 A1
20120079115 Richardson et al. Mar 2012 A1
20120089700 Safruti et al. Mar 2012 A1
20120014249 Mao et al. Apr 2012 A1
20120089972 Scheidel et al. Apr 2012 A1
20120096065 Suit et al. Apr 2012 A1
20120096166 Devarapalli et al. Apr 2012 A1
20120110515 Abramoff et al. May 2012 A1
20120117621 Kondamuru et al. May 2012 A1
20120124184 Sakata et al. May 2012 A1
20120131177 Brandt et al. May 2012 A1
20120136697 Peles et al. May 2012 A1
20120142310 Pugh et al. Jun 2012 A1
20120143688 Alexander Jun 2012 A1
20120159476 Ramteke et al. Jun 2012 A1
20120166516 Simmons et al. Jun 2012 A1
20120169646 Berkes et al. Jul 2012 A1
20120173760 Jog et al. Jul 2012 A1
20120179796 Nagaraj et al. Jul 2012 A1
20120179817 Bade et al. Jul 2012 A1
20120179839 Raciborski et al. Jul 2012 A1
20120198043 Hesketh et al. Aug 2012 A1
20120198071 Black et al. Aug 2012 A1
20120204176 Tian et al. Aug 2012 A1
20120209942 Zehavi et al. Aug 2012 A1
20120224516 Stojanovski et al. Sep 2012 A1
20120226649 Kovacs et al. Sep 2012 A1
20120233329 Dickinson et al. Sep 2012 A1
20120233522 Barton et al. Sep 2012 A1
20120233668 Leafe et al. Sep 2012 A1
20120239725 Hartrick et al. Sep 2012 A1
20120246129 Rothschild et al. Sep 2012 A1
20120246257 Brown Sep 2012 A1
20120254961 Kim et al. Oct 2012 A1
20120257628 Bu et al. Oct 2012 A1
20120259954 McCarthy et al. Oct 2012 A1
20120272224 Brackman Oct 2012 A1
20120278229 Vishwanathan et al. Nov 2012 A1
20120278831 van Coppenolle et al. Nov 2012 A1
20120278833 Tam Nov 2012 A1
20120297009 Amir et al. Nov 2012 A1
20120303785 Sivasubramanian et al. Nov 2012 A1
20120303804 Sundaram et al. Nov 2012 A1
20120311648 Swildens et al. Dec 2012 A1
20120317573 Osogami et al. Dec 2012 A1
20120324089 Joshi Dec 2012 A1
20130003547 Motwani et al. Jan 2013 A1
20130003735 Chao et al. Jan 2013 A1
20130007100 Trahan et al. Jan 2013 A1
20130007101 Trahan et al. Jan 2013 A1
20130007102 Trahan et al. Jan 2013 A1
20130007241 Trahan et al. Jan 2013 A1
20130007273 Baumback et al. Jan 2013 A1
20130013764 Li et al. Jan 2013 A1
20130018945 Vendrow et al. Jan 2013 A1
20130019311 Swildens et al. Jan 2013 A1
20130034099 Hikichi et al. Feb 2013 A1
20130036307 Gagliano et al. Feb 2013 A1
20130041872 Aizman et al. Feb 2013 A1
20130042328 Padinjareveetil Feb 2013 A1
20130046869 Jenkins et al. Feb 2013 A1
20130046883 Lientz et al. Feb 2013 A1
20130054675 Jenkins et al. Feb 2013 A1
20130055374 Kustarz et al. Feb 2013 A1
20130061306 Sinn Mar 2013 A1
20130067530 Spektor et al. Mar 2013 A1
20130073808 Puthalath et al. Mar 2013 A1
20130080420 Taylor et al. Mar 2013 A1
20130080421 Taylor et al. Mar 2013 A1
20130080576 Taylor et al. Mar 2013 A1
20130080577 Taylor et al. Mar 2013 A1
20130080623 Thireault Mar 2013 A1
20130080627 Kukreja et al. Mar 2013 A1
20130080636 Friedman et al. Mar 2013 A1
20130084898 Li et al. Apr 2013 A1
20130086001 Bhogal et al. Apr 2013 A1
20130089005 Li et al. Apr 2013 A1
20130095806 Salkintzis et al. Apr 2013 A1
20130103834 Dzerve et al. Apr 2013 A1
20130111035 Alapati et al. Apr 2013 A1
20130117282 Mugali, Jr. et al. May 2013 A1
20130117849 Golshan et al. May 2013 A1
20130130221 Kortemeyer et al. May 2013 A1
20130133057 Yoon et al. May 2013 A1
20130151646 Chidambaram et al. Jun 2013 A1
20130191499 Ludin et al. Jul 2013 A1
20130198341 Kim Aug 2013 A1
20130212300 Eggleston et al. Aug 2013 A1
20130219020 McCarthy et al. Aug 2013 A1
20130227165 Liu Aug 2013 A1
20130246567 Green et al. Sep 2013 A1
20130254269 Sivasubramanian et al. Sep 2013 A1
20130254879 Chesla et al. Sep 2013 A1
20130263256 Dickinson et al. Oct 2013 A1
20130268616 Sakata et al. Oct 2013 A1
20130275549 Field et al. Oct 2013 A1
20130279335 Ahmadi Oct 2013 A1
20130283266 Baset et al. Oct 2013 A1
20130305046 Mankovski et al. Nov 2013 A1
20130305083 Machida Nov 2013 A1
20130311555 Laoutaris et al. Nov 2013 A1
20130311583 Humphreys et al. Nov 2013 A1
20130311605 Richardson et al. Nov 2013 A1
20130311989 Ota et al. Nov 2013 A1
20130339429 Richardson et al. Dec 2013 A1
20130346465 Maltz et al. Dec 2013 A1
20130346470 Obstfeld et al. Dec 2013 A1
20130346567 Richardson et al. Dec 2013 A1
20130346614 Baughman et al. Dec 2013 A1
20140006465 Davis et al. Jan 2014 A1
20140006577 Joe et al. Jan 2014 A1
20140007239 Sharpe et al. Jan 2014 A1
20140013403 Shuster Jan 2014 A1
20140019605 Boberg Jan 2014 A1
20140022951 Lemieux Jan 2014 A1
20140032658 Falls Jan 2014 A1
20140036675 Wang et al. Feb 2014 A1
20140040478 Hsu et al. Feb 2014 A1
20140047104 Rodriguez Feb 2014 A1
20140053022 Forgette et al. Feb 2014 A1
20140059198 Richardson et al. Feb 2014 A1
20140059208 Yan et al. Feb 2014 A1
20140059379 Ren et al. Feb 2014 A1
20140082165 Marr et al. Mar 2014 A1
20140082614 Klein et al. Mar 2014 A1
20140089917 Attalla et al. Mar 2014 A1
20140108474 David et al. Apr 2014 A1
20140108672 Ou et al. Apr 2014 A1
20140119194 Raciborski et al. May 2014 A1
20140122698 Batrouni et al. May 2014 A1
20140122725 Batrouni et al. May 2014 A1
20140137111 Dees et al. May 2014 A1
20140143305 Choi et al. May 2014 A1
20140149601 Carney et al. May 2014 A1
20140164584 Joe et al. Jun 2014 A1
20140164817 Bartholomy et al. Jun 2014 A1
20140165061 Greene et al. Jun 2014 A1
20140172944 Newton et al. Jun 2014 A1
20140181268 Stevens et al. Jun 2014 A1
20140195686 Yeager et al. Jun 2014 A1
20140189069 Gero et al. Jul 2014 A1
20140200036 Egner et al. Jul 2014 A1
20140215019 Ahrens Jul 2014 A1
20140244937 Bloomstein et al. Aug 2014 A1
20140258523 Kazerani et al. Sep 2014 A1
20140269371 Badea et al. Sep 2014 A1
20140279852 Chen Sep 2014 A1
20140280606 Long Sep 2014 A1
20140280679 Dey et al. Sep 2014 A1
20140297866 Ennaji et al. Oct 2014 A1
20140297870 Eggleston et al. Oct 2014 A1
20140298021 Kwon et al. Oct 2014 A1
20140310402 Giaretta et al. Oct 2014 A1
20140310811 Hentunen Oct 2014 A1
20140324774 Chen et al. Oct 2014 A1
20140325155 Marshall et al. Oct 2014 A1
20140331328 Wang et al. Nov 2014 A1
20140337472 Newton et al. Nov 2014 A1
20140351413 Smith et al. Nov 2014 A1
20140351871 Bomfim et al. Nov 2014 A1
20150006615 Wainner et al. Jan 2015 A1
20150019686 Backholm Jan 2015 A1
20150026407 Mclellan et al. Jan 2015 A1
20150036493 Cj et al. Feb 2015 A1
20150067171 Yum Mar 2015 A1
20150074228 Drake Mar 2015 A1
20150081877 Sethi et al. Mar 2015 A1
20150088586 Pavlas et al. Mar 2015 A1
20150088964 Shiell et al. Mar 2015 A1
20150088972 Brand et al. Mar 2015 A1
20150089621 Khalid Mar 2015 A1
20150095516 Bergman Mar 2015 A1
20150106864 Li et al. Apr 2015 A1
20150149600 Thibeault et al. May 2015 A1
20150149631 Lissack May 2015 A1
20150154051 Kruglick Jun 2015 A1
20150156172 Nandi et al. Jun 2015 A1
20150156279 Vaswani et al. Jun 2015 A1
20150172414 Richardson et al. Jun 2015 A1
20150180995 Hofmann Jun 2015 A1
20150188734 Petrov Jul 2015 A1
20150189042 Sun et al. Jul 2015 A1
20150195244 Richardson et al. Jul 2015 A1
20150200991 Kwon Jul 2015 A1
20150215388 Kontothanassis et al. Jul 2015 A1
20150215656 Pulung et al. Jul 2015 A1
20150242397 Zhuang Aug 2015 A1
20150244580 Saavedra Aug 2015 A1
20150256647 Richardson et al. Sep 2015 A1
20150264009 Scharber et al. Sep 2015 A1
20150271031 Beevers Sep 2015 A1
20150288647 Chhabra et al. Oct 2015 A1
20150317118 Orikasa et al. Nov 2015 A1
20150319260 Watson Nov 2015 A1
20150339136 Suryanarayanan et al. Nov 2015 A1
20150341431 Hartrick et al. Nov 2015 A1
20150358276 Liu et al. Dec 2015 A1
20150358436 Kim et al. Dec 2015 A1
20150363113 Rahman et al. Dec 2015 A1
20150363282 Rangasamy Dec 2015 A1
20160006672 Saavedra Jan 2016 A1
20160021197 Pogrebinsky et al. Jan 2016 A1
20160026568 Marshall et al. Jan 2016 A1
20160028598 Khakpour et al. Jan 2016 A1
20160028755 Vasseur et al. Jan 2016 A1
20160036857 Foxhoven et al. Feb 2016 A1
20160041910 Richardson et al. Feb 2016 A1
20160065475 Hilt et al. Feb 2016 A1
20160065665 Richardson et al. Mar 2016 A1
20160072669 Saavedra Mar 2016 A1
20160072720 Richardson et al. Mar 2016 A1
20160104346 Ovalle et al. Mar 2016 A1
20160132600 Woodhead et al. May 2016 A1
20160142251 Contreras et al. May 2016 A1
20160164761 Sathyanarayana et al. Jun 2016 A1
20160164799 Popli et al. Jun 2016 A1
20160182454 Phonsa et al. Jun 2016 A1
20160182542 Staniford Jun 2016 A1
20160241639 Brookins et al. Aug 2016 A1
20160253262 Nadgowda Sep 2016 A1
20160255042 Newton Sep 2016 A1
20160269927 Kim et al. Sep 2016 A1
20160274929 King Sep 2016 A1
20160294678 Khakpour et al. Oct 2016 A1
20160337426 Shribman et al. Oct 2016 A1
20160366202 Phillips et al. Dec 2016 A1
20160373789 Tsukagoshi Dec 2016 A1
20170041428 Katsev Feb 2017 A1
20170099345 Leach Mar 2017 A1
20170099254 Leach et al. Apr 2017 A1
20170109316 Hack et al. Apr 2017 A1
20170126796 Hollis et al. May 2017 A1
20170142062 Richardson et al. May 2017 A1
20170153980 Araújo et al. Jun 2017 A1
20170155678 Araújo et al. Jun 2017 A1
20170155732 Araújo et al. Jun 2017 A1
20170163425 Kaliski, Jr. Jun 2017 A1
20170170973 Gill et al. Jun 2017 A1
20170171146 Sharma et al. Jun 2017 A1
20170180217 Puchala et al. Jun 2017 A1
20170180267 Puchala et al. Jun 2017 A1
20170187768 Huang et al. Jun 2017 A1
20170214761 Hsu et al. Jul 2017 A1
20170257340 Richardson et al. Sep 2017 A1
20170374121 Phillips et al. Dec 2017 A1
20180011913 Kapanipathi et al. Jan 2018 A1
20180027040 Bae Jan 2018 A1
20180077109 Hoeme et al. Jan 2018 A1
20180063027 Rafferty Mar 2018 A1
20180063193 Chandrashekhar et al. Mar 2018 A1
20180077110 Huston, III et al. Mar 2018 A1
20180097631 Uppal et al. Apr 2018 A1
20180097634 Uppal et al. Apr 2018 A1
20180097831 Uppal et al. Apr 2018 A1
20180109553 Radlein et al. Apr 2018 A1
20180159757 Uppal et al. Jun 2018 A1
20180159769 Richardson et al. Jun 2018 A1
20180167444 Sivasubramanian et al. Jun 2018 A1
20180167469 Sivasubramanian et al. Jun 2018 A1
20180173526 Prinsloo et al. Jun 2018 A1
20180176615 Hannu et al. Jun 2018 A1
20180183689 Ellsworth et al. Jun 2018 A1
20180191817 Richardson et al. Jul 2018 A1
20180212880 Mostert Jul 2018 A1
20180213052 Maccarthaigh et al. Jul 2018 A1
20180278717 Richardson et al. Sep 2018 A1
20180287916 Mizik et al. Oct 2018 A1
20180302322 Richardson et al. Oct 2018 A1
20180332107 Marr et al. Nov 2018 A1
20180337885 Singh et al. Nov 2018 A1
20180351904 Mizik et al. Dec 2018 A1
20180367498 Bliss et al. Dec 2018 A1
20190007515 Baldwin et al. Jan 2019 A1
20190020562 Richardson et al. Jan 2019 A1
20190028562 Watson et al. Jan 2019 A1
20190044787 Richardson et al. Jan 2019 A1
20190044846 Howard et al. Feb 2019 A1
20190073303 Marshall et al. Mar 2019 A1
20190089542 Richardson et al. Mar 2019 A1
20190089818 Choi Mar 2019 A1
20190098109 Watson Mar 2019 A1
20190121739 Richardson et al. Apr 2019 A1
20190129908 Kumarasamy May 2019 A1
20190140922 Ellsworth et al. May 2019 A1
20190173941 Puchala et al. Jun 2019 A1
20190173972 MacCarthaigh et al. Jun 2019 A1
20190190998 Sivasubramanian et al. Jun 2019 A1
20190222666 Uppal et al. Jul 2019 A1
20190268265 Richardson et al. Jul 2019 A1
20190297137 Richardson et al. Sep 2019 A1
20190032751 Kalagi et al. Oct 2019 A1
20190354484 Marshall et al. Nov 2019 A1
20200065132 Mercier et al. Feb 2020 A1
20200084268 Hollis et al. Mar 2020 A1
20200195677 Uppal et al. Jun 2020 A1
20200195753 Richardson et al. Jun 2020 A1
20200265096 Raftery Aug 2020 A1
20200287817 Howard et al. Sep 2020 A1
20200366638 Vasquez et al. Nov 2020 A1
20200389534 Sivasubramanian et al. Dec 2020 A1
20200389541 Baldwin et al. Dec 2020 A1
20210021692 Richardson et al. Jan 2021 A1
20210042163 Radhakrishnan et al. Feb 2021 A1
20210119961 Thunga et al. Apr 2021 A1
Foreign Referenced Citations (47)
Number Date Country
2741 895 May 2010 CA
2765397 Feb 2011 CA
1422468 Jun 2003 CN
1511399 Jul 2004 CN
1605182 Apr 2005 CN
101189598 May 2008 CN
101431539 May 2009 CN
101460907 Jun 2009 CN
101631133 Jan 2010 CN
103731481 Apr 2014 CN
1603307 Dec 2005 EP
1351141 Oct 2007 EP
2008167 Dec 2008 EP
3156911 Apr 2017 EP
07-141305 Jun 1995 JP
2001-0506093 May 2001 JP
2001-249907 Sep 2001 JP
2002-024192 Jan 2002 JP
2002-044137 Feb 2002 JP
2002-323986 Nov 2002 JP
2003-167810 Jun 2003 JP
2003-167813 Jun 2003 JP
2003-188901 Jul 2003 JP
2003-522358 Jul 2003 JP
2004-070935 Mar 2004 JP
2004-532471 Oct 2004 JP
2004-533738 Nov 2004 JP
2005-537687 Dec 2005 JP
3748216 Feb 2006 JP
2007-133896 May 2007 JP
2007-207225 Aug 2007 JP
2008-515106 May 2008 JP
2009-071538 Apr 2009 JP
2012-509623 Apr 2012 JP
2012-209623 Oct 2012 JP
WO 2001045349 Jun 2001 WO
WO 2002069608 Sep 2002 WO
WO 2005071560 Aug 2005 WO
WO 2007007960 Jan 2007 WO
WO 2007126837 Nov 2007 WO
WO 2009124006 Oct 2009 WO
WO 2010002603 Jan 2010 WO
WO 2012044587 Apr 2012 WO
WO 2012065641 May 2012 WO
WO 2014047073 Mar 2014 WO
WO 2017106455 Jun 2017 WO
WO 2018236597 Dec 2018 WO
Non-Patent Literature Citations (187)
Entry
CC Hameed, “Disk Fragmentation and System Performance”, Mar. 14, 2008 (Year: 2008).
“Non-Final Office Action dated Jan. 3, 2012,” U.S. Appl. No. 12/652,541, filed Jan. 3, 2012; 35 pages.
“Final Office Action dated Sep. 5, 2012,” U.S. Appl. No. 12/652,541, filed Sep. 5, 2012; 40 pages.
“Notice of Allowance dated Jan. 4, 2013,” U.S. Appl. No. 12/652,541, filed Jan. 4, 2013; 11 pages.
“Non-Final Office Action dated Apr. 30, 2014,” U.S. Appl. No. 13/842,970; 20 pages.
“Final Office Action dated Aug. 19, 2014,” U.S. Appl. No. 13/842,970; 13 pages.
“Notice of Allowance dated Dec. 5, 2014,” U.S. Appl. No. 13/842,970; 6 pages.
Canonical Name (CNAME) DNS Records, domainavenue.com, Feb. 1, 2001, XP055153783, Retrieved from the Internet: URL:http://www.domainavenue.com/cname.htm [retrieved on Nov. 18, 2014].
“Content delivery network”, Wikipedia, the free encyclopedia, Retrieved from the Internet: URL:http://en.Wikipedia.org/w/index.php?title=Contentdelivery network&oldid=601009970, XP055153445, Mar. 24, 2008.
“Global Server Load Balancing with ServerIron,” Foundry Networks, retrieved Aug. 30, 2007, from http://www.foundrynet.com/pdf/an-global-server-load-bal.pdf, 7 pages.
“Grid Computing Solutions,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/grid, 3 pages.
“Grid Offerings,” Java.net, retrieved May 3, 2006, from http://wiki.java.net/bin/view/Sungrid/OtherGridOfferings, 8 pages.
“Recent Advances Boost System Virtualization,” eWeek.com, retrieved from May 3, 2006, http://www.eWeek.com/article2/0,1895,1772626,00.asp, 5 pages.
“Scaleable Trust of Next Generation Management (STRONGMAN),” retrieved May 17, 2006, from http://www.cis.upenn.edu/˜dsl/STRONGMAN/, 4 pages.
“Sun EDA Compute Ranch,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://sun.com/processors/ranch/brochure.pdf, 2 pages.
“Sun Microsystems Accelerates UltraSP ARC Processor Design Program With New Burlington, Mass. Compute Ranch,” Nov. 6, 2002, Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2002-11/sunflash.20021106.3 .xml, 2 pages.
“Sun N1 Grid Engine 6,” Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/software/gridware/index.xml, 3 pages.
“Sun Opens New Processor Design Compute Ranch,” Nov. 30, 2001, Sun Microsystems, Inc., retrieved May 3, 2006, from http://www.sun.com/smi/Press/sunflash/2001-11/sunflash.20011130.1.xml, 3 pages.
“The Softricity Desktop,” Softricity, Inc., retrieved May 3, 2006, from http://www.softricity.com/products/, 3 pages.
“Xen—The Xen virtual Machine Monitor,” University of Cambridge Computer Laboratory, retrieved Nov. 8, 2005, from http://www.cl.cam.ac.uk/Research/SRG/netos/xen/, 2 pages.
“XenFaq,” retrieved Nov. 8, 2005, from http://wiki.xensource.com/xenwiki/XenFaq?action=print, 9 pages.
Abi, Issam, et al., “A Business Driven Management Framework for Utility Computing Environments,” Oct. 12, 2004, HP Laboratories Bristol, HPL-2004-171, retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2004/HPL-2004-171.pdf, 14 pages.
American Bar Association; Digital Signature Guidelines Tutorial [online]; Feb. 10, 2002 [retrieved on Mar. 2, 2010]; American Bar Association Section of Science and Technology Information Security Committee; Retrieved from the internet: (URL: http://web.archive.org/web/20020210124615/www.abanet.org/scitech/ec/isc/dsg-tutorial.html; pp. 1-8.
Arends et al., DNS Security Introduction and Requirements, RFC 4033, Mar. 2005, 21 pages.
Ariyapperuma et al., “Security Vulnerabilities in DNS and DNSSEC.” The Second International Conference on Availability, Reliability and Security, IEEE, 2007, 8 pages.
Armour et al.: “A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities”; Management Science, vol. 9, No. 2 (Jan. 1963); pp. 294-309.
Baglioni et al., “Preprocessing and Mining Web Log Data for Web Personalization”, LNAI 2829, 2003, pp. 237-249.
Barbir, A., et al., “Known Content Network (CN) Request-Routing Mechanisms”, Request for Comments 3568, [online], IETF, Jul. 2003, [retrieved on Feb. 26, 2013], Retrieved from the Internet: (URL: http://tools.ietf.org/rfc/rfc3568.txt).
Bellovin, S., “Distributed Firewalls,” ;login;:37-39, Nov. 1999, http://www.cs.columbia.edu/-smb/papers/distfw. html, 10 pages, retrieved Nov. 11, 2005.
Blaze, M., “Using the KeyNote Trust Management System,” Mar. 1, 2001, from http://www.crypto.com/trustmgt/kn.html, 4 pages, retrieved May 17, 2006.
Brenton, C., “What is Egress Filtering and How Can I Implement It?—Egress Filtering v0.2,” Feb. 29, 2000, SANS Institute, http://www.sans.org/infosecFAQ/firewall/egress.htm, 6 pages.
Byun et al., “A Dynamic Grid Services Deployment Mechanism for On-Demand Resource Provisioning”, IEEE International Symposium on Cluster Computing and the Grid:863-870, 2005.
Chandramouli et al., “Challenges in Securing the Domain Name System.” IEEE Security & Privacy4.1 (2006),pp. 84-87.
Chipara et al, “Realtime Power-Aware Routing in Sensor Network”, IEEE, 2006, 10 pages.
Clark, C., “Live Migration of Virtual Machines,” May 2005, NSDI '05: 2nd Symposium on Networked Systems Design and Implementation, Boston, MA, May 2-4, 2005, retrieved from http://www.usenix.org/events/nsdi05/tech/full_papers/clark/clark.pdf, 14 pages.
Cohen et al., “Proactive Caching of DNS Records: Addressing a Performance Bottleneck”, Proceedings of Saint 2001 Symposium On Applications and the Internet; 8-12, Jan. 8, 2001, IEEE Computer Society, pp. 85-94.
Coulson, D., “Network Security Iptables,” Apr. 2003, Linuxpro, Part 2, retrieved from http://davidcoulson.net/writing/lxf/38/iptables.pdf, 4 pages.
Coulson, D., “Network Security Iptables,” Mar. 2003, Linuxpro, Part 1, retrieved from http://davidcoulson.net/writing/lxf/39/iptables.pdf, 4 pages.
Deleuze, C., et al., A DNS Based Mapping Peering System for Peering CDNs, draft-deleuze-cdnp-dnsmap-peer-00.txt, Nov. 20, 2000, 20 pages.
Demers, A., “Epidemic Algorithms For Replicated Database Maintenance,” 1987, Proceedings of the sixth annual ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada, Aug. 10-12, 1987, 12 pages.
Eastlake, Donald, Domain Name System Security Extensions, RFC 2535, Mar. 1999, 47 pages.
Gruener, J., “A Vision Of Togetherness,” May 24, 2004, Networkworld, retrieved May 3, 2006, from, http://www.networkworld.com/supp/2004/ndc3/0524virt.html, 9 pages.
Gunther et al., “Measuring Round Trip Times to determine the Distance between WLAN Nodes”,May 2005, In Proc. Of Networking 2005, all pages.
Gunther et al., “Measuring Round Trip Times to determine the Distance between WLAN Nodes”, Dec. 18, 2004, Technical University Berlin, all pages.
Guo, F., Understanding Memory Resource Management in Vmware vSphere 5.0, Vmware, 2011, pp. 1-29.
Hameed, CC, “Disk Fragmentation and System Performance”, Mar. 14, 2008, 3 pages.
Hartung et al.; Digital rights management and watermarking of multimedia content for m-commerce applications; Published in: Communications Magazine, IEEE (vol. 38, Issue: 11 ); Date of Publication: Nov. 2000; pp. 78-84; IEEE Xplore.
Horvath et al., “Enhancing Energy Efficiency in Multi-tier Web Server Clusters via Prioritization,” in Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International , vol., No., pp. 1-6, Mar. 26-30, 2007.
Ioannidis, S., et al., “Implementing a Distributed Firewall,” Nov. 2000, (ACM) Proceedings of the ACM Computer and Communications Security (CCS) 2000, Athens, Greece, pp. 190-199, retrieved from http://www.cis.upenn.edu/˜dls/STRONGMAN/Papers/df.pdf, 10 pages.
JH Software, Moving a DNS Server to a New IP Address, last updated Jan. 26, 2006, 1 page.
Joseph, Joshy, et al., “Introduction to Grid Computing,” Apr. 16, 2004, retrieved Aug. 30, 2007, from http://www.informit.com/articles/printerfriendly.aspx?p=169508, 19 pages.
Kalafut et al., Understanding Implications of DNS Zone Provisioning., Proceeding IMC '08 Proceedings of the 8th AMC SIGCOMM conference on Internet measurement., pp. 211-216., ACM New York, NY, USA., 2008.
Kato, Yoshinobu , Server load balancer—Difference in distribution technique and supported protocol—Focus on function to meet the needs, Nikkei Communications, Japan, Nikkei Business Publications, Inc., Mar. 20, 2000, vol. 314, pp. 114 to 123.
Kenshi, P., “Help File Library: Iptables Basics,” Justlinux, retrieved Dec. 1, 2005, from http://www.justlinux.com/nhf/Security/lptables _ Basics.html, 4 pages.
Krsul et al., “VMPlants: Providing and Managing Virtual Machine Execution Environments for Grid Computing”, Nov. 6, 2004 (Nov. 6, 2004), Supercomputing, 2004. Proceedings Of The ACM/IEEE SC2004 Conference Pittsburgh, PA, USA Nov. 6-12, 2004, Piscataway, NJ, USA, IEEE, 1730 Massachusetts Ave., NW Washington, DC 20036-1992 USA, 12 pages.
Liu, “The Ultimate Guide to Preventing DNS-based DDoS Attacks”, Retrieved from http://www.infoworld.com/article/2612835/security/the-ultimate-guide-to-preventing-dns-based-ddos-attacks.html, Published Oct. 30, 2013.
Liu et al., “Combined mining of Web server logs and web contents for classifying user navigation patterns and predicting users' future requests,” Data & Knowledge Engineering 61 (2007) pp. 304-330.
Maesono, et al., “A Local Scheduling Method considering Data Transfer in Data Grid,” Technical Report of IEICE, vol. 104, No. 692, pp. 435-440, The Institute of Electronics, Information and Communication Engineers, Japan, Feb. 2005.
Meng et al., “Improving the Scalability of Data Center Networks with Traffic-Aware Virtual Machine Placement”; Proceedings of the 29th Conference on Information Communications, INFOCOM'10, pp. 1154-1162. Piscataway, NJ. IEEE Press, 2010.
Mulligan et al.; How DRM-based content delivery systems disrupt expectations of “personal use”; Published in: Proceeding DRM '03 Proceedings of the 3rd ACM workshop on Digital rights management; 2003; pp. 77-89; ACM Digital Library.
Ragan, “Three Types of DNS Attacks and How to Deal with Them”, Retrieved from http://www.csoonline.com/article/2133916/malware-cybercrime/three-types-of-dns-attacks-and-how-to-deal-with-them.html, Published Aug. 28, 2013.
Shankland, S., “Sun to buy start-up to bolster N1 ,” Jul. 30, 2003, CNet News.com, retrieved May 3, 2006, http://news.zdnet.com/2100-3513_22-5057752.html, 8 pages.
Sharif et al, “Secure In-VM Monitoring Using Hardware Virtualization”, Microsoft, Oct. 2009 http://research.microsoft.com/pubs/153179/sim-ccs09.pdf; 11 pages.
Strand, L., “Adaptive distributed firewall using intrusion detection,” Nov. 1, 2004, University of Oslo Department of Informatics, retrieved Mar. 8, 2006, from http://gnist.org/˜lars/studies/master/StrandLars-master.pdf, 158 pages.
Takizawa, et al., “Scalable MultiReplication Framework on The Grid,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2004, No. 81, pp. 247-252, Japan, Aug. 1, 2004.
Tan et al., “Classification: Basic Concepts, Decision Tree, and Model Evaluation”, Introduction in Data Mining; http://www-users.cs.umn.edu/˜kumar/dmbook/ch4.pdf, 2005, pp. 245-205.
Van Renesse, R., “Astrolabe: A Robust And Scalable Technology For Distributed System Monitoring, Management, And Data Mining,” May 2003, ACM Transactions On Computer Systems (TOCS), 21 (2): 164-206, 43 pages.
Vijayan, J., “Terraspring Gives Sun's N1 a Boost,” Nov. 25, 2002, Computerworld, retrieved May 3, 2006, from http://www.computerworld.com/printthis/2002/0,4814, 76159,00.html, 3 pages.
Virtual Iron Software Home, Virtual Iron, retrieved May 3, 2006, from http://www.virtualiron.com/, 1 page.
Waldspurger, CA., “Spawn: A Distributed Computational Economy,” Feb. 1992, IEEE Transactions on Software Engineering, 18(2): 103-117, 15 pages.
Watanabe, et al., “Remote Program Shipping System for GridRPC Systems,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2003, No. 102, pp. 73-78, Japan, Oct. 16, 2003.
Xu et al., “Decision tree regression for soft classification of remote sensing data”, Remote Sensing of Environment 97 (2005) pp. 322-336.
Yamagata, et al., “A virtual-machine based fast deployment tool for Grid execution environment,” Report of Study of Information Processing Society of Japan, Information Processing Society, vol. 2006, No. 20, pp. 127-132, Japan, Feb. 28, 2006.
Zhao et al., “Distributed file system support for virtual machines in grid computing”, Jun. 4, 2004 (Jun. 4, 2004), High Performance Distributed Computing, 2004. Proceedings. 13th IEEE International Symposium On Honolulu, HI, USA Jun. 4-6, 2004, Piscataway, NJ, USA, IEEE, pp. 202-211.
Zhu, Xiaoyun, et al., “Utility-Driven Workload Management Using Nested Control Design,” Mar. 29, 2006, HP Laboratories Palo Alto, HPL-2005-193(R.1), retrieved Aug. 30, 2007, from http://www.hpl.hp.com/techreports/2005/HPL-2005-193R1.pdf, 9 pages.
Supplementary European Search Report in Application No. 09729072.0 2266064 dated Dec. 10, 2014.
Office Action in Application No. 09729072.0 dated May 14, 2018.
First Singapore Written Opinion in Application No. 201006836-9, dated Oct. 12, 2011 in 12 pages.
Singapore Written Opinion in Application No. 201006836-9, dated Apr. 30, 2012 in 10 pages.
First Office Action in Chinese Application No. 200980111422.3 dated Apr. 13, 2012.
First Office Action in Japanese Application No. 2011-502138 dated Feb. 1, 2013.
Singapore Written Opinion in Application No. 201006837-7, dated Oct. 12, 2011 in 11 pages.
Supplementary European Search Report in Application No. 09727694.3 dated Jan. 30, 2012 in 6 pages.
Singapore Examination Report in Application No. 201006837-7 dated Mar. 16, 2012.
First Office Action in Chinese Application No. 200980111426.1 dated Feb. 16, 2013.
Second Office Action in Chinese Application No. 200980111426.1 dated Dec. 25, 2013.
Third Office Action in Chinese Application No. 200980111426.1 dated Jul. 7, 2014.
Fourth Office Action in Chinese Application No. 200980111426.1 dated Jan. 15, 2015.
Fifth Office Action in Chinese Application No. 200980111426.1 dated Aug. 14, 2015.
First Office Action in Japanese Application No. 2011-502139 dated Nov. 5, 2013.
Decision of Rejection in Application No. 2011-502139 dated Jun. 30, 2014.
Office Action in Japanese Application No. 2011-502139 dated Aug. 17, 2015.
Office Action in Indian Application No. 5937/CHENP/2010 dated Jan. 19, 2018.
Singapore Written Opinion in Application No. 201006874-0, dated Oct. 12, 2011 in 10 pages.
First Office Action in Japanese Application No. 2011-502140 dated Dec. 7, 2012.
First Office Action in Chinese Application No. 200980119995.0 dated Jul. 6, 2012.
Second Office Action in Chinese Application No. 200980119995.0 dated Apr. 15, 2013.
Examination Report in Singapore Application No. 201006874-0 dated May 16, 2012.
Search Report in European Application No. 09839809.2 dated May 11, 2015.
Office Action in European Application No. 09839809.2 dated Dec. 8, 2016.
Office Action in Indian Application No. 6210/CHENP/2010 dated Mar. 27, 2018.
First Office Action in Chinese Application No. 200980119993.1 dated Jul. 4, 2012.
Second Office Action in Chinese Application No. 200980119993.1 dated Mar. 12, 2013.
Third Office Action in Chinese Application No. 200980119993.1 dated Oct. 21, 2013.
Supplementary European Search Report in Application No. 09728756.9 dated Jan. 8, 2013.
First Office Action in Japanese Application No. 2011-503091 dated Nov. 18, 2013.
Office Action in Japanese Application No. 2014-225580 dated Oct. 26, 2015.
Office Action in Japanese Application No. 2014-225580 dated Oct. 3, 2016.
Search Report and Written Opinion issued in Singapore Application No. 201006873-2 dated Oct. 12, 2011.
Examination Report in Indian Application No. 6213/CHENP/2010 dated May 23, 2018.
First Office Action is Chinese Application No. 200980125551.8 dated Jul. 4, 2012.
First Office Action in Japanese Application No. 2011-516466 dated Mar. 6, 2013.
Second Office Action in Japanese Application No. 2011-516466 dated Mar. 17, 2014.
Decision of Refusal in Japanese Application No. 2011-516466 dated Jan. 16, 2015.
Office Action in Japanese Application No. 2011-516466 dated May 30, 2016.
Office Action in Canadian Application No. 2726915 dated May 13, 2013.
First Office Action in Korean Application No. 10-2011-7002461 dated May 29, 2013.
First Office Action in Chinese Application No. 200980145872.4 dated Nov. 29, 2012.
First Office Action in Canadian Application No. 2741895 dated Feb. 25, 2013.
Second Office Action in Canadian Application No. 2741895 dated Oct. 21, 2013.
Partial Supplementary Search Report in European Application No. 09826977.2 dated Oct. 4, 2016.
Search Report and Written Opinion in Singapore Application No. 201103333-9 dated Nov. 19, 2012.
Examination Report in Singapore Application No. 201103333-9 dated Aug. 13, 2013.
Office Action in Chinese Application No. 201310717573.1 dated Jul. 29, 2016.
Office Action in European Application No. 11767118.0 dated Feb. 3, 2017.
Office Action in European Application No. 11767118.0 dated Jul. 25, 2018.
International Search Report and Written Opinion in PCT/US2011/053302 dated Nov. 28, 2011 in 11 pages.
International Preliminary Report on Patentability in PCT/US2011/053302 dated Apr. 2, 2013.
First Office Action in Japanese Application No. 2013-529454 dated Feb. 3, 2014 in 6 pages.
Office Action in Japanese Application No. 2013-529454 dated Mar. 9, 2015 in 8 pages.
First Office Action issued in Australian Application No. 2011307319 dated Mar. 6, 2014 in 5 pages.
Search Report and Written Opinion in Singapore Application No. 201301573-0 dated Jul. 1, 2014.
First Office Action in Chinese Application No. 201180046104.0 dated Nov. 3, 2014.
Second Office Action in Chinese Application No. 201180046104.0 dated Sep. 29, 2015.
Third Office Action in Chinese Application No. 201180046104.0 dated Apr. 14, 2016.
Decision of Rejection in Chinese Application No. 201180046104.0 dated Oct. 17, 2016.
Examination Report in Singapore Application No. 201301573-0 dated Dec. 22, 2014.
International Preliminary Report on Patentability in PCT/US2011/061486 dated May 22, 2013.
International Search Report and Written Opinion in PCT/US2011/061486 dated Mar. 30, 2012 in 11 pages.
Office Action in Canadian Application No. 2816612 dated Nov. 3, 2015.
Office Action in Canadian Application No. 2816612 dated Oct. 7, 2016.
Office Action in Canadian Application No. 2816612 dated Aug. 8, 2017.
First Office Action in Chinese Application No. 201180053405.6 dated Feb. 10, 2015.
Second Office Action in Chinese Application No. 201180053405.6 dated Dec. 4, 2015.
Office Action in Japanese Application No. 2013-540982 dated Jun. 2, 2014.
Written Opinion in Singapore Application No. 201303521-7 dated May 20, 2014.
Extended Search Report in European Application No. 18156163 dated Sep. 3, 2018.
Office Action in Japanese Application No. 2015-533132 dated Apr. 25, 2016.
Office Action in Canadian Application No. 2884796 dated Apr. 28, 2016.
Office Action in Russian Application No. 2015114568 dated May 16, 2016.
Supplementary Examination Report in Singapore Application No. 11201501987U dated May 17, 2017.
Office Action in Chinese Application No. 2013800492635 dated Aug. 30, 2017.
International Search Report and Written Opinion in PCT/US07/07601 dated Jul. 18, 2008 in 11 pages.
International Preliminary Report on Patentability in PCT/US2007/007601 dated Sep. 30, 2008 in 8 pages.
Supplementary European Search Report in Application No. 07754164.7 dated Dec. 20, 2010 in 7 pages.
Office Action in Chinese Application No. 200780020255.2 dated Mar. 4, 2013.
Office Action in Chinese Application No. 201310537815.9 dated Feb. 1, 2018.
Office Action in Indian Application No. 3742/KOLNP/2008 dated Nov. 22, 2013.
Office Action in Japanese Application No. 2012-052264 dated Dec. 11, 2012 in 26 pages.
Office Action in Japanese Application No. 2013-123086 dated Apr. 15, 2014 in 3 pages.
Office Action in Japanese Application No. 2013-123086 dated Dec. 2, 2014 in 4 pages.
Office Action in Japanese Application No. 2015-075644 dated Apr. 5, 2016.
Office Action in European Application No. 07754164.7 dated Dec. 14, 2015.
Office Action in European Application No. 07754164.7 dated Jan. 25, 2018.
Office Action in Chinese Application No. 201310537815.9 dated Jul. 5, 2016.
Office Action in Chinese Application No. 201310537815.9 dated Jun. 2, 2017.
International Search Report and Written Opinion in PCT/US/2016/ 066848 dated May 1, 2017.
International Preliminary Report on Patentability in PCT/US/2016/ 066848 dated Jun. 19, 2018.
International Search Report and Written Opinion in PCT/US2017/055156 dated Dec. 13, 2017.
Office Action in European Application No. 13770602.4 dated Mar. 11, 2019.
International Preliminary Reporton Patentability and Written Opinion in PCT/US2017/055156 dated Apr. 9, 2019.
Frangoudis et al., “PTPv2-based network load estimation and its application to QoE monitoring for Over-the-Top services”, IEEE, The 5th International conference on Information, Intelligence, Systems and Applications, IISA 2014, XP032629858, Jul. 7, 2014, pp. 176-181.
Partial Search Report in European Application No. 16876655.8 dated May 15, 2019.
International Search Report and Written Opinion in PCT/US2018/036634 dated Sep. 11, 2018.
“Zaman et al., ““Combinatorial Auction-Based Dynamic VM Provisioning and Allocation in Clouds””, Department of Computer Science, Wayne State University, Sep. 2011 http://www.cs.wayne.edu/-dgrosu/pub/ccgrid12-symp.pdf.”.
Extended European Search Report in Application No. 16876655.8 dated Aug. 20, 2019.
Office Action in Application No. 09729072.0 dated Dec. 7, 2018.
Office Action in European Application No. 11767118.0 dated Jan. 29, 2019.
Examination Report in Indian Application No. 3105/DELNP/2013, dated Feb. 19, 2019.
Examination Report in Indian Application No. 4487/DELNP/2013 dated Dec. 28, 2018.
Office Action in Indian Application No. 2823/DELNP/2015 dated Oct. 25, 2019.
Extended Search Report in European Applicaton No. 19184826.6 dated Jan. 17, 2020.
International Preliminary Report on Patentability and Written Opinion in PCT/US2018/036634 dated Dec. 24, 2019.
Office Action in Brazilian Application No. BR112015005588-5 dated Jan. 14, 2020.
Office Action in Chinese Application No. 201810426428.0 dated Jul. 20, 2020 in 25 pages.
Second Office Action in Chinese Application No. 201610828846.3 dated Aug. 5, 2020.
Office Action issued in connection with European Application No. 18734734 dated Oct. 19, 2020.
Related Publications (1)
Number Date Country
20190121739 A1 Apr 2019 US
Continuations (3)
Number Date Country
Parent 14886937 Oct 2015 US
Child 16221176 US
Parent 14078274 Nov 2013 US
Child 14886937 US
Parent 12060015 Mar 2008 US
Child 14078274 US